LDB Series Unencapsulated Stacked Chip, Size 1206 – 1812, 16 & 50 VDC

Overview

Polyphenylene sulphide (PPS) film capacitor for surface mounting.

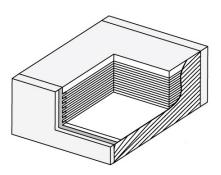
Applications

Typical applications include timing, filtering and use as a memory capacitor. The LDB Series is designed for high stability, accuracy and temperature.

Benefits

• Rated voltage: 16 & 50 VDC

• Capacitance range: 0.0033 – 0.1 μF


• EIA size: 1206 - 1812

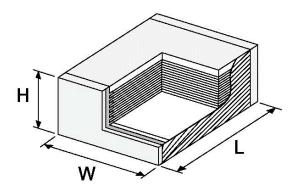
• Capacitance tolerance: ±2%, ±5%

• Climatic category: 55/125/56

· RoHS Complaint and lead-free terminations

• Operating temperature range of -55°C to +125°C

Part Number System

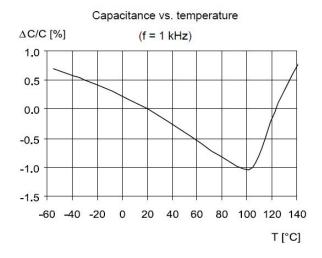

LDB	Α	Α	2120	G	С	5	N	0
Series	Rated Voltage (VDC)	Size Code	Capacitance Code (pF)	Capacitance Tolerance	Dielectric	Version	Packaging Code	Internal Use
Metallized PPS	A = 16 C = 50	See Dimension Table	Digits 2 – 4 indicate the first three digits of the capacitance value. First digit indicates the number of zeros to be added.	G = ±2% J = ±5%	C = PPS	5 = Standard	See Ordering Options Table	0 (Standard)

Ordering Options Table

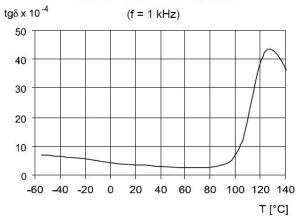
Packaging Type	Packaging Code
Standard Packaging Options	
Tape & Reel (Standard Reel)	N

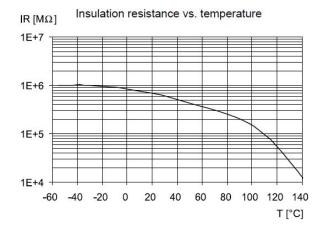
Dimensions - Millimeters

Size Code	Chip Size	W		Н	L	
	(EIA)	Nominal	Tolerance		Nominal	Tolerance
Α	1206	1.7	+/-0.2		3.3	+0.3/-0.1
В	1210	2.5	+/-0.3	See Part Number Table	3.3	+0.3/-0.1
С	1812	3.3	+/-0.3		4.7	+0.3/-0.2

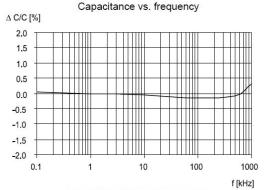

Performance Characteristics

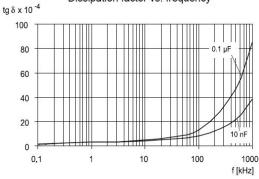
Rated Voltage (VDC)	16	50						
Capacitance Range (μF)	0.012 – 0.1	0.0033 – 0.1						
Chip Size (EIA)	1206 – 1812							
Capacitance Values	E12 series							
Capacitance Tolerance	±2%, ±5%							
Category Temperature Range	-55°C to +125°C							
Rated Temperature	+105°C							
Voltage Derating	The rated voltage is decreased with 1.	25%/°C from +105°C to +125°C						
Climatic Category	55/125/56							
Capacitance Drift	Maximum 1% after a 2 year storage period at a temperature of +10°C to +40°C and a relative humidity of 40% to 60%							
	Failure rate ≤ 1 FIT, T = +40°C, V = 0.5 x V _R							
Reliability (Reference MIL-HDBK-217)	1 FIT = 10 ⁻⁹ failures / (components * hours)							
(Reference Mile-HDBR-217)	Failure criteria: open or short circuit, cap. change > 10%, DF 2 times the catalog limits, IR < 0.005 x initial limit							
	Measured at	+25°C ±5°C						
	Minimum Value Between Terminals							
Insulation Resistance	3,000 ΜΩ							
modation resistance	Charging time: 1 minute Charging voltage: $10 \text{ V}_{DC} \text{ for VR} = 16 \text{ V}_{DC}$ $50 \text{ V}_{DC} \text{ for VR} = 50 \text{ V}_{DC}$							
Discipation Factor	Maximum Values at 25°C ±5°C							
Dissipation Factor	1 kHz 0.6%							
Surge Voltage Test	1.75 x V _R (5 seconds; T = 25 ± 5°C)							



