General Description

The MAX6495-MAX6499 is a family of small, low-current, overvoltage-protection circuits for high-voltage transient systems such as those found in automotive and industrial applications. These devices monitor the input voltage and control an external n-channel MOSFET switch to isolate the load at the output during an input overvoltage condition. The MAX6495-MAX6499 operate over a wide supply voltage range from +5.5 V to +72 V

The gate of the n-channel MOSFET is driven high while the monitored input is below the user-adjustable overvoltage threshold. An integrated charge-pump circuit provides a 10 V gate-to-source voltage to fully enhance the n-channel MOSFET. When the input voltage exceeds the user-adjusted overvoltage threshold, the gate of the MOSFET is quickly pulled low, disconnecting the load from the input. In some applications, disconnecting the output from the load is not desirable. In these cases, the protection circuit can be configured to act as a voltage limiter where the GATE output sawtooths to limit the voltage to the load (MAX6495/ MAX6496/MAX6499).

The MAX6496 supports lower input voltages and reduces power loss by replacing the external reverse battery diode with an external series p-channel MOSFET. The MAX6496 generates the proper bias voltage to ensure that the p-channel MOSFET is on during normal operations. The gate-to-source voltage is clamped during load-dump conditions, and the p-channel MOSFET is off during reverse-battery conditions.
The MAX6497/MAX6498 feature an open-drain, undedicated comparator that notifies the system if the output falls below the programmed threshold. The MAX6497 keeps the MOSFET switch latched off until either the input power or the $\overline{\text { SHDN }}$ pin is cycled. The MAX6498 will autoretry when VOVSET falls below 130 mV
These devices are available in small, thermally enhanced, 6-pin and 8-pin TDFN packages and are fully specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications
Automotive
Industrial
Telecom/Servers/Networking
FireWire®
Notebook Computers

FireWire is a registered trademark of Apple Computer, Inc

- Wide Supply Voltage Range: +5.5 V to +72 V
- Overvoltage-Protection Switch Controller Allows User to Size External n-Channel MOSFETs
- Fast Gate Shutoff During Overvoltage with 100 mA Sink Capability
- Internal Charge-Pump Circuit Ensures 10V Gate-to-Source Enhancement for Low RDS(ON) Performance
- n-Channel MOSFET Latches Off After an Overvoltage Condition (MAX6497/MAX6499)
- Adjustable Overvoltage Threshold
- Thermal Shutdown Protection
- Supports Series p-Channel MOSFET for ReverseBattery Voltage Protection (MAX6496)
- POK Indicator (MAX6497/MAX6498)
- Adjustable Undervoltage Threshold (MAX6499)
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operating Temperature Range
- Small, 3mm x 3mm TDFN Package

Ordering Information

PART	PIN- PACKAGE	TOP MARK	PKG CODE
MAX6495ATT +T	6 TDFN-EP*	AJM	T633-2
MAX6496ATA +T	8 TDFN-EP*	AOF	T833-2

Ordering Information continued at end of data sheet.
Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes lead-free package.
*EP = Exposed pad.
Selector Guide appears at end of data sheet.
Pin Configurations

Pin Configurations continued at end of data sheet.

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

ABSOLUTE MAXIMUM RATINGS

(All pins referenced to GND.)

IN, GATE, GATEP	to +80 V
SHDN, CLEAR	-0.3V to (VIN +0.3 V)
POK, OUTFB	-0.3V to +80V
GATE to OUTFB	-0.3V to +12V
GATEP to IN	-12V to +0.3V
OVSET, UVSET, POKSET	-0.3 V to +12 V
Current Sink/Source (All Pins).	50 mA
All Other Pins to GND	V to (VIN +0.3 V)

