
RoHS LxX8Ex & LxXx & QxX8E & QxXx Series

ittelfuse

Expertise Applied | Answers Delivered

Main Features		
Symbol	Value	Unit
I _{T(RMS)}	0.8	A
V _{DRM} /V _{RRM}	400 to 600	V
I _{GT (Q1)}	3 to 25	mA

Description

0.8 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed and temperature modulation controls, lighting controls, and static switching relays.

Sensitive type devices guarantee gate control in Quadrants I & IV needed for digital control circuitry.

Standard type devices normally operate in Quadrants I & III triggered from AC line.

Features

- RoHS Compliant
- Voltage capability up to 600 V
- Glass passivated junctions
- 600 V
 Surge capability up to 10 A

Applications

Excellent for lower current heating controls, water valves, and solenoids.

Typical applications are AC solid-state switches, home/ brown goods and white goods appliances.

Sensitive gate Triacs can be directly driven by microprocessor or popular opto-couplers/isolators.

Absolute Maximum Ratings — Sensitive Triacs (4 Quadrants) Symbol Unit Parameter Value RMS on-state current (full sine wave) LxX8y/LxXy $T_c = 50^{\circ}C$ 0.8 А I T(RMS) f = 50 Hz 8.3 t = 20 ms Non repetitive surge peak on-state current А I_{TSM} (full cycle, T, initial = 25° C) f = 60 Hzt = 16.7 ms 10 l²t I²t Value for fusing 0.41 A²s t_n = 8.3 ms Critical rate of rise of on-state current di/dt f = 120 Hz $T_{1} = 110^{\circ}C$ 20 A/µs (I_G = 50mA with \leq 0.1µs rise time) $t_{p} = 10 \ \mu s$ $I_{\rm GTM}$ Peak gate trigger current $T_{1} = 110^{\circ}C$ 1 А P_{G(AV)} 0.2 W Average gate power dissipation $T_{1} = 110^{\circ}C$ LxX8Ey -65 to 150 Storage temperature range °C T_{stg} LxXy -40 to 150 LxX8Ey -65 to 110 °C T_L Operating junction temperature range LxXy -40 to 110

Note: x = voltage, y = sensitivity

Absolute Maximum Ratings — Standard Triac					
Symbol	Paramete	ər		Value	Unit
I _{T(RMS)}	RMS on-state current (full sine wave)	QxXE8y/ QxXy	$T_c = 60^{\circ}C$	0.8	А
1	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	8.3	А
TSM	(full cycle, T_J initial = 25°C)	f = 60 Hz	t = 16.7 ms	10	A
l²t	l²t Value for fusing	t _p = 8.3 ms		0.41	A²s
di/dt	Critical rate of rise of on-state current ($I_g = 200$ mA with $\leq 0.1 \mu$ s rise time)	f = 120 Hz	T _J = 125°C	20	A/µs
I _{gtm}	Peak gate trigger current $t_p = 10$ $l_{gT}^r \le l_c$		T _J = 125°C	1	A
P _{G(AV)}	Average gate power dissipation		T _J = 125°C	0.2	W
			L/QxX8Ey	-65 to 150	°C
T _{stg}	Storage junction temperature range		L/QxXy	-40 to 150	
т			L/QxX8Ey	-65 to 125	°C
T _J	Operating junction temperature range		L/QxXy	-40 to 125	°C

Note: x = voltage, y = sensitivity

Electrical Characteristics (T_J = 25°C, unless otherwise specified) — Sensitive Triac (4 Quadrants)

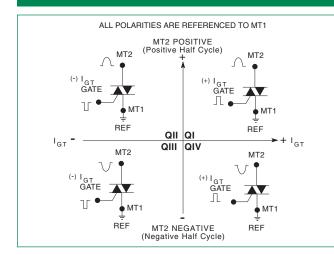
Symbol	Test Conditions Quad		lrant	LxX8E3 LxX3	LxX8E5 LxX5	LxX8E6 LxX6	LxX8E8 LxX8	Unit	
		– –	MAX.	3	5	5	10		
I _{GT}	$V_{_{D}}$ = 12V R _{_{L}} = 30 Ω	$V_{\rm D} = 12V R_{\rm L} = 30 \Omega$	IV IVIAX.		3	5	10	20	mA
V _{gt}		ALL	MAX.	1.3				V	
V _{gd}	$V_{\rm D} = V_{\rm DRM} R_{\rm L} = 3.3 \text{ k}\Omega \text{ T}_{\rm J} = 110^{\circ}\text{C}$ ALL		MIN.	0.2				V	
I _H	I _T = 100mA		MAX.	5	10	10	15	mA	
dv/dt	t $V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 100^{\circ}{\rm C}$	400V	TYP.	15	15	25	30	1///10	
αν/αι		600V		10	10	20	25	V/µs	
(dv/dt)c	$(di/dt)c = 0.43 \text{ A/ms } T_{J} = 110^{\circ}\text{C}$		TYP.	0.5	1	1	2	V/µs	
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 1.13$ A(p	k)	TYP.	2.8	3.0	3.0	3.2	μs	

