

Maxim > Design Support > Technical Documents > Reference Schematics > 1-Wire[®] Devices > APP 4477 Maxim > Design Support > Technical Documents > Reference Schematics > iButton[®] > APP 4477

Keywords: 1-Wire, iButton, voltage level translation, 1.8V to 5V, MAX3394E, FPGA, 1-Wire master

REFERENCE SCHEMATIC 4477

Reference Design of a 1-Wire® Bidirectional Voltage-Level Translator for 1.8V to 5V

By: Stewart Merkel, Senior Member Technical Staff Nov 11, 2009

Abstract: Designers need open-drain logic to run at 1.8V at the 1-Wire master IO. Most 1-Wire slave devices cannot run at 1.8V. This application note presents an RD (reference design) of a circuit that translates from a 1.8V 1-Wire master to a 5V 1-Wire slave device. The RD is used for driving typical 1-Wire slave devices. The MAX3394E voltage-level translator is featured in the design.

Introduction

Devices such as FPGAs, microprocessors, the DS2482-100, and DS2480B are examples of 1-Wire master devices. The 1-Wire/<u>i</u>Button® slave devices are manufactured by Maxim and comprise an extensive family of parts that typically operate from 2.8V to 5.25V. The 1-Wire masters and slave devices have traditionally been 5V open-drain logic in the past.

Today designers need open-drain logic to run at 1.8V at the 1-Wire master IO. While most 1-Wire slave devices can run safely at 5V, most of those same devices cannot run at 1.8V. A bidirectional voltage-level translator circuit is needed to overcome this limitation. This RD (reference design) features the Maxim® MAX3394E, which is a bidirectional voltage-level translator for these applications.

Voltage-Level Translator

The MAX3394E is a dual-level translator available in an 8-pin, 3mm x 3mm TDFN package. It is ideal for driving high-capacitive loads, thanks to its internal slew-rate enhancement circuitry. 1-Wire slave devices often have capacitive loading greater than 500pF. The MAX3394E's V_{CC} I/O pins are protected to ±15kV HBM (Human Body Model), which protects the 1-Wire master. The 1-Wire bus architectures often interface to the external world, making HBM essential. However, it is recommended that a DS9503P be added as ESD protection for the pullup resistor (R3), the optional strong pullup circuitry, and the 1-Wire slave device.

Application Circuit

The circuit in **Figure 1** shows the MAX3394E used to perform bidirectional 1.8V to 5V voltage-level translation in an open-drain system.

Figure 1. Schematic of 1-Wire bidirectional voltage level translation from 1.8V to 5V. Note that the pins I/O V_L and I/O V_{CC} have a typical 10k Ω internal pullup.

Table 1. Bill of Materials								
ltem	Quantity	Reference	Part	Manufacturer	Part Number			
1	1	C1	1.0µF 0402	Panasonic	ECJ-0EB0J105M			
2	2	C2, C3	0.1µF 0201	Panasonic	ECJ-ZEB0J104K			
3	1	Q1	BSS84-7-F	Diodes, Inc/Zetex	BSS84-7-F			
4	1	R1	33Ω 0201	Panasonic	ERJ-1GEJ330C			
5	1	R2	10kΩ 0402	Panasonic	ERJ-2RKF1002X			
6	1	R3	1kΩ 0402	Panasonic	ERJ-2RKF1001X			
7	1	R4	2.2kΩ 0402	Panasonic	ERJ-2RKF2201X			
8	2	CH1, CH2	TEST POINT	N/A	N/A			
9	1	U1	MAX3394E	Maxim	MAX3394EETA+			

The BOM (bill of materials) for this reference design is given in Table 1.

Waveform Measurements/Test Results

The test results in Figures 2 through 5 were generated from the board built for evaluating the circuit.