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
6-Pin TDFN (derate $18.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots . . .1455 \mathrm{~mW}$
8-Pin TDFN (derate $18.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\left.+70^{\circ} \mathrm{C}\right) \ldots \ldots . .1455 \mathrm{~mW}$
Operating Temperature Range .. $+300^{\circ} \mathrm{C}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
derate $18.2 \mathrm{~mW} / \mathrm{C}$ Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Junction Temperature
$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN }}=14 \mathrm{~V}, \mathrm{C}_{\text {GATE }}=6 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range	VIN			5.5		72.0	V
Input Supply Current	IIN	No load	$\overline{\text { SHDN }}=$ high		100	150	$\mu \mathrm{A}$
			$\begin{array}{\|l} \hline \overline{\mathrm{SHDN}}=\text { low (MAX6497/MAX6498/ } \\ \text { MAX6499) } \\ \hline \end{array}$		15	24	
			$\overline{\text { SHDN }}=$ low (MAX6495/MAX6496)		24	32	
IN Undervoltage Lockout		VIN rising, enables GATE		4.75	5	5.25	V
IN Undervoltage Lockout Hysteresis		VIN falling, disables GATE		155			mV
OVSET Threshold Voltage (MAX6495/MAX6496)	$\mathrm{V}_{\text {TH }+}$	OVSET rising		1.22	1.24	1.26	V
	$V_{\text {TH- }}$	OVSET falling		1.18			
OVSET Threshold Hysteresis (MAX6495/MAX6496)	VHYST	OVSET falling		5			\%
OVSET Threshold Voltage (MAX6497/MAX6498)	$\mathrm{V}_{\text {TH }+}$	OVSET rising		0.494	0.505	0.518	V
	$V_{\text {TH- }}$	OVSET falling		0.13			
OVSET Threshold Voltage (MAX6499)	$\mathrm{V}_{\text {TH }+}$	OVSET rising		1.22	1.24	1.26	V
	$V_{\text {TH- }}$	OVSET falling		1.18			
UVSET Threshold Voltage (MAX6499)	$\mathrm{V}_{\text {TH }+}$	UVSET rising		1.22	1.24	1.26	V
	$V_{\text {TH- }}$	UVSET falling		1.18			
OVSET/UVSET Threshold Hysteresis (MAX6499)	VHYST	OVSET falling		5			\%
POKSET Threshold Voltage (MAX6497/MAX6498)	VPOKSET+	POKSET rising		1.22	1.24	1.26	V
	VPOKSET-	POKSET falling		1.18			
POKSET Threshold Hysteresis (MAX6497/ MAX6498)	V HYST	POKSET falling		5			\%
OVSET, UVSET, POKSET Input Current	ISET			-50		+50	nA
Startup Response Time	tstart	$\overline{\text { SHDN }}$ rising (Note 2)		100			$\mu \mathrm{s}$
GATE Rise Time		GATE rising from GND to Voutfb + 8V, OUTFB = GND		1			ms

