19-3404; Rev 1; 10/06

EVALUATION KIT

LF-to-2.5GHz Dual Logarithmic Detector/ Controller for Power, Gain, and VSWR Measurements

General Description

The MAX2016 dual logarithmic detector/controller is a fully integrated system designed for measuring and comparing power, gain/loss, and voltage standing-wave ratio (VSWR) of two incoming RF signals. An internal broadband impedance match on the two differential RF input ports allows for the simultaneous monitoring of signals ranging from low frequency to 2.5GHz.

The MAX2016 uses a pair of logarithmic amplifiers to detect and compare the power levels of two RF input signals. The device internally subtracts one power level from the other to provide a DC output voltage that is proportional to the power difference (gain). The MAX2016 can also measure the return loss/VSWR of an RF signal by monitoring the incident and reflected power levels associated with any given load. A window detector is easily implemented by using the on-chip comparators, OR gate, and 2V reference. This combination of circuitry provides an automatic indication of when the measured gain is outside a programmable range. Alarm monitoring can thus be implemented for detecting high-VSWR states (such as open or shorted loads).

The MAX2016 operates from a single +2.7V to $+5.25V^*$ power supply and is specified over the extended $-40^{\circ}C$ to $+85^{\circ}C$ temperature range. The MAX2016 is available in a space-saving, 5mm x 5mm, 28-pin thin QFN.

Applications

Return Loss/VSWR Measurements

Dual-Channel RF Power Measurements

Dual-Channel Precision AGC/RF Power Control

Log Ratio Function for RF Signals

Remote System Monitoring and Diagnostics

Cellular Base Station, Microwave Link, Radar, and other Military Applications

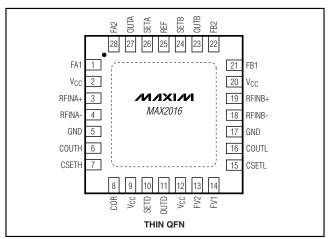
RF/IF Power Amplifier (PA) Linearization

_ Features

- Complete Gain and VSWR Detector/Controller
- Dual-Channel RF Power Detector/Controller
- Low-Frequency to 2.5GHz Frequency Range
- Exceptional Accuracy Over Temperature
- High 80dB Dynamic Range
- ♦ 2.7V to 5.25V Supply Voltage Range*
- Internal 2V Reference
- Scaling Stable Over Supply and Temperature Variations
- Controller Mode with Error Output
- Available in 5mm x 5mm, 28-Pin Thin QFN Package

*See Power-Supply Connection section.

Ordering Information


PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX2016ETI	-40°C to +85°C	28 Thin QFN-EP*, bulk	T2855-3
MAX2016ETI-T	-40°C to +85°C	28 Thin QFN-EP*, T/R	T2855-3
MAX2016ETI+D	-40°C to +85°C	28 Thin QFN-EP*, lead free, bulk	T2855-3
MAX2016ETI+TD	-40°C to +85°C	28 Thin QFN-EP*, lead free, T/R	T2855-3

*EP = Exposed pad.

+Indicates lead-free package.

D = Dry pack.

Pin Configuration

Typical Application Circuit appears at end of data sheet.

MAX2016

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +5.25V
Input Power Differential (RFIN_+, RFIN)	+23dBm
Input Power Single Ended (RFIN_+ or RFIN))+19dBm
All Other Pins to GND0.3	V to (V _{CC} + 0.3V)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
28-Pin, 5mm x 5mm Thin QFN (derate 35.7)	mW/°C
above +70°C)	2.8W

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.7V \text{ to } +3.6V, R_1 = R_2 = R_3 = 0\Omega, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted. Typical values are at } V_{CC} = +3.3V, CSETL = CSETH = V_{CC}, 50\Omega \text{ RF system}, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
POWER SUPPLY		·				
Owned to Malta and	VS	$R_6 = 0\Omega$	2.7	3.3	3.6	N
Supply Voltage	V _S	$R_6 = 37.4\Omega$	4.75	5	5.25	V
Total Supply Current	Icc			43	55	mA
		Measured in each pin 2 and pin 20		16		
Supply Current		Measured in pin 9		2		mA
		Measured in pin 12		9		
INPUT INTERFACE						
Input Impedance		Differential impedance at RFINA and RFINB		50		Ω
Input Desistance	R	Resistance at SETD		20		ko
Input Resistance	R	Resistance at SETA and SETB	40			kΩ
DETECTOR OUTPUT						
Source Current		Measured at OUTA, OUTB, and OUTD	4		mA	
Sink Current		Measured at OUTA, OUTB, and OUTD	0.45		mA	
Minimum Output Voltage		Measured at OUTA, OUTB, and OUTD	0.5		V	
Maximum Output Voltage		Measured at OUTA, OUTB, and OUTD		1.8		V
Difference Output VOUTD		$P_{RFINA} = P_{RFINB} = -30 dBm$	1		V	
OUTD Accuracy				±12		mV
COMPARATORS						
Output High Voltage	V _{OH}	$R_{LOAD} \ge 10k\Omega$	V _{CC} - 10mV		V	
Output Low Voltage	VOL	$R_{LOAD} \ge 10k\Omega$	10		mV	
Input Voltage		Measured at CSETL and CSETH	GND to Vcc		V	
Input Bias Current		CSETL and CSETH		1		nA
REFERENCE						
Output Voltage on Pin 25		$R_{LOAD} \ge 2k\Omega$		2		V
Load Regulation		Source 2mA	-5		mV	

