

P/N: TS64S51MAR02IM1 SuperMLC SATA III 6Gb/s SSD

Due to Ultra-slim (fit the standard dimensions of 2.5_SATA Hard Disk Drives), huge capacity, SATA 6Gb/s speed, and low power consumption, Solid State Drive is the perfect replacement storage device for Ultrabooks, PCs, Laptops, gaming systems, and handheld devices.

- Fully compatible with devices and OS that support the SATA III 6.0Gb/s standard
- Non-volatile Flash Memory for outstanding data retention
- Supports Trim and NCQ command
- SuperMLC

Features

- Advanced Global Wear-Leveling and Block management for reliability
- Supports Advanced Garbage Collection
- Features a DDR3 DRAM cache
- Built-in ECC (Error Correction Code) functionality
- Power shield to prevent data loss in the event of a sudden power outage
- Supports DEVSLP mode
- Supports Enhanced S.M.A.R.T. Function
- RoHS compliant
- Provides great shock resistance
- Slim, elegant, light design and aluminum case
- Supports Hardware Purge and Hardware Write Protect (Optional)
- Supports Transcend SSD Scope Pro (Optional)
- Real time full drive encryption with Advanced Encryption Standard (AES) (Optional)

Specifications

Physical Specification				
Form Factor		2.5 inch		
Storage Capacities		16 GB to 256GB		
	Length	100.00±0.25 mm	3.937±0.01 inch	
Dimensions	Width	69.85±0.25mm	2.750±0.01 inch	
	Height	6.8±0.2 mm	0.268±0.008 inch	
Input Voltage		5V±5%		
Weight		Max. 63 g		
Connector		SATA 22 pins connector		

Environmental Specifications		
Operating Ter	mperature	0 °C to 70 °C
StorageTemperature -40 °C to 85 °C		-40 °C to 85 °C
11	Operating	0 % to 95 % (Non-condensing)
Humidity Non-Operating		0 % to 95 % (Non-condensing)

Performance								
ATTO			CrystalDiskMark				IOmeter	
CAPACITY	Max. Read *	Max. Write *	Sequential Read **	Sequential Write **	Random Read (4KB QD32) **	Random Write (4KB QD32) **	IOPS Random Read (4KB QD32) ***	IOPS Random Write (4KB QD32) ***
64GB	570	320	530	300	300	250	75K	60K

Note: Maximum transfer speed recorded

^{* 25 °}C, test on ASUS P8Z68-M PRO, 4 GB, Windows* 7 Professional with AHCI mode, benchmark utility ATTO (version 2.41), unit MB/s

^{** 25 °}C, test on ASUS P8Z68-M PRO, 4 GB, Windows* 7 Professional with AHCI mode, benchmark utility CrystalDiskMark (version 3.0.1), copied file 1000MB, unit MB/s

^{*** 25 °}C, test on ASUS P8Z68-M PRO, 4 GB, Windows 7 Professional with AHCI mode, benchmark utility IOmeter2006 with 4K file size and queue depth of 32,

^{****} The recorded performance is obtained while the SSD is not operating as an OS disk

Actual Capacity				
CAPACITY	LBA	Cylinder	Head	Sector
64GB	125,045,424	16,383	16	63

Power Requirements			
Input Voltage		5V±5% @ 25 °C	
CAPACITY / Power Consumption		Typical (mA)	
Max Write*		465	
64GB	Max Read*	380	
0400	Idle*	70	

^{*}Tested with IOmeter running sequential reads/writes and idle mode $\,$

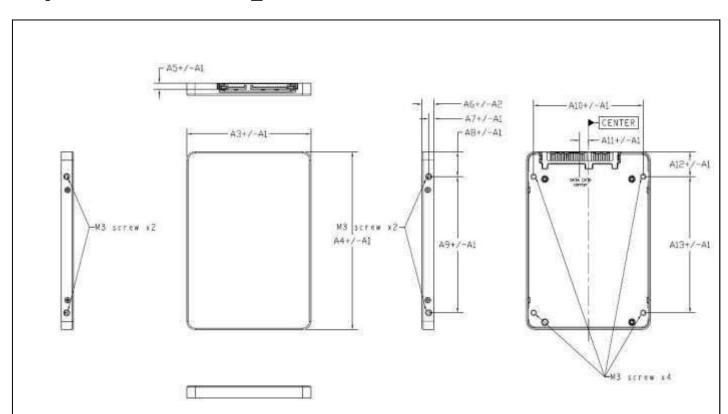
Reliability					
Data Reliability	Supports 42 bits in 1024 bytes				
МТВБ	1,500,000 hours				
	64GB 580 (TB)				

^{*}Tested under JESD218A endurance test method and JESD219A endurance workloads specification.