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{I N}=14 \mathrm{~V}\right.$, C $_{\text {GATE }}=6 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OVSET to GATE Propagation Delay	tov	SET rising from $\mathrm{V}_{\text {TH }}-100 \mathrm{mV}$ to $\mathrm{V}_{T H}+100 \mathrm{mV}$			0.6	$\mu \mathrm{s}$
UVSET to GATE, POKSET to POK Propagation Delay		POKSET, UVSET falling from $\mathrm{V}_{\mathrm{TH}}+100 \mathrm{mV}$ to $\mathrm{V}_{\text {TH }}-100 \mathrm{mV}$		20		$\mu \mathrm{s}$
GATE Output High Voltage	VOH	$\mathrm{V}_{\text {OUTFB }}=\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, RGATE to $\mathrm{IN}=1 \mathrm{M} \Omega$	$\mathrm{V}_{\text {IN }}+3.4$	$\mathrm{V}_{\text {IN }}+3.8$	$\mathrm{V}_{\mathrm{IN}}+4.2$	V
		VOUTFB $=\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {IN }} \geq 14 \mathrm{~V}$, RGATE to $\mathrm{IN}=1 \mathrm{M} \Omega$	VIN +8	$\mathrm{V}_{\text {IN }}+10$	$\mathrm{V}_{\text {IN }}+11$	
GATE Output Low Voltage	Vol	GATE sinking 20mA, OUTFB = GND			1	V
		V IN $=5.5 \mathrm{~V}$, GATE sinking 1mA, OUTFB = GND			0.9	
GATE Charge-Pump Current	IGATE	GATE = GND		100		$\mu \mathrm{A}$
GATE to OUTFB Clamp Voltage	VCLMP		12		18	V
IN to GATEP Output Low Voltage		IGATEP_SINK $=75 \mu \mathrm{~A}, \mathrm{I}$ GATEP_SOURCE $=1 \mu \mathrm{~A}$	7.5		11.7	V
IN to GATEP Clamp Voltage		VIN $=24 \mathrm{~V}$, IGATEP_SOURCE $=10 \mu \mathrm{~A}$	12		18	V
$\overline{\text { SHDN }}, \overline{\text { CLEAR }}$ Logic-High Input Voltage	V_{IH}		1.4			V
$\overline{\text { SHDN }}$, $\overline{\text { CLEAR Logic-Low }}$ Input Voltage	VIL				0.4	
$\overline{\text { SHDN }}$ Input Pulse Width			7			$\mu \mathrm{s}$
$\overline{\text { CLEAR Input Pulse Width }}$				0.5		$\mu \mathrm{s}$
$\overline{\text { SHDN }}, \overline{\text { CLEAR }}$ Input Pulldown Current		$\overline{\text { SHDN }}$ is Internally pulled down to GND	0.6	1.0	1.4	$\mu \mathrm{A}$
Thermal Shutdown		(Note 3)		+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis				20		${ }^{\circ} \mathrm{C}$
POKSET to POK Delay (MAX6497/MAX6498)				35		$\mu \mathrm{s}$
POK Output Low Voltage (MAX6497/MAX6498)	Vol	$\mathrm{V}_{\text {IN }} \geq 14 \mathrm{~V}, \mathrm{POKSET}=\mathrm{GND}, \mathrm{I}$ IINK $=3.2 \mathrm{~mA}$			0.4	V
		VIN $\geq 2.8 \mathrm{~V}, \mathrm{POKSET}=\mathrm{GND}$, ISINK $=100 \mu \mathrm{~A}$			0.4	
POK Leakage Current (MAX6497/MAX6498)		VPOKSET $=14 \mathrm{~V}$			100	nA

Note 1: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 2: The MAX6495-MAX6499 power up with the external MOSFET in off mode (VGATE = GND). The external MOSFET turns on tstart after all input conditions are valid.
Note 3: For accurate overtemperature-shutdown performance, place the device in close thermal contact with the external MOSFET.

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

GATE TO OUTFB CLAMP VOLTAGE

vs. TEMPERATURE

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\mathrm{IN}}=+12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

$400 \mu \mathrm{~s} / \mathrm{div}$

OVERVOLTAGE SWITCH FAULT
(CIN $=100 \mu \mathrm{~F}$, COUT $=10 \mu \mathrm{~F}$, ROUT $=100 \Omega$)

200 $\mu \mathrm{s} / \mathrm{div}$

STARTUP FROM SHUTDOWN
($C_{\text {IN }}=100 \mu \mathrm{~F}$, Cout $=10 \mu \mathrm{~F}$, Rout $=100 \Omega$)

400 $\mu \mathrm{s} / \mathrm{div}$

OVERVOLTAGE LIMITER
(CIN = 100 $\mu \mathrm{F}$, Cout $=10 \mu \mathrm{~F}$, Rout $=100 \Omega$)

400 $\mu \mathrm{s} / \mathrm{div}$

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

| PIN | | | | |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

Detailed Description

Overvoltage Monitoring

When operating in overvoltage mode, the MAX6495MAX6499 feedback path (Figure 1) consists of IN, OVSET's internal comparator, the internal gate charge pump, and the external n-channel MOSFET, resulting in a switch-on/off function. When the programmed overvoltage threshold is tripped, the internal fast comparator turns off the external MOSFET, clamping GATE to OUTFB within $0.5 \mu \mathrm{~s}$ and disconnecting the power source from the load. When IN decreases below the adjusted overvoltage threshold, the MAX6495-MAX6499 slowly enhance GATE above OUTFB, reconnecting the load to the power source.