AC ELECTRICAL CHARACTERISTICS—OUTA AND OUTB

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	МАХ	UNITS
RF Input Frequency Range	fRF	AC-coupled input				2.5	GHz
Return Loss	S ₁₁	0.1GHz to 3GHz			20		dB
Large-Signal Response Time		P _{RFIN} = no signal to accuracy	0dBm, ±0.5dB settling		100		ns
RSSI MODE—0.1GHz							
RF Input Power Range		(Note 2)			-70 to +10		dBm
±3dB Dynamic Range		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)		80		dB
Range Center					-32		dBm
Tomporatura Consitivity		Prfina = Prfinb =	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$		+0.0083		
Temperature Sensitivity		-32dBm	$T_A = +25^{\circ}C \text{ to } -20^{\circ}C$		-0.0083		dB/°C
Slope		(Note 4)			19		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$			-4		µV/°C
Intercept		(Note 5)			-100		dBm
Typical Intercept Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$			0.03		dBm/°C
RSSI MODE—0.9GHz							
RF Input Power Range		(Note 2) -70 to +10			dBm		
±3dB Dynamic Range		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$	$T_A = -20^{\circ}C \text{ to } +85^{\circ}C \text{ (Note 3)}$		80		dB
Range Center					-30		dBm
Temperature Sensitivity		PRFINA = PRFINB = -30dBm	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +25^{\circ}C \text{ to } -20^{\circ}C$	+0.0083		dB/°C	
Slope		(Note 4)			18.1		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$			-4		µV/°C
Intercept		(Note 5)		-97			dBm
Typical Intercept Variation		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$			0.02		dBm/°C
RSSI MODE—1.9GHz							
RF Input Power Range		(Note 2)	(Note 2) -55 to +12			dBm	
±3dB Dynamic Range		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$	T _A = -20°C to +85°C (Note 3)		67		dB
Range Center					-27		dBm
Torrestore Or it it		Prfina = Prfinb =	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$		+0.0125		10/00
Temperature Sensitivity		-27dBm	$T_A = +25^{\circ}C \text{ to } -20^{\circ}C$		-0.0125		dB/°C
Slope		(Note 4)			18		mV/dB
Typical Slope Variation		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$			-4.8		µV/°C
Intercept		(Note 5)			-88		dBm
Typical Intercept Variation		$T_{A} = -20^{\circ}C \text{ to } +85^{\circ}C$			0.03		dBm/°C

AC ELECTRICAL CHARACTERISTICS—OUTA AND OUTB (continued)

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONE	DITIONS	MIN TYP	MAX	UNITS
RSSI MODE—2.17GHz	÷					
RF Input Power Range		(Note 2)	(Note 2)		-52 to +12	
±3dB Dynamic Range		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)	64		dB
Range Center				-25		dBm
Tomporatura Consitivity		PRFINA = PRFINB =	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$	+0.0135		
Temperature Sensitivity		-25dBm	$T_A = +25^{\circ}C \text{ to } -20^{\circ}C$	-0.0135		dB/°C
Slope		(Note 4)		17.8		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		-8		µV/°C
Intercept		(Note 5)	(Note 5)		-81	
Typical Intercept Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		0.03		dBm/°C
RSSI MODE—2.5GHz						
RF Input Power Range		(Note 2)		-45 to +7		dBm
±3dB Dynamic Range		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$	(Note 3)	52		dB
Range Center				-23		dBm
Temperature Sensitivity		P _{RFINA} = P _{RFINB} = -23dBm	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$ $T_A = +25^{\circ}C \text{ to } -20^{\circ}C$	+0.0167 -0.0167		dB/°C
Slope		(Note 4)		17.8		mV/dB
Typical Slope Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		-8		μV/°C
Intercept		(Note 5)		-80		dBm
Typical Intercept Variation		$T_A = -20^{\circ}C \text{ to } +85^{\circ}C$		0.03		dBm/°C