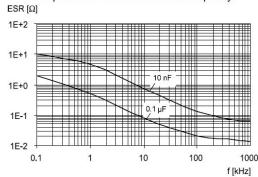

PPS Dielectric Typical Temperature Graphs

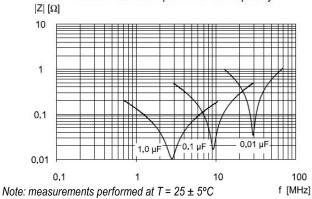
PPS


Dissipation factor vs. temperature



PPS Dielectric Typical Frequency Graphs


PPS


Dissipation factor vs. frequency

Equivalent Series Resistance vs. frequency

PEN and PPS Impedance vs. frequency

Environmental Test Data

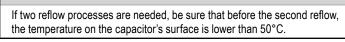
Damp Heat, Steady State							
	nditions						
Temperature	+40°C ±2°C						
Relative Humidity (RH)	93% ±2%						
Test Duration	56 days						
Perfor	mance						
Capacitance Change ∆ C/C	≤ 5%						
DF Change (∆tgδ)	≤ 30 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ 50% of limit value						
Endurance							
Test Conditions							
Temperature	125°C ±2°C						
Test Duration	2,000 hours						
Voltage Applied	1.25 x V _C						
Perfor	mance						
Capacitance Change ∆ C/C	≤ 3%						
DF Change (∆tgδ)	≤ 30 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ 50% of limit value						
Rapid Change	of Temperature						
Test Co	nditions						
Temperature	1 hour at -55°C, 1 hour at +125°C						
Number of Cycles	1,000						
Perfor	mance						
Capacitance Change ∆ C/C	≤ 3%						
DF Change (∆tgδ)	≤ 50 x 10 ⁻⁴ at 1 kHz						
Insulation Resistance	≥ limit value						
No Mechani	No Mechanical Damage						

Reflow						
Test Conditions	See Solder Process					
Perfor	mance					
Capacitance Change ∆ C/C	≤ 3%					
DF Change (∆tgδ)	≤ 50 x 10 ⁻⁴ at 1 kHz					
Insulation Resistance	≥ limit value					
No Mechani	No Mechanical Damage					
Ben	Bending					
Test Co	nditions					
Deflection	1 to 6 mm					
Perfor	Performance					
Capacitance Change ∆ C/C	≤ 1%					
No visible damage on the terminations (pealing) neither on the body (cracking)						

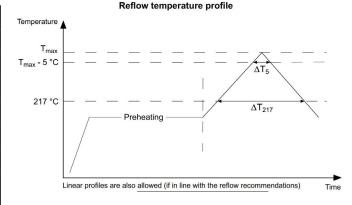
Environmental Compliance

All KEMET surface mount capacitors are RoHS Compliant.