Overvoltage Limiter (MAX6495/MAX6496/MAX6499)

When operating in overvoltage-limiter mode, the MAX6495/MAX6496/MAX6499 feedback path (Figure 2) consists of OUTFB, OVSET's internal comparator, the internal gate charge pump, and the external n-channel MOSFET, resulting in the external MOSFET operating as a voltage regulator.
During normal operation, GATE is enhanced 10 V above OUTFB. The external MOSFET source voltage is monitored through a resistive divider between OUTFB and OVSET. When OUTFB rises above the adjusted overvoltage threshold, an internal comparator sinks the charge-pump current, discharging the external GATE, regulating OUTFB at the OVSET overvoltage threshold. OUTFB remains active during the overvoltage transients and the MOSFET continues to conduct during the overvoltage event, operating in switched-linear mode.
As the transient begins decreasing, OUTFB fall time will depend on the MOSFET's GATE charge, the internal charge-pump current, the output load, and the tank capacitor at OUTFB.
For fast-rising transients and very large-sized MOSFETs, add an additional bypass capacitor from GATE to GND to reduce the effect of the fast-rising voltages at IN . The external capacitor acts as a voltage-divider working against the MOSFET's drain-to-gate capacitance. For a 6000pF gate-to-source capacitance, a $0.1 \mu \mathrm{~F}$ capacitor at GATE will reduce the impact of the fast-rising V_{IN} input.
Caution must be exercised when operating the MAX6495/MAX6496/MAX6499 in voltage-limiting mode for long durations. If the VIN is a DC voltage greater than the MOSFET's maximum gate voltage, the MOSFET dissipates power continuously. To prevent damage to the external MOSFET, proper heatsinking should be implemented.

Figure 1. Overvoltage Threshold (MAX6495-MAX6499)

Figure 2. Overvoltage-Limiter Protection Switch Configuration

GATE Voltage

The MAX6495-MAX6499 use a high-efficiency charge pump to generate the GATE voltage. Upon VIN exceeding the 5 V (typ) UVLO threshold, GATE enhances 10V above VIN^{2} (for $\mathrm{V}_{\mathrm{IN}} \geq 14 \mathrm{~V}$) with a $100 \mu \mathrm{~A}$ pullup current. An overvoltage condition occurs when the voltage at OVSET goes above its $V_{T H+}$ threshold. When the threshold is crossed, GATE falls to OUTFB within $0.5 \mu \mathrm{~s}$ with a 100 mA pulldown current. The MAX6495-MAX6499 include an internal clamp to OUTFB that ensures GATE is limited to 18 V (max) above OUTFB to prevent gate-to-source damage of the external MOSFET.

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

The gate cycles during overvoltage-limit and overvolt-age-switch modes are quite similar but have distinct characteristics. In overvoltage-switch mode, GATE is enhanced to (VIN +10 V) while the monitored VIN voltage remains below the overvoltage fault threshold (OVSET < VTH+). When an overvoltage fault occurs (OVSET $\geq \mathrm{V}_{\mathrm{T} H_{+}}$), GATE is pulled one diode drop below OUTFB, turning off the external MOSFET and disconnecting the load from the input. GATE remains low (MOSFET off) as long as the VIN voltage is above the overvoltage fault threshold. As VIN falls back below the overvoltage fault threshold, GATE is again enhanced to (VIN + 10V).
In overvoltage-limit mode, GATE is enhanced to (VIN +10 V) while the monitored OUTFB voltage remains below the overvoltage fault threshold (OVSET < $\mathrm{V}_{T H+}$). When an overvoltage fault occurs (OVSET $\geq \mathrm{V}_{\mathrm{TH}}$), GATE is pulled one diode drop below OUTFB until OUTFB drops 5% below the overvoltage fault threshold (MAX6495/MAX6496/MAX6499). GATE is then turned back on until OUTFB reaches the overvoltage fault threshold and GATE is again turned off. GATE cycles in a sawtooth waveform until OUTFB remains below the overvoltage fault threshold and GATE remains constantly on (VIN +10 V). The overvoltage limiter's sawtooth GATE output operates the MOSFET in a switched-linear mode while the input voltage remains above the overvoltage fault threshold. The sawtooth frequency depends on the load capacitance, load current, and MOSFET turn-on time (GATE charge current and GATE capacitance).
GATE goes high when the following startup conditions are met: VIN is above the UVLO threshold, SHDN is high, an overvoltage fault is not present, and the device is not in thermal shutdown.

