

Maxim > Design Support > Technical Documents > Reference Designs > Wireless and RF > APP 4178

Keywords: satellite tuner ic, MAX2120, DVB-S tuner

REFERENCE DESIGN 4178 INCLUDES: √Tested Circuit √Board Available √Description √Test Data

# DVB-S Half-NIM Tuner Reference Design Uses the MAX2120 Tuner

Jun 25, 2008

Abstract: This reference design is a commercial Half-NIM DVB-S tuner More Information that uses Maxim's MAX2120 satellite tuner IC. The reference design connects to the motherboard through a 12-pin connector. The downconverted satellite signal from the LNB is supplied to an active, discrete loop-through, which splits the signal into two paths. One signal - Technical Support goes to the MAX2120 and the other provides an additional output from the STB.

- Wireless Home
- Application Notes and Tutorials
- EV Kit Software



components used in a typical radio

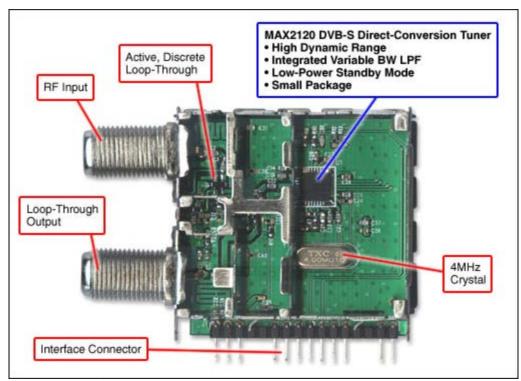



Figure 1. DVB-S Half-NIM reference design features the MAX2120 tuner.

## **Important Design Features**

- A Popular Form Factor Often Used in the Chinese DVB-S Market; Can Be Adopted Without Physical Modifications
- · Active Loop-Through Using a Discrete LNA
- LNB 12V Power Feed-Through

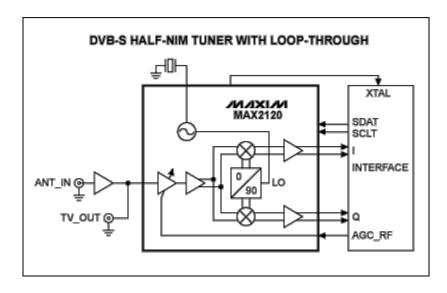



Figure 2. System block diagram.

| Su       | aa     | l۷  | Cu | rr | en <sup>·</sup> | t |
|----------|--------|-----|----|----|-----------------|---|
| <b>-</b> | $\sim$ | • , |    |    | •               | • |

|                | Parameter                       | Conditions                         | Measured | Units |
|----------------|---------------------------------|------------------------------------|----------|-------|
| Supply Current | LNA supply 3.3V, $T_a = +25$ °C | 26                                 | mA       |       |
|                | Supply Current                  | LNA + MAX2120 3.3V, $T_a = +25$ °C | 115      | mA    |

 $\label{eq:main_signal} \begin{tabular}{ll} Main Signal Path Performance \\ Test conditions include $V_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as specified in the following table; default $t_{CC}=+3.3V$; RF input signals as $t_{CC}=+3.3V$; RF input s$ register settings; and  $T_a = +25$ °C.

|                                        | ys, and ra = +25 C.                                                                                                                                                                                                                                                                        |                |          |        |       |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--------|-------|
| Parameter                              | Test Conditions                                                                                                                                                                                                                                                                            | Frequency      | Measured | Target | Units |
| RF Input<br>Frequency                  |                                                                                                                                                                                                                                                                                            | 950 to<br>2150 | _        | _      | MHz   |
| Input Return Loss (75 $\Omega$ system) | Measure at input port                                                                                                                                                                                                                                                                      | _              | < -6     | < -6   | dB    |
| Overell                                | Unbalanced source impedance = $75\Omega$ , GC1 = $0.5V$ and GC2 = $+15dB$                                                                                                                                                                                                                  | 1050MHz        | 91       | > 80   | dB    |
| Overall                                |                                                                                                                                                                                                                                                                                            | 1550MHz        | 88       |        |       |
| r onago oam                            |                                                                                                                                                                                                                                                                                            | 2150MHz        | 83       |        |       |
|                                        |                                                                                                                                                                                                                                                                                            | 1050MHz        | 5.5      |        |       |
| Noise Figure                           | ,                                                                                                                                                                                                                                                                                          | 1650MHz        | 5.54     | < 7    | dB    |
|                                        |                                                                                                                                                                                                                                                                                            | 2150MHz        | 7.45     |        |       |
| I/Q<br>Amplitude<br>Error              | Measured at 2MHz; filter bandwidth set to 22MHz                                                                                                                                                                                                                                            | _              | 0.25     | < ±1   | dB    |
| I/Q<br>Quadrature<br>Phase Error       | Measured at 2MHz; filter bandwidth set to 22MHz                                                                                                                                                                                                                                            | _              | < 2.5    | < 3.5  | Deg   |
| IIP3 (In<br>Band)                      | GC1 set to provide the nominal baseband output drive when mixing down a -23dBm tone at 2055MHz to 5MHz baseband ( $f_{LO}=2050MHz$ ). GC2 set for 7dB gain. Two tones at -26dBm each are applied at 2056MHz and 2060MHz. The IM3 tone at 2MHz is measured at baseband.                     | _              | -1.5     | -2     | dBm   |
| IIP3 (Out of Band)                     | GC1 set to provide the nominal baseband output drive when mixing down a -23dBm tone at 2055MHz to 5MHz baseband ( $f_{LO} = 2050$ MHz). GC2 set for 7dB gain. Two tones at -20dBm each are applied at $f_{LO}$ -100MHz and $f_{LO}$ -195MHz. The IM3 tone at 5MHz is measured at baseband. | _              | 10       | 5      | dBm   |