Table 1 – Ratings & Part Number Reference


VDC	Capacitance	Ci Codo	Dime	nsions in	n mm	Ohio Cina	New KEMET	Legacy Part
VDC	Value (µF)	Size Code	В	Н	ш	Chip Size	Part Number	Number
16	0.012	A	1.7	1.1	3.3	1206	DBAA2120(1)C5N0	LDBAA2120(1)C5N0
16	0.015	A	1.7	1.1	3.3	1206	DBAA2150(1)C5N0	LDBAA2150(1)C5N0
16	0.018	A	1.7	1.1	3.3	1206	DBAA2180(1)C5N0	LDBAA2180(1)C5N0
16	0.022	A	1.7	1.1	3.3	1206	DBAA2220(1)C5N0	LDBAA2220(1)C5N0
16	0.027	A	1.7	1.1	3.3	1206	DBAA2270(1)C5N0	LDBAA2270(1)C5N0
16	0.033	Α	1.7	1.1	3.3	1206	DBAA2330(1)C5N0	LDBAA2330(1)C5N0
16	0.039	Α	1.7	1.2	3.3	1206	DBAA2390(1)C5N0	LDBAA2390(1)C5N0
16	0.047	Α	1.7	1.3	3.3	1206	DBAA2470(1)C5N0	LDBAA2470(1)C5N0
16	0.056	В	2.5	1.7	3.3	1210	DBAB2560(1)C5N0	LDBAB2560(1)C5N0
16	0.068	В	2.5	1.7	3.3	1210	DBAB2680(1)C5N0	LDBAB2680(1)C5N0
16	0.082	В	2.5	1.7	3.3	1210	DBAB2824(1)C5N0	LDBAB2824(1)C5N0
16	0.10	В	2.5	2.0	3.3	1210	DBAB3100(1)C5N0	LDBAB3100(1)C5N0
50	0.0033	Α	1.7	1.1	3.3	1206	DBCA1330(1)C5N0	LDBCA1330(1)C5N0
50	0.0039	Α	1.7	1.1	3.3	1206	DBCA1390(1)C5N0	LDBCA1390(1)C5N0
50	0.0047	Α	1.7	1.1	3.3	1206	DBCA1470(1)C5N0	LDBCA1470(1)C5N0
50	0.0056	Α	1.7	1.1	3.3	1206	DBCA1560(1)C5N0	LDBCA1560(1)C5N0
50	0.0068	Α	1.7	1.1	3.3	1206	DBCA1680(1)C5N0	LDBCA1680(1)C5N0
50	0.0082	Α	1.7	1.1	3.3	1206	DBCA1820(1)C5N0	LDBCA1820(1)C5N0
50	0.010	Α	1.7	1.1	3.3	1206	DBCA2100(1)C5N0	LDBCA2100(1)C5N0
50	0.012	Α	1.7	1.1	3.3	1206	DBCA2120(1)C5N0	LDBCA2120(1)C5N0
50	0.015	В	2.5	1.4	3.3	1210	DBCB2150(1)C5N0	LDBCB2150(1)C5N0
50	0.018	В	2.5	1.5	3.3	1210	DBCB2180(1)C5N0	LDBCB2180(1)C5N0
50	0.022	В	2.5	1.5	3.3	1210	DBCB2220(1)C5N0	LDBCB2220(1)C5N0
50	0.027	В	2.5	1.5	3.3	1210	DBCB2270(1)C5N0	LDBCB2270(1)C5N0
50	0.033	В	2.5	1.7	3.3	1210	DBCB2330(1)C5N0	LDBCB2330(1)C5N0
50	0.039	В	2.5	1.9	3.3	1210	DBCB2390(1)C5N0	LDBCB2390(1)C5N0
50	0.047	В	2.5	2.3	3.3	1210	DBCB2470(1)C5N0	LDBCB2470(1)C5N0
50	0.056	С	3.3	1.7	4.7	1812	DBCC2560(1)C5N0	LDBCC2560(1)C5N0
50	0.068	С	3.3	1.7	4.7	1812	DBCC2680(1)C5N0	LDBCC2680(1)C5N0
50	0.082	С	3.3	1.7	4.7	1812	DBCC2824(1)C5N0	LDBCC2824(1)C5N0
50	0.10	С	3.3	2.0	4.7	1812	DBCC3100(1)C5N0	LDBCC3100(1)C5N0
VDC	Capacitance Value (μF)	Size Code	B (mm)	H (mm)	L (mm)	Chip Size	New KEMET Part Number	Legacy Part Number

⁽¹⁾ $G = \pm 2\%$, $J = \pm 5\%$.