Undervoltage Monitoring (MAX6499)

The MAX6499 includes undervoltage and overvoltage comparators for window detection (see Figures 3 and 12). GATE is enhanced and the n-channel MOSFET is on when the monitored voltage is within the selected "window." When the monitored voltage falls below the lower limit (VTRIPLOW) or exceeds the upper limit (VTRIPHIGH) of the window, GATE falls to OUTFB turning off the MOSFET. The application in Figure 3 shows the MAX6499 enabling the DC-DC converter when the monitored voltage is in the selected window.
The resistor values R1, R2, and R3 can be calculated as follows:

$$
\begin{aligned}
& \mathrm{V}_{\text {TRIPLOW }}=\left(\mathrm{V}_{\mathrm{TH}-}\right)\left(\frac{\mathrm{R}_{\text {TOTAL }}}{\mathrm{R}^{2}+\mathrm{R}}\right) \\
& \mathrm{V}_{\text {TRIPHIGH }}=\left(\mathrm{V}_{\mathrm{TH}+}\right)\left(\frac{\mathrm{R}_{\text {TOTAL }}}{\mathrm{R}}\right)
\end{aligned}
$$

where Rtotal $=\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3$.
Use the following steps to determine the values for R1, R2, and R3:

1) Choose a value for Rtotal, the sum of R1, R2, and R3. Because the MAX6499 has very high input impedance, Rtotal can be up to $5 \mathrm{M} \Omega$.
2) Calculate R3 based on Rtotal and the desired upper trip point:

$$
\mathrm{R} 3=\frac{\mathrm{V}_{\mathrm{TH}+} \times \mathrm{R}_{\mathrm{TOTAL}}}{\mathrm{~V}_{\mathrm{TRIPHIGH}}}
$$

3) Calculate R2 based on Rtotal, R3, and the desired lower trip point:

$$
\mathrm{R} 2=\left[\frac{\left(\mathrm{V}_{\mathrm{TH}-}\right) \times \mathrm{R}_{\mathrm{TOTAL}}}{\mathrm{~V}_{\mathrm{TRIPLOW}}}\right]-\mathrm{R} 3
$$

4) Calculate R1 based on Rtotal, R2, and R3:
R1 = RTOTAL - R2 - R3

Figure 3. MAX6499 Window-Detector Circuit

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

Abstract

Power-OK Output (MAX6497/MAX6498) POK is an open-drain output that remains low when the voltage at POKSET is below the internal POKSET threshold (1.18V). POK goes high impedance when POKSET goes above the internal POKSET threshold (1.24V). Connect a resistive divider from OUTFB to POKSET to adjust the desired undervoltage threshold. Use a resistor in the $100 \mathrm{k} \Omega$ range from POKSET to GND to minimize current consumption.

Overvoltage Latch Function

The MAX6497/MAX6499 offers a latch function that prevents the external MOSFET from turning on until the latch is cleared. For the MAX6497, the latch can be cleared by cycling the power on the input IN to a voltage below the undervoltage lockout or by pulling the shutdown input low and then back to a logic-high state. The MAX6499 offers a CLEAR input that latches the n-MOSFET off when CLEAR is high. The latch is removed when the $\overline{\text { CLEAR }}$ input is plused low. Connect CLEAR low to make the latch transparent.

Overvoltage Retry Function

The MAX6498 offers an automatic retry function that tries to enhance the external n-channel MOSFET after the overvoltage condition is removed. When the monitored input voltage detects an overvoltage condition (VSET > $\left.\mathrm{V}_{\mathrm{TH}}+\right)^{+}$, the n-MOSFET is turned off. The MOSFET stays off until the voltage at $\mathrm{V}_{\text {SET }}$ falls below its $\mathrm{V}_{\text {TH- }}$ (typically 0.13 V), at which point the output tries to turn on again.

Applications Information

Abstract

Load Dump Most automotive applications run off a multicell " 12 V " lead-acid battery with a nominal voltage that swings between 9 V and 16 V (depending on load current, charging status, temperature, battery age, etc.). The battery voltage is distributed throughout the automobile and is locally regulated down to voltages required by the different system modules. Load dump occurs when the alternator is charging the battery and the battery becomes disconnected. The alternator voltage regulator is temporarily driven out of control. Power from the alternator flows into the distributed power system and elevates the voltage seen at each module. The voltage spikes have rise times typically greater than 5 ms and decays within several hundred milliseconds but can extend out to 1 s or more depending on the characteristics of the charging system. These transients are capable of destroying sensitive electronic equipment on the first "fault event."