Vibration	
Operating	5 G (peak-to-peak), 5 - 800 Hz
Non-Operating	20 G (peak-to-peak), 5 - 800 Hz

^{*} Note: Reference to the IEC 60068-2-6 Testing procedures; Operating-Sine wave, 5-800Hz/1 oct., 1.5mm, 3g, 0.5 hr./axis, total 1.5 hrs.

Shock			
Operating	1500 G, 0.5 ms		
Non-Operating	1500 G, 0.5 ms		

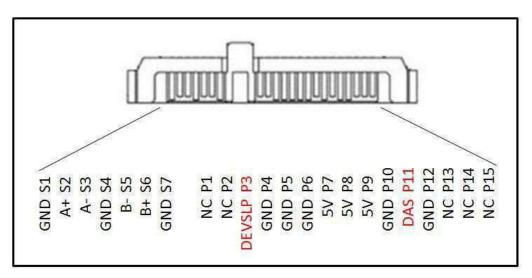

^{*} Reference to IEC 60068-2-27 Testing procedures; Operating-Half-sine wave, 1500g, 0.5ms, 3 times/dir., total 18 times.

Regulations	
Compliance	CE, FCC and BSMI

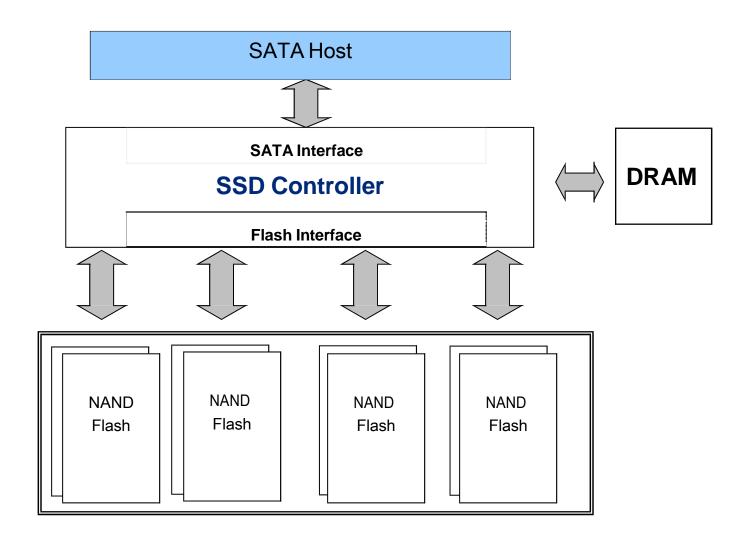
Package Dimensions

The figure below illustrates the Transcend 2.5 SATA Solid State Drive. All dimensions are in mm.

ltem	Milimeter	Item	Milimeter
A1	0.25	A11	4.8
A2	0.2	A12	14.0
A3	69.85	A13	76,6
A4	100.0		
A5	3,5		
A6	6.8	1	
A7	3,0		
A8	14.0		
A9	76.6		
A10	61.72		


*Note: Tighten mounting screws with no more than 2 Kgf-cm of torque.

Pin Assignments


Pin No.	Pin Name	Pin No.	Pin Name
S1	GND	S2	A+
S3	A-	S4	GND
S5	B-	S6	B+
S7	GND	P1	NC
P2	NC	P3	DEVSLP
P4	GND	P5	GND
P6	GND	P7	5V
P8	5V	P9	5V
P10	GND	P11	DAS
P12	GND	P13	NC
P14	NC	P15	NC

Pin Layout

Block Diagram

^{*}The quantity of NAND flash varies by capacity.

Features

Wear-Leveling algorithm

The controller supports static/dynamic wear leveling. When the host writes data, the controller will find and use the block with the lowest erase count among the free blocks. This is known as dynamic wear leveling. When the free blocks erase count is higher than the data d'loĐks, it will activate the static wear leveling, replacing the not so frequently used user blocks with the high erase count free blocks.

Bad-block management

When the flash encounters ECC fail, program fail or erase fail, the controller will mark the block as bad block to prevent using this block and cause data loss in the future.