Soldering Process

Reflow Recommendations					
Prel	neating				
Maximum Preheating Time	180 seconds				
Minimum Temperature	150°C				
Maximum Temperature	200°C				
Maximum Time within T $_{\rm max}$ and T $_{\rm max}$ – 5°C ($\Delta T_{\rm 5}$)	30 seconds (T _{max} ≤ 250°C)				
	10 seconds (250 °C < T _{max} ≤ 260°C)				
Maximum Time Over 217°C (ΔT_{217})	150 seconds				
Maximum Tamparatura Damp Data	3°C/seconds (heating)				
Maximum Temperature Ramp Rate	6°C/seconds (cooling)				
Second reflow					
If two reflow processes are needed, be sure that before the second reflow, the temperature on the capacitor's surface is lower than 50°C.					

^{*} For LDB series this value is 260 °C.

Maximum Temperature on Component Body (T_{max})

Capacitor	Capacitor Volume (mm³)							
H _{max} (mm)	< 350	350 – 2,000	> 2,000					
< 1.6	255°C *	255°C *	255°C *					
1.6 – 2.5	255°C *	250°C	245°C					
> 2.5	250°C	245°C	245°C					

^{*}In line with JEDEC STD 020D ed. June 2007 with some limitations.

Flux/Cleaning/Storage and Moisture

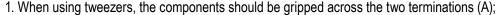
Flux suggestions

We suggest to use a no-clean flux with a halogen content lower than 0.1%.

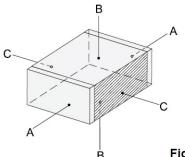
Cleaning suggestions

To clean the PCB assembly we suggest to use a suitable solvent like Isopropyl Alcohol, deionized water or neutral pH detergents. Solvents like Toluene, Xylene and Trichloroethylene should not be used.

^{*} For LDB series this value is 260 °C.


Flux/Cleaning/Storage and Moisture cont'd

Storage and moisture recommendations

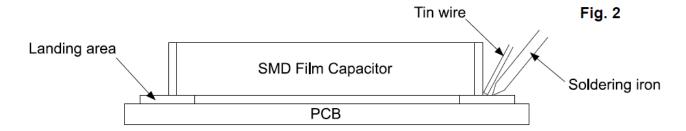

KEMET SMD Film Capacitors are supplied in a MBB (Moisture Barrier Bag) Class 1. We can guarantee a 24 months shelf life (temperature \leq 40°C/relative humidity \leq 90%). After the MBB has been opened, components may stay in areas with controlled temperature and humidity (temperature \leq 30°C/relative humidity \leq 60%) for 168 hours (rated voltage \leq 100 VDC) or 696 hours (rated voltage > 100 VDC). For longer periods of time and/or higher temperature and/or higher relative humidity values, it is absolutely necessary to protect the components against humidity. If the reel inside the MBB is partially used, KEMET recommends to re-use the same MBB or to avoid areas without controlled temperature and humidity (see above). If the above conditions are not respected, components require a baking (minimum time: 48 hours at 55 \pm 5°C) before the reflow.

Manual assembly recommendations

If PCBs are assembled manually, care must be taken to avoid any mechanical damage to the components. Our recommendations are the following (see Fig. 1):

- 2. Avoid any contact with the two cutting surfaces (C);
- 3. A vacuum pen is recommended on the top and bottom surfaces (B).