| IIP2<br>(Broadband)                                  | GC1 set to provide the nominal baseband output drive when mixing down a -23dBm tone at 2175MHz to 5MHz baseband ( $f_{LO} = 2170$ MHz). GC2 set for 7dB gain. Two tones at -20dBm each are applied at 925MHz and 1250MHz. The IM2 tone at 5MHz is measured at baseband. | _ | 12.5   | 14    | dBm    |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|-------|--------|
|                                                      | 1kHz offset, $f_{LO}$ =1000MHz                                                                                                                                                                                                                                          | _ | -73.3  | -70   | dBc/Hz |
| Phase Noise                                          | 10kHz offset, $f_{LO} = 1000MHz$                                                                                                                                                                                                                                        |   | -85.6  | -82   |        |
|                                                      | 100kHz offset, $f_{LO} = 1000MHz$                                                                                                                                                                                                                                       |   | -108.1 | -102  |        |
|                                                      | 1MHz offset, $f_{LO} = 1000MHz$                                                                                                                                                                                                                                         |   | -120.8 | -122  |        |
| Local Oscillator Signal Leakage at RF Input Terminal | Measured at RF input port with 50MHz increment step from 925MHz to 2175MHz                                                                                                                                                                                              | _ | < -80  | < -63 | dBm    |

Loop-Through Performance

| Parameter                  | Conditions                               | Measured    | Target  | Units |
|----------------------------|------------------------------------------|-------------|---------|-------|
| Frequency Range            | 925MHz to 2175MHz                        | _           | _       | MHz   |
| Return Loss at TV_OUT      | Antenna input terminated with $75\Omega$ | < -6        | < -6    | dB    |
| Power Gain at TV_OUT       | _                                        | -0.4 to 2.8 | -1 to 3 | dB    |
| Noise Figure at TV_OUT     | _                                        | < 5.5       | < 6     | dB    |
| TV_OUT to ANT_IN Isolation | _                                        | 35.1        | 35      | dB    |

### System Performance

DVB-S system measurements for the MAX2120 Half-NIM are made by connecting to a DVB-S demodulator.

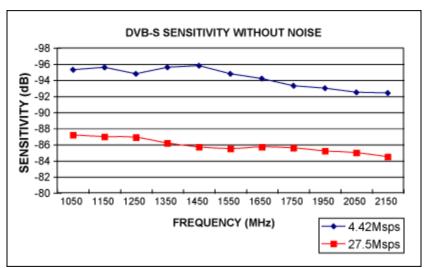



Figure 3. The DVB-S sensitivity without noise is better than -92.5dBm for 4.42Msps, and better than -84dBm for 27.5Msps across the band.

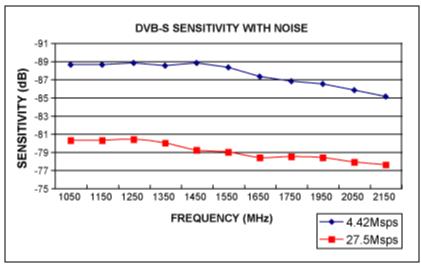



Figure 4. When noise is added, the DVB-S sensitivity is better than -85dBm for 4.42Msps, and better than -77.5dBm for 27.5Msps across the band. For this case, AWGN noise is added with C/N = 5dB. For the 4.42Msps data rate, the noise bandwidth is 5.7MHz; for the 27.5Msps data rate, the noise bandwidth is 35.2MHz.

### Detailed Description

This MAX2120 reference design is a compact Half-NIM DVB-S tuner for satellite STB applications. The design covers the RF range from 925MHz to 2175MHz. The MAX2120 is a fully integrated silicon tuner, which includes a LNA, RF and IF VGAs, a mixer, and a variable-bandwidth LPF in the baseband stage. The tuner is powered by a single 3.3V supply. A small number of passive components are needed to form a complete DVB-S RF front-end solution.

# **Related Parts**

to-Air Applications

# **More Information**

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4178: http://www.maximintegrated.com/an4178

REFERENCE DESIGN 4178, AN4178, AN 4178, APP4178, Appnote4178, Appnote 4178

Copyright © by Maxim Integrated Products

Additional Legal Notices: http://www.maximintegrated.com/legal