Enhanced S.M.A.R.T. function

TransĐends SSDs support the innovative S.M.A.R.T. command (<u>Self-Monitoring</u>, <u>Analysis</u>, and <u>Reporting Technology</u>) that allows the users to evaluate the health information of their SSD in an efficient way.

StaticDataRefresh Technology

Normally, ECC engine corrections are taken place without affecting the host normal operations. As time passes by, the number of error bits accumulated in the read transaction exceeds the correcting capability of the ECC engine, resulting in corrupted data being sent to the host. To prevent this, the controller monitors the error bit levels at each read operation; when it reaches the preset threshold value, the controller automatically performs data refresh to restore the correct charge levels in the cell. This implementation practically restores the data to its original, error-free state, and hence, lengthening the life of the data.

SuperMLC

The Major difference between SLC and MLC is the bit numbers stored in each cell. SLC stores 1 bit data per cell, and MLC stores 2 bit data per cell. This structure allows SLC flash with more fault-tolerant ability while programming and reading which can provide faster program time and longer endurance. SLC is the ideal solution for enterprise and industrial applications. Due to economic concern, MLC has became most popular solution, though the concerns of performance and endurance still remain. To solve this problem, Transcend provide a special solution called SuperMLC, using firmware to manage MLC to act as SLC by reduce capacity of MLC to half size. In SuperMLC, each NAND cell only holds 1 bit data per cell. SuperMLC is a cost-effective way to achieve high performance and better endurance for both industrial and consumer flash applications.

ATA Command Register

This table with the following paragraphs summarizes the ATA command set.

Command Table

Command Table						
Support ATA/ATAPI Command	Code	Protocol				
General Feature Set	General Feature Set					
EXECUTE DIAGNOSTICS	90h	Device diagnostic				
FLUSH CACHE	E7h	Non-data				
IDENTIFYDEVICE	ECh	PIO data-In				
Initialize Drive Parameters	91h	Non-data				
READ DMA	C8h	DMA				
READ LOG Ext	2Fh	PIO data-In				
READ MULTIPLE	C4h	PIO data-In				
READ SECTOR(S)	20h	PIO data-In				
READ VERIFY SECTOR(S)	40h or 41h	Non-data				
SETFEATURES	EFh	Non-data				
SET MULTIPLE MODE	C6h	Non-data				
WRITE DMA	CAh	DMA				
WRITEMULTIPLE	C5h	PIO data-out				
WRITESECTOR(S)	30h	PIO data-out				
NOP	00h	Non-data				
READBUFFER	E4h	PIO data-In				
WRITE BUFFER	E8h	PIO data-out				
Power Management Feature Set	1					
CHECK POWER MODE	E5h or 98h	Non-data				
IDLE	E3h or 97h	Non-data				
IDLEIMMEDIATE	E1h or 95h	Non-data				
SLEEP	E6h or 99h	Non-data				
STANDBY	E2h or 96h	Non-data				
STANDBY IMMEDIATE	E0h or 94h	Non-data				
Security Mode Feature Set						
SECURITY SET PASSWORD	F1h	PIO data-out				
SECURITYUNLOCK	F2h	PIO data-out				
SECURITY ERASE PREPARE	F3h	Non-data				
SECURITY ERASE UNIT	F4h	PIO data-out				
SECURITY FREEZE LOCK	F5h	Non-data				
SECURITY DISABLE PASSWORD	F6h	PIO data-out				
SMART Feature Set						
SMART Disable Operations	B0h	Non-data				
SMART Enable/Disable Autosave	B0h	Non-data				
SMART Enable Operations	B0h	Non-data				
SMART Execute Off-Line Immediate	B0h	Non-data				
SMART Read LOG	B0h	PIO data-In				
SMART Read Data	B0h	PIO data-In				
SMART Read THRESHOLD	B0h	PIO data-In				
SMART Return Status	B0h	Non-data				
SMART SAVE ATTRIBUTE VALUES	B0h	Non-data				
SMART WRITE LOG	B0h	PIO data-out				