Electrical Characteristics (T, = 25°C, unless otherwise specified) — Standard Triac

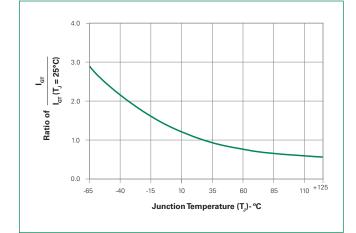
Symbol	Test Conditions	Quadrant		QxX8E3 QxX3	QxX8E4 QxX4	Unit	
		- -	MAX.	10	25	mA	
I _{gt}	$V_{D} = 12V R_{L} = 60 \Omega$	IV	TYP.	25	50	ШA	
V _{gt}		- -	MAX.	1.3	1.3	V	
V _{gd}	$V_{\rm D} = V_{\rm DRM} R_{\rm L} = 3.3 \text{ k}\Omega \text{ T}_{\rm J} = 125^{\circ}\text{C}$	ALL	MIN.	0.2	0.2	V	
I _H	$I_{T} = 200 \text{mA}$		MAX.	15	25	mA	
dv/dt		400\	400V	MIN.	25	35	1///
av/at	$V_{\rm D} = V_{\rm DRM}$ Gate Open $T_{\rm J} = 125^{\circ}{\rm C}$	600V	IVIIIN.	15	25	V/µs	
(dv/dt)c	$(di/dt)c = 0.43 \text{ A/ms } T_{J} = 125^{\circ}C$		TYP.	1	1	V/µs	
t _{gt}	$I_{g} = 2 \times I_{gT}$ PW = 15µs $I_{T} = 1.13$ A(p	k)	TYP.	2.5	3.0	μs	

Note: x = voltage

Static Characteristics (T, = 25°C, unless otherwise specified)


Symbol		Test Conditions					Unit
V _{TM}	$I_{TM} = 1.13A \ t_p = 380 \ \mu s$	MAX.			1.60	V	
	I _{DRM} I _{RRM} V _{DRM} = V _{RRM}	MAX.	LxX8Ey / LxXy	$T_J = 25^{\circ}C$	400-600V	2	μA
				T _J = 110°C	400-600V	0.1	mA
				T_ = 25°C	400-600V	5	μA
	QxX8Ey / QxX		T _J = 125°C	400-600V	1	mA	

Thermal Resistances


Symbol	Parameter		Value	Unit
D	lunction to proc (AC)	L/QxX8Ey	60	°C AA/
R _{θ(J-C)} Junction to	Junction to case (AC)	L/QxXy	60*	°C/W
R _{θ(J-A)}	Junction to ambient	L/QxX8Ey	135	°C/W

Note: * = Mounted on 1 cm² 1 copper (two-ounce) foil surface

Figure 1: Definition of Quadrants

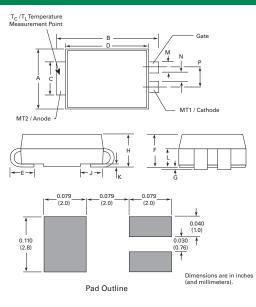


Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

Dimensions — Compak (C Package)

Dimension	Incl	hes	Millin	neters
Dimension	Min	Max	Min	Max
А	0.140	0.155	3.56	3.94
В	0.205	0.220	5.21	5.59
С	0.077	0.083	1.96	2.11
D	0.166	0.180	4.22	4.57
E	0.036	0.063	0.91	1.60
F	0.066	0.083	1.67	2.11
G	0.004	0.008	0.10	0.20
Н	0.077	0.086	1.96	2.18
J	0.043	0.053	1.09	1.35
К	0.008	0.012	0.20	0.30
L	0.039	0.049	0.99	1.24
М	0.022	0.028	0.56	0.71
Ν	0.027	0.033	0.69	0.84
Р	0.052	0.058	1.32	1.47