Setting Overvoltage Thresholds

OVSET provides an accurate means to set the overvoltage level for the MAX6495-MAX6499. Use a resistive divider to set the desired overvoltage condition (see Figure 2). OVSET has a rising 1.24 V threshold with a 5\% falling hysteresis (MAX6495/MAX6496/MAX6499) and a rising 0.505 V threshold with a falling 0.15 V threshold (MAX6497/MAX6498).
Begin by selecting the total end-to-end resistance, Rtotal = R1 + R2. Choose Rtotal to yield a total current equivalent to a minimum $100 \times$ ISET (OVSET's input bias current) at the desired overvoltage threshold.
For example:
With an overvoltage threshold (Vov) set to 20 V for the MAX6495/MAX6496/MAX6499, RTOTAL < 20V / (100 x ISET), where ISET is OVSET's 50nA (max) input bias current.

RTOTAL $<4 \mathrm{M} \Omega$
Use the following formula to calculate R2:

$$
\mathrm{R}^{2}=\mathrm{V}_{\mathrm{TH}+} \times \frac{\mathrm{R}_{\mathrm{TOTAL}}}{\mathrm{~V}_{\mathrm{OV}}}
$$

where $\mathrm{V}_{\mathrm{TH}}+$ is the 1.24 V OVSET rising threshold and Vov is the desired overvoltage threshold.
$R 2=248 \mathrm{k} \Omega$. Use a $249 \mathrm{k} \Omega$ standard resistor.
RTOTAL = R2 + R1, where R1 $=3.751 \mathrm{M} \Omega$. Use a $3.74 \mathrm{M} \Omega$ standard resistor.
A lower value for total resistance dissipates more power but provides slightly better accuracy.

Reverse-Battery Protection

The MAX6496 is an overvoltage-protection circuit that is capable of driving a p-channel MOSFET to prevent reverse-battery conditions. This MOSFET eliminates the need for external diodes, thus minimizing the input voltage drop (see Figure 7).

Inrush/Slew-Rate Control

Inrush current control can be implemented by placing a capacitor from GATE to GND to slowly ramp up the GATE, thus limiting the inrush current and controlling GATE's slew rate during initial turn-on. The inrush current can be approximated using the following equation:

$$
I_{\text {INRUSH }}=\frac{C_{\text {OUT }}}{C_{\text {GATE }}} \times I_{\text {GATE }}+I_{\text {LOAD }}
$$

where IGATE is GATE's $100 \mu \mathrm{~A}$ sourcing current, ILOAD is the load current at startup, and COUT is the output capacitor.

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

MOSFET Selection

Select external MOSFETs according to the application current level. The MOSFET's on-resistance (RDS(ON)) should be chosen low enough to have a minimum voltage drop at full load to limit the MOSFET power dissipation. Determine the device power rating to accommodate an overvoltage fault when operating the MAX6495/MAX6496/MAX6499 in overvoltage-limit mode.
During normal operation, the external MOSFET dissipates little power. The power dissipated in the MOSFET during normal operation is:

$$
P=I L O A D^{2} \times \operatorname{RDS}(O N)
$$

where P is the power dissipated in the MOSFET, ILOAD is the output load current, and $\operatorname{RDS}(\mathrm{ON})$ is the drain-tosource resistance of the MOSFET.
Most power dissipation in the MOSFET occurs during a prolonged overvoltage event when operating the MAX6495/MAX6496/MAX6499 in voltage-limiter mode. The power dissipated across the MOSFET is as follows (see the Thermal Shutdown in Overvoltage-Limiter Mode section):

$$
P=V_{D S} \times \operatorname{ILOAD}
$$

where $V_{D S}$ is the voltage across the MOSFET's drain and source.