AC ELECTRICAL CHARACTERISTICS—OUTD

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX		UNITS	
OUTD Center Point		Prfina = Prfinb		1		V
Small-Signal Envelope Bandwidth		No external capacitor on pins FV1 and FV2		22		MHz
Small-Signal Settling Time		Any 8dB change on the inputs, no external capacitor on FV1 and FV2, settling accuracy is ±0.5dB		150		ns
Large-Signal Settling Time		Any 30dB change on the inputs, no external capacitor on pins FV1 and FV2, settling accuracy is ±0.5dB		300		ns
Small-Signal Rise and Fall Time		Any 8dB step, no external capacitor on pins FV1 and FV2		15		ns

M/IXI/M

AC ELECTRICAL CHARACTERISTICS—OUTD (continued)

(*Typical Application Circuit*, $V_{CC} = +2.7V$ to +3.3V, $R_1 = R_2 = R_3 = 0\Omega$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $V_{CC} = 3.3V$, CSETL = CSETH = V_{CC} , $T_A = +25^{\circ}C$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CO	NDITIONS	MIN	ТҮР	МАХ	UNITS	
Large-Signal Rise and Fall Time		Any 30dB step, no pins FV1 and FV2	external capacitor on	on 35			ns	
		0.1GHz	$P_{RFINB} = -32dBm$		80			
		0.9GHz	$P_{RFINB} = -30 dBm$		75			
±1dB Dynamic Range		1.9GHz	$P_{RFINB} = -27 dBm$		60		dB	
		2.17GHz	$P_{RFINB} = -25 dBm$		55			
		2.5GHz	$P_{RFINB} = -23 dBm$		50			
Slope		$f_{RF} = 0.1 GHz$ to 2.5	iGHz (A-B)		-25		mV/dB	
OUTD Voltage Deviation		$P_{RFINA} = P_{RFINB} =$ -20°C to +85°C	-30dBm, T _A =		±0.25		dB	
			0.1GHz, P _{RFINB} = -32dBm		80			
		P _{RFINA} is swept ; T _A = -20°C to +85°C	0.9GHz, P _{RFINB} = -30dBm		70			
±1dB Dynamic Range over Temperature Relative to Best-Fit Curve at +25°C			1.9GHz, P _{RFINB} = -27dBm		55		dB	
			2.17GHz, P _{RFINB} = -25dBm		50			
		2.5GHz, P _{RFINB} = -23dBm		45				
Gain Measurement Balance		$\begin{array}{l} P_{RFINB} = P_{RFINB} = -50 dBm \text{ to } -5 dBm, \ f_{RF} = \\ 1.9 GHz \end{array} \qquad $			dB			
		0.9GHz			90			
Channel Isolation		1.9GHz			65		dB	
		2.5GHz			55]	

al values **MAX2016** ns dB

Note 1: The MAX2016 is tested at $T_A = +25^{\circ}C$ and is guaranteed by design for $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

Note 2: Typical minimum and maximum range of the detector at the stated frequency.

Note 3: Dynamic range refers to the range over which the error remains within the ±3dB range.

Note 4: The slope is the variation of the output voltage per change in input power. It is calculated by fitting a root-mean-square straight line to the data indicated by the RF input power range.

Note 5: The intercept is an extrapolated value that corresponds to the output power for which the output voltage is zero. It is calculated by fitting a root-mean-square straight line to the data.

Pin Description

PIN	NAME	FUNCTION
1, 28	FA1, FA2	External Capacitor Input. Connecting a capacitor between FA1 and FA2 sets the highpass cutoff frequency corner for detector A (see the <i>Input Highpass Filter</i> section).
2, 9, 12, 20	V _{CC}	Supply Voltage. Bypass with capacitors as specified in the <i>Typical Application Circuit</i> . Place capacitors as close to each V_{CC} as possible (see the <i>Power-Supply Connections</i> section).
3, 4	RFINA+, RFINA-	Differential RF Inputs for Detector A. Requires external DC-blocking capacitors.
5, 17	GND	Ground. Connect to the PCB ground plane.
6	COUTH	High-Comparator Output
7	CSETH	Threshold Input on High Comparator
8	COR	Comparator OR Logic Output. Output of COUTH ORed with COUTL.
10	SETD	Set-Point Input for Gain Detector
11	OUTD	DC Output Voltage Representing P _{RFINA} - P _{RFINB} . This output provides a DC voltage proportional to the difference of the input RF powers on RFINA and RFINB.
13, 14	FV2, FV1	Video-Filter Capacitor Inputs for OUTD
15	CSETL	Threshold Set Input on Low Comparator
16	COUTL	Low-Comparator Output
18, 19	RFINB-, RFINB+	Differential RF Inputs for Detector B. Requires external DC-blocking capacitors.
21, 22	FB1, FB2	External Capacitor Input. Connecting a capacitor between FB1 and FB2 sets the highpass cutoff frequency corner for detector B (see the <i>Input Highpass Filter</i> section).
23	OUTB	Detector B Output. This output provides a voltage proportional to the log of the input power on differential inputs RFINB+ and RFINB- (RFINB).
24	SETB	Set-Point Input for Detector B
25	REF	2V Reference Output
26	SETA	Set-Point Input for Detector A
27	OUTA	Detector A Output. This output provides a voltage proportional to the log of the input power on differential inputs RFINA+ and RFINA- (RFINA).
EP	GND	Exposed Paddle. EP must connect to the PCB ground plane.