Host Protected Area Feature Set				
Read Native Max Address	F8h	Non-data		
Set Max Address	F9h	Non-data		
Set Max Set Password	F9h	PIO data-out		
Set Max Lock	F9h	Non-data		
Set Max Freeze Lock	F9h	Non-data		
Set Max Unlock	F9h	PIO data-out		
48-bit Address Feature Set				
Flush Cache Ext	EAh	Non-data		
Read Sector(s) Ext	24h	PIO data-in		
Read DMA Ext	25h	DMA		
Read Multiple Ext	29h	PIO data-in		
Read Native Max Address Ext	27h	Non-data		
Read Verify Sector(s) Ext	42h	Non-data		
Set Max Address Ext	37h	Non-data		
Write DMA Ext	35h	DMA		
Write Multiple Ext	39h	PIO data-out		
Write Sector(s) Ext	34h	PIO data-out		
NCQ Feature Set				
Read FPDMA Queued	60h	DMA Queued		
Write FPDMA Queued	61h	DMA Queued		
Other				
Data Set Management	06h	DMA		
SEEK	70h	Non-data		

SMART Data Structure

ВУТЕ	F/V	Description		
0-1	Х	Revision code		
2-361	Х	Vendor specific		
362	V	Off-line data collection status		
363	Х	Self-test execution status byte		
364-365	V	Total time in seconds to complete off-line data collection activity		
366	Х	Vendor specific		
367	F	Off-line data collection capability		
368-369	F	SMART capability		
370	F	Error logging capability 7-1 Reserved 0 1=Device error logging supported		
371	Х	Vendor specific		
372	F	Short self-test routine recommended polling time (in minutes)		
373	F	Extended self-test routine recommended polling time (in minutes)		
374	F	Conveyance self-test routine recommended polling time (in minutes)		
375-385	R	Reserved		
386-395	F	Firmware Version/Date Code		
396-397	F	Reserved		
398-399	V	Reserved		
400-406	V	TS6500		
407-415	Х	Vendorspecific		
416	F	Reserved		
417	F	Program/write the strong page only		
418-419	V	Number of spare block		
420-423	V	Average Erase Count		
424-510	Х	Vendor specific		
511	V	Data structure checksum		

F = content (byte) is fixed and does not change.

V= content (byte) is variable and may change depending on the state of the device or the commands executed by the device.

X= content (byte) is vendor specific and may be fixed or variable.


R= content (byte) is reserved and shall be zero.

SMART Attributes

The following table shows the vendor specific data in byte 2 to 361 of the 512-byte SMART data

Attribute ID (hex)	Raw Attribute Value						Attribute Name	
01	MSB	00	00	00	00	00	00	Read Error Rate
05	LSB	MSB	00	00	00	00	00	Reallocated sectors count
09	LSB	-	-	MSB	00	00	00	Power-on hours
0C	LSB	-	-	MSB	00	00	00	Power Cycle Count
A0	LSB	-	-	MSB	00	00	00	Uncorrectable sectors count when read/write
A1	LSB	MSB	00	00	00	00	00	Number of valid spare blocks
А3	LSB	MSB	00	00	00	00	00	Number of initial invalid blocks
A4	LSB	-	-	MSB	00	00	00	Total erase count
A5	LSB	ı	ı	MSB	00	00	00	Maximum erase count
A6	LSB	ı	ı	MSB	00	00	00	Minimum erase count
A7	LSB	ı	ı	MSB	00	00	00	Average erase count
A8	LSB	ı	ı	MSB	00	00	00	Max erase count of spec
A9	LSB	ı	ı	MSB	00	00	00	Remain Life (percentage)
AF	LSB	ı	ı	MSB	00	00	00	Program fail count in worst die
В0	LSB	MSB	00	00	00	00	00	Erase fail count in worst die
B1	LSB	-	-	MSB	00	00	00	Total wear level count
B2	LSB	MSB	00	00	00	00	00	Runtime invalid block count
B5	LSB	-	-	MSB	00	00	00	Total program fail count
В6	LSB	MSB	00	00	00	00	00	Total erase fail count
C0	LSB	MSB	00	00	00	00	00	Power-off retract Count
C2	MSB	00	00	00	00	00	00	Controlled temperature
C3	LSB	-	-	MSB	00	00	00	Hardware ECC recovered
C4	LSB	-	-	MSB	00	00	00	Reallocation event count
C5	LSB	MSB	00	00	00	00	00	Current Pending Sector Count
C6	LSB	-	-	MSB	00	00	00	Uncorrectable error count off-line
C7	LSB	MSB	00	00	00	00	00	Ultra DMA CRC Error Count
E8	LSB	MSB	00	00	00	00	00	Available reserved space
F1	LSB	-	-	-	-	-	MSB	Total LBA written (each write unit = 32MB)
F2	LSB	-	-	-	-	-	MSB	Total LBA read (each read unit = 32MB)
F5	LSB	-	-	-	-	-	MSB	Flash write sector count