Setup:

- $V_L = 1.8V$
- $V_{CC} = 5.0V$
- CH1: 1-Wire master (OW_MASTER)
- CH2: DS1920 (OW_SLAVE)
- OW_SLAVE wire length: 2.4m, max.
- Test results did not include the optional strong pullup circuitry in Figure 1.
- Room temperature measurements only

Figure 2. The scope plot of a 1-Wire Reset shows the performance of the MAX3394E with presence pulse amplitude of no more than 250mV, lower than a typical 1-Wire master V_{IL} maximum of 0.4V.

Figure 3. The scope plot of a 1-Wire Write, one timeslot with a clean $t_{LOW1} < 15 \mu s$.

Figure 4. The scope plot of a 1-Wire Write, zero timeslot with $60\mu s < t_{LOW0} < 120\mu s$.

Figure 5. The scope plot of a 1-Wire Read, zero timeslot with an active 1-Wire slave open-drain return and lower than a typical 1-Wire master V_{IL} maximum of 0.4V.

Conclusion

This RD for 1.8V to 5V 1-Wire bidirectional logic-level translation drives typical 1-Wire slave devices. The design was built and then tested. The circuit schematic, BOM, and typical waveforms have been presented.

1-Wire is a registered trademark of Maxim Integrated Products, Inc. iButton is a registered trademark of Maxim Integrated Products, Inc. Maxim is a registered trademark of Maxim Integrated Products, Inc.

Related Parts			
DS1822	Econo 1-Wire Digital Thermometer	Free Samples	
DS18B20	Programmable Resolution 1-Wire Digital Thermometer	Free Samples	
DS18B20-PAR	1-Wire Parasite-Power Digital Thermometer		
DS18S20	1-Wire Parasite-Power Digital Thermometer	Free Samples	
DS18S20-PAR	Parasite-Power Digital Thermometer		
DS1920	iButton Temperature Logger		
DS1921G	Thermochron iButton Device		
DS1921H	High-Resolution Thermochron iButton Devices		
DS1921Z	High-Resolution Thermochron iButton Devices		
DS1922E	iButton High-Temperature Logger with 8KB Data-Log Memory		
DS1922L	iButton Temperature Loggers with 8KB Data-Log Memory		
DS1922T	iButton Temperature Loggers with 8KB Data-Log Memory		
DS1923	iButton Hygrochron Temperature/Humidity Logger with 8KB Data-Log Memory		
DS1961S	iButton 1Kb EEPROM with SHA-1 Engine		
DS1971	iButton 256-Bit EEPROM		
DS1972	iButton 1024-Bit EEPROM		
DS1973	iButton 4Kb EEPROM	Free Samples	
DS1977	iButton 32KB EEPROM	Free Samples	
DS2431	1024-Bit 1-Wire EEPROM	Free Samples	
DS2432	1Kb Protected 1-Wire EEPROM with SHA-1 Engine	Free Samples	
DS2450	1-Wire Quad A/D Converter		
DS28E01-100	1Kb Protected 1-Wire EEPROM with SHA-1 Engine	Free Samples	
DS28E04-100	4096-Bit Addressable 1-Wire EEPROM with PIO		
DS28EA00	1-Wire Digital Thermometer with Sequence Detect and PIO	Free Samples	
DS28EC20	20Kb 1-Wire EEPROM	Free Samples	
MAX31820	1-Wire Ambient Temperature Sensor	Free Samples	
MAX31820PAR	1-Wire Parasite-Power, Ambient Temperature Sensor		

MAX31826	1-Wire Digital Temperature Sensor with 1Kb Lockable EEPROM	Free Samples
MAX3394E	±15kV ESD-Protected, High-Drive Current, Dual-/Quad- /Octal-Level Translators with Speed-Up Circuitry	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4477: http://www.maximintegrated.com/an4477 REFERENCE SCHEMATIC 4477, AN4477, AN 4477, APP4477, Appnote4477, Appnote 4477 © 2013 Maxim Integrated Products, Inc. Additional Legal Notices: http://www.maximintegrated.com/legal