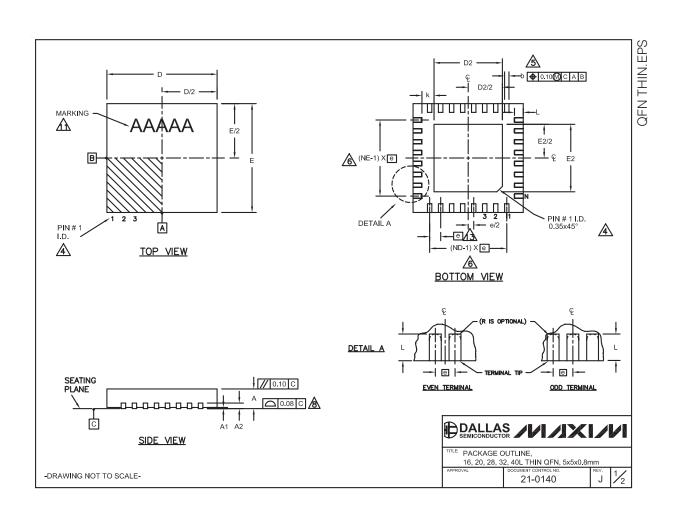
Detailed Description

The MAX2016 dual logarithmic amplifier is designed for a multitude of applications including dual-channel RF power measurements, AGC control, gain/loss detection, and VSWR monitoring. This device measures RF signals ranging from low frequency to 2.5GHz, and operates from a single 2.7V to 5.25V (using series resistor, R6) power supply. As with its single-channel counterpart (MAX2015), the MAX2016 provides unparalleled performance with a high 80dB dynamic range at 100MHz and exceptional accuracy over the extended temperature and supply voltage ranges.

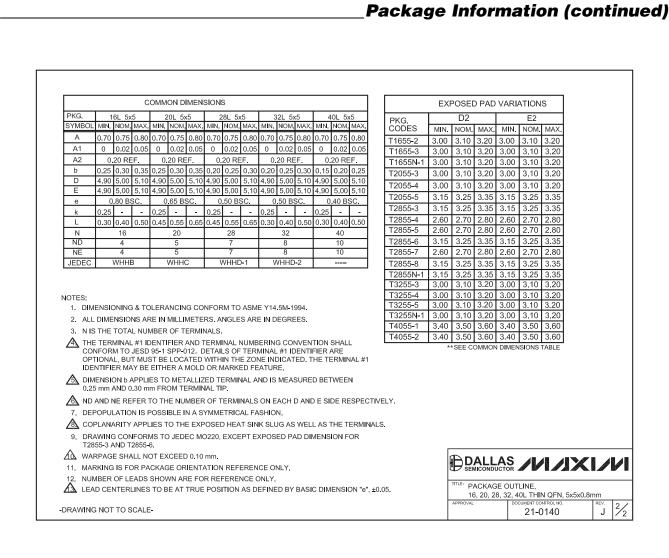
The MAX2016 uses a pair of logarithmic amplifiers to detect and compare the power levels of two RF input signals. The device subtracts one power level from the other to provide a DC output voltage that is proportional

to the power difference (gain). The MAX2016 can also measure the return loss/VSWR of an RF signal by monitoring the incident and reflected power levels associated with any given load.

A window detector is easily implemented by using the on-chip comparators, OR gate, and 2V reference. This combination of circuitry provides an automatic indication of when the measured gain is outside a programmable range. Alarm monitoring can thus be implemented for detecting high-VSWR states (such as open or shorted loads).


RF Inputs (RFINA and RFINB)

The MAX2016 has two differential RF inputs. The input to detector A (RFINA) uses the two input ports RFINA+ and RFINA-, and the input to detector B (RFINB) uses the two input ports RFINB+ and RFINB-.


MAX2016

_Package Information

MAX2016

MAX201