Thermal Shutdown
The MAX6495-MAX6499 thermal-shutdown feature turns off GATE if it exceeds the maximum allowable thermal dissipation. Thermal shutdown also monitors the PC board temperature of the external n-channel MOSFET when the devices sit on the same thermal island. Good thermal contact between the MAX6495MAX6499 and the external n-channel MOSFET is essential for the thermal-shutdown feature to operate effectively. Place the n-channel MOSFET as close to possible to OUTFB.
When the junction temperature exceeds $\mathrm{T}_{J}=+160^{\circ} \mathrm{C}$, the thermal sensor signals the shutdown logic, turning off the GATE output and allowing the device to cool. The thermal sensor turns the GATE on again after the IC's junction temperature cools by $20^{\circ} \mathrm{C}$. Thermal-overload protection is designed to protect the MAX6495MAX6499 and the external MOSFET in the event of cur-rent-limit fault conditions. For continuous operation, do not exceed the absolute maximum junction-temperature rating of $T J=+150^{\circ} \mathrm{C}$.

Thermal Shutdown in Overvoltage-Limiter Mode
When operating the MAX6495/MAX6496/MAX6499 in overvoltage-limit mode for a prolonged period of time, a thermal shutdown is possible. The thermal shutdown is dependent on a number of different factors:

- The device's ambient temperature
- The output capacitor (COUT)
- The output load current (IOUT)
- The overvoltage threshold limit (VOV)
- The overvoltage waveform period (tov)
- The power dissipated across the package (PDISS)

During an initial overvoltage occurrence, the discharge time $\left(\Delta t_{1}\right)$ of COUT, caused by IOUT and IGATEPD. The discharge time is approximately:

$$
\Delta t_{1}=C_{\text {OUT }} \frac{V_{\text {OV }} \times 0.95}{\left(l_{\text {OUT }}+I_{\text {GATEPD }}\right)}
$$

where VOV is the overvoltage threshold, IOUT is the load current, and IGATEPD is the GATE's 100 mA pulldown current.
Upon OUT falling below the threshold point, the MAX6495/MAX6496/MAX6499s' charge-pump current must recover and begins recharging the external GATE voltage. The time needed to recharge GATE from -VD to the MOSFET's gate threshold voltage is:

$$
\Delta t_{2}=\mathrm{C}_{\mathrm{ISS}} \frac{\mathrm{~V}_{\mathrm{GS}(\mathrm{TH})}+\mathrm{V}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{GATE}}}
$$

where CISS is the MOSFET's input capacitance, $\mathrm{VGS}_{\mathrm{G}}(\mathrm{TH})$ is the MOSFET's gate threshold voltage, V_{D} is the internal clamp (from OUTFB to GATE) diode's forward voltage (1.5 V , typ) and IGATE is the charge-pump current ($100 \mu \mathrm{~A}$ typ).

Figure 4. MAX6495/MAX6496/MAX6499 Timing

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

During Δ t2, Cout loses charge through the output load. The voltage across COUT $\left(\Delta V_{2}\right)$ decreases until the MOSFET reaches its $\mathrm{VGS}_{\mathrm{GS}}(\mathrm{TH})$ threshold and can be approximated using the following formula:

$$
\Delta \mathrm{V}_{2}=\mathrm{I}_{\text {OUT }} \frac{\Delta \mathrm{t}_{2}}{\mathrm{C}_{\text {OUT }}}
$$

Once the MOSFET $V_{G S}(T H)$ is obtained, the slope of the output-voltage rise is determined by the MOSFET Qg_{g} charge through the internal charge pump with respect to the drain potential. The new rise time needed to reach a new overvoltage event can be calculated using the following formula:

$$
\Delta \mathrm{t}_{3} \cong \frac{\mathrm{Q}_{\mathrm{GD}}}{\mathrm{~V}_{\mathrm{GS}}} \frac{\Delta \mathrm{~V}_{\mathrm{OUT}}}{\mathrm{I}_{\mathrm{GATE}}}
$$

where QGD is the gate-to-drain charge.
The total period of the overvoltage waveform can be summed up as follows:

$$
\Delta \mathrm{tOV}=\Delta \mathrm{t}_{1}+\Delta \mathrm{t}_{2}+\Delta \mathrm{t}_{3}
$$