Fig. 1

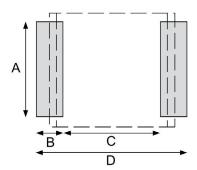

Manual soldering recommendations

LDE and LDB series have been designed for Surface Mount Technology, pick & place machines and reflow soldering systems. Using a manual soldering iron, issues may occur because the typical temperature for manual soldering is around 350°C. Therefore please pay careful attention:

- Never touch the capacitor body with the soldering iron but rather touch the soldering iron and the end termination with the tin wire edge (see Fig. 2);
- If the soldering iron is equipped with a temperature controller device: Set the temperature to 250 ± 3°C and proceed as per Fig. 2 (the maximum soldering time, on both terminations, is 5 seconds);
- If the soldering iron is NOT equipped with a temperature controller device:

This is the worst situation. The following are a few practical suggestions but, clearly, the operator's experience is extremely important:

- 1. Proceed as per Fig. 2;
- 2. As soon as the tin wire starts melting, move the soldering iron away as quickly as possible;
- 3. Wait a few seconds and check that the soldering joint has been properly created;
- If the soldering iron is equipped with a hot air flow device:
 Set the hot air temperature to 250 ± 3°C and do not send the hot air directly onto the capacitor plastic body. In this situation, the operator's experience is very important;
- In any case, avoid mass-mounting SMD Film Capacitors manually.



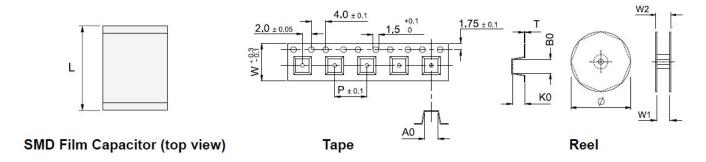
Packaging Quantities

Chip Size (EIA)	Height (mm)	Reel
1206	1.1	3000
1206	1.2	3000
1206	1.3	3000
1210	1.4	2250
1210	1.5	2250
1210	1.7	2250
1210	1.9	2250
1210	2.0	2250
1210	2.3	2250
1812	1.7	4000
1812	2.0	3000

Landing

Size	Dimensions in mm							
OI2C	Α	В	С	D				
1206	1.5	1.1	2.3	4.5				
1210	2.3	1.1	2.3	4.5				
1812	3	1.7	3.1	6.5				

These landing area dimensions have the aim of taking full advantage of the new RoHS 6 terminations design.


We suggest to use a Sn/Ag/Cu solder paste (suggested thickness: 0.10 - 0.15 mm).

If a NOT Lead Free solder paste is used, a minimum peak temperature of 210°C on the component's body is suggested.

Carrier Taping & Packaging (IEC 60286–2)

Horizontal Taping Orientation

Chip Size (EIA)	Dimensions in mm			Taping Specification							
Horizontal	W	Н	L	W	P ₁	A ₀	B ₀	K ₀	D	W ₁	W ₂
Mounting	Nominal	Nominal	Nominal	-0.1/+0.3	+/-0.1	Nominal	Nominal	Nominal	-/+2.0	-0/+2	Maximum
1206	1.7	All	3.3	8	4	2	3.8	1.3	180	8	12
1210	2.5	All	3.3	8	4	3	3.8	2.1	180	8	12
1812	3.3	≤ 1.9	4.7	12	8	3.8	5.3	2	330	12	16
1812	3.3	2.1 – 2.6	4.7	12	8	3.9	5.2	2.6	330	12	16

In accordance with IEC 60286-3

Materials:

- carrier tape: antistatic material
- cover tape: polyester + polythene
- reel: recyclable polystyrene

All parts in reels are packed in hermetically sealed Moisture Barrier Bag (MBB) Class 1.

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices

Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast

Lake Mary, FL Tel: 407-855-8886

Northeast

Wilmington, MA Tel: 978-658-1663

Central

Novi, MI

Tel: 248-306-9353

West

Milpitas, CA Tel: 408-433-9950

Mexico

Guadalajara, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe

Paris, France Tel: 33-1-4646-1006

Sasso Marconi, Italy Tel: 39-051-939111

Central Europe

Landsberg, Germany Tel: 49-8191-3350800

Kamen, Germany Tel: 49-2307-438110

Northern Europe

Bishop's Stortford, United Kingdom Tel: 44-1279-460122

Espoo, Finland

Tel: 358-9-5406-5000

Asia

Northeast Asia

Hong Kong

Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia

Singapore

Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product—related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.