The MAX6495/MAX6496/MAX6499 dissipate the most power during an overvoltage event when IOUT $=0$. The
maximum power dissipation can be approximated using the following equation:

$$
\mathrm{P}_{\mathrm{DISS}}=\mathrm{V}_{\mathrm{OV}} \times 0.975 \times \mathrm{I}_{\mathrm{GATEPD}} \times \frac{\Delta \mathrm{t}_{1}}{\Delta \mathrm{t}_{\mathrm{OV}}}
$$

The die-temperature increase is related to $\theta \mathrm{JC}\left(8.3^{\circ} \mathrm{C} / \mathrm{W}\right.$ and $8.5^{\circ} \mathrm{C} / \mathrm{W}$ for the MAX6495/MAX6496/MAX6499, respectively) of the package when mounted correctly with a strong thermal contact to the circuit board. The MAX6495/MAX6496/MAX6499 thermal shutdown is governed by the equation:

$$
T J=T A+\operatorname{PDISS}\left(\theta_{J C}+\theta C A\right)<+170^{\circ} \mathrm{C}
$$

Based on these calculations, the parameters of the MOSFET, the overvoltage threshold, the output load current, and the output capacitors are external variables affecting the junction temperature. If these parameters are fixed, the junction temperature can also be affected by increasing $\Delta t 3$, which is the time the switch is on. By increasing the capacitance at the GATE pin, Δ t3 increases as it increases the amount of time required to charge up this additional capacitance $(75 \mu \mathrm{~A}$ gate current). As a result, Δ tov increases, thereby reducing the power dissipated (PDISS).

Figure 5. Overvoltage Limiter (MAX6495)

Figure 6. Overvoltage Limiter with Low-Voltage-Drop ReverseProtection Circuit (MAX6496)

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

Typical Application Circuits (continued)

Figure 8. Overvoltage and Undervoltage Window Detector (MAX6499)

Functional Diagrams

Figure 9. Functional Diagram (MAX6495)

Figure 10. Functional Diagram (MAX6496)

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

Functional Diagrams (continued)

Figure 11. Functional Diagram (MAX6497/MAX6498)

Figure 12. Functional Diagram (MAX6499)

Selector Guide

PART	FUNCTION	p-CHANNEL DRIVER	POK FUNCTION	UNDERVOLTAGE	LATCH/ AUTORETRY	PACKAGE CODE
MAX6495	OV Switch/Limiter	-	-	-	-	-
MAX6496	OV Switch/Limiter	Yes	-	-	-	T633-1
MAX6497	OV Switch	-	Yes	-	Latch	T8333-1
MAX6498	OV Switch	-	Yes	-	Autoretry	T833-1
MAX6499	OV/UV Switch/Limiter	-	-	Yes	Latch	T833-1

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

PART	PIN- PACKAGE	TOP MARK	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX6497ATA+T	8 TDFN-EP*	AOC	T833-2
MAX6498ATA+T	8 TDFN-EP*	AOD	T833-2
MAX6499ATA+T	8 TDFN-EP*	AOE	T833-2

Note: All devices are specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes lead-free package.
*EP = Exposed pad.

TOP VIEW

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

72V, Overvoltage-Protection Switches/ Limiter Controllers with an External MOSFET

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS			PACKAGE VARIATIONS							
SYMBOL	MIN.	MAX.	PKG. CODE	N	D2	E2	e	JEDEC SPEC	b	[(N/2)-1] e e
A	0.70	0.80	T633-2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229 / WEEA	0.40 ± 0.05	1.90 REF
D	2.90	3.10	T833-2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
E	2.90	3.10	T833-3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229 / WEEC	0.30 ± 0.05	1.95 REF
A1	0.00	0.05	T1033-1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
L	0.20	0.40	T1033-2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229 / WEED-3	0.25 ± 0.05	2.00 REF
k	0.25	MIN.	T1433-1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
A2	0.20	REF.	T1433-2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF

NOTES:

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm .
3. WARPAGE SHALL NOT EXCEED 0.10 mm .
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229. EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 \& T1433-2.
6. " N " IS THE TOTAL NUMBER OF LEADS.
7. Number of leads shown are for reference only.
8. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

Revision History

Pages changed at Rev 2: 1, 9, 14-16
\qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