Product Selector

Part Number	Vol	tage	Gate Sensitiv	vity Quadrants	Tuno	Paakaga	
Part Number	400V	600V	1 – 11 – 111	IV	– Туре	Package	
LxX8E3	X	X	3 mA	3 mA	Sensitive Triac	TO-92	
LxX3	Х	Х	3 mA	3 mA	Sensitive Triac	Compak	
LxX8E5	X	X	5 mA	5 mA	Sensitive Triac	TO-92	
LxX5	X	X	5 mA	5 mA	Sensitive Triac	Compak	
LxX8E6	X	X	5 mA	10 mA	Sensitive Triac	TO-92	
LxX8E8	X	X	10 mA	20 mA	Sensitive Triac	TO-92	
QxX8E3	X	X	10 mA		Standard Triac	TO-92	
QxX3	Х	X	10 mA		Standard Triac	Compak	
QxX8E4	X	X	25 mA		Standard Triac	TO-92	
QxX4	Х	Х	25 mA		Standard Triac	Compak	

Note: x = voltage

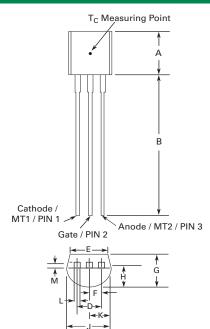
Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
L/QxX8Ey	L/QxX8Ey	0.188 g	Bulk	2000
L/QxX8EyRP	L/QxX8Ey	0.188 g	Reel Pack	2000
L/QxX8EyAP	L/QxX8Ey	0.188 g	Ammo Pack	2000
L/QxXyRP	L/QxXy	0.081 g	Embossed Carrier	2500

Note: x = voltage, y = sensitivity

Physical	Specifications
, cicai	opoundationo

Terminal Finish 100% Matte Tin-plated			
Body Material	UL recognized epoxy meeting flammability classification 94V-0		
Lead Material	Copper Alloy		

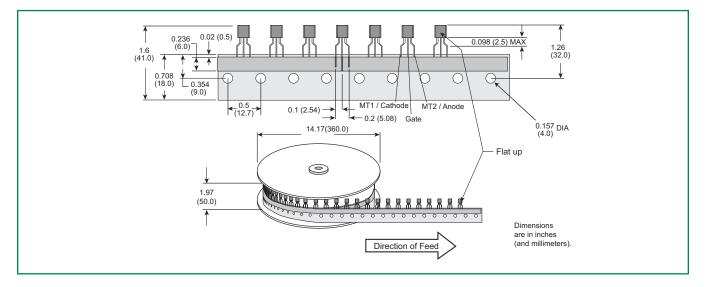

Design Considerations

Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

Environmental Specifications

Dimensions — TO-92 (E Package)


Dimension	Inches		Millimeters	
Dimension	Min	Max	Min	Max
А	0.176	0.196	4.47	4.98
В	0.500		12.70	
D	0.095	0.105	2.41	2.67
E	0.150		3.81	
F	0.046	0.054	1.16	1.37
G	0.135	0.145	3.43	3.68
Н	0.088	0.096	2.23	2.44
J	0.176	0.186	4.47	4.73
К	0.088	0.096	2.23	2.44
L	0.013	0.019	0.33	0.48
Μ	0.013	0.017	0.33	0.43

All leads insulated from case. Case is electrically nonconductive.

TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

Meets all EIA-468-B 1994 Standards

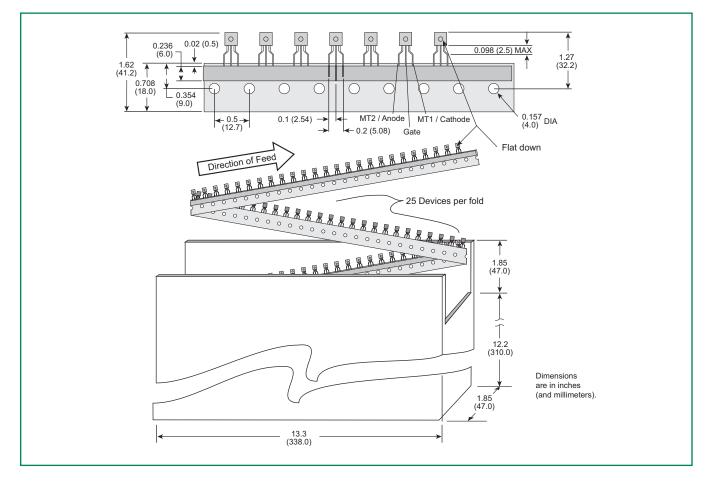


Figure 3: Normalized DC Holding Current vs. Junction Temperature

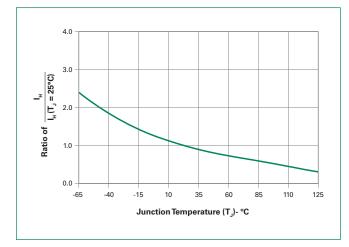
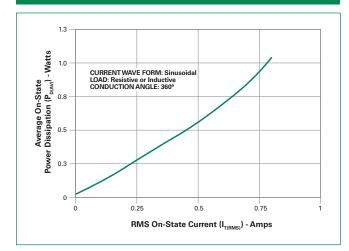
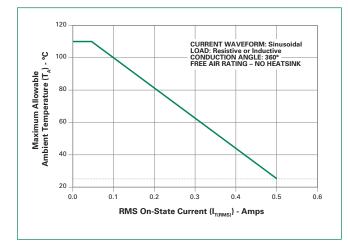
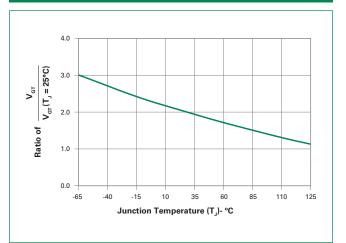
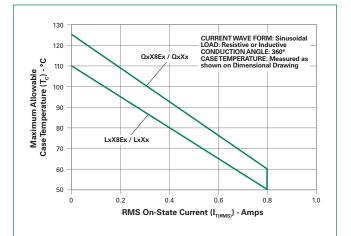



Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

Figure 7: Maximum Allowable Ambient Temperature vs. On-State Current

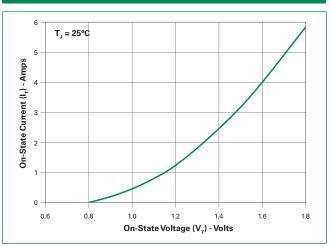

Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

Figure 6: Maximum Allowable Case Temperature vs. On-State Current

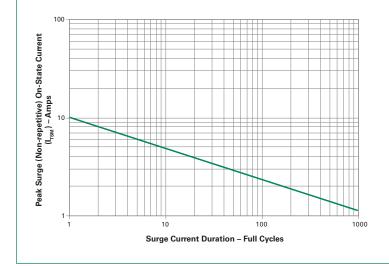
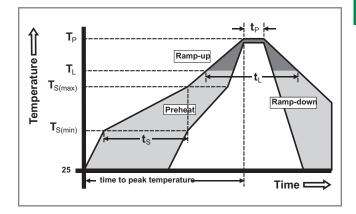


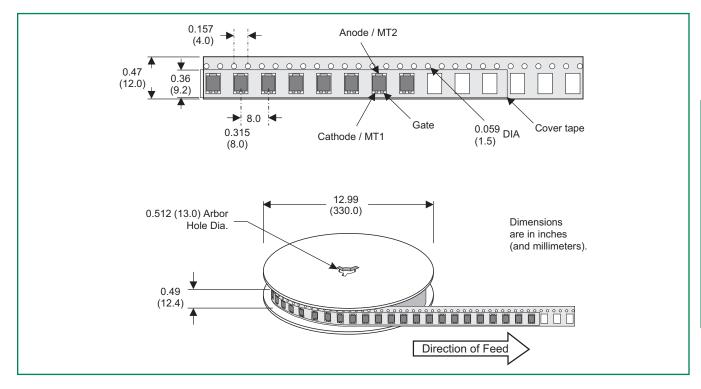
Figure 9: Surge Peak On-State Current vs. Number of Cycles

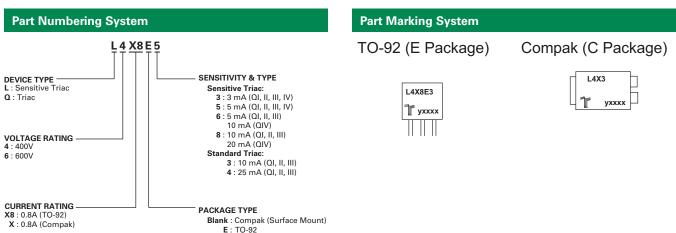

Supply Frequency: 60Hz Sinusoidal Load: Resistive RMS On-State [I_{T(RMS)}]: Max Rated Value at Specific Case Temperature

Notes:

- 1. Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters


Reflow Condition		Pb – Free assembly	
Pre Heat	-Temperature Min (T _{s(min)})	150°C	
	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 190 secs	
Average ramp up rate (LiquidusTemp) (T_L) to peak		5°C/second max	
$T_{S(max)}$ to T_L - Ramp-up Rate		5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
	-Temperature (t _L)	60 – 150 seconds	
PeakTemperature (T _P)		260 ^{+0/-5} °C	
Time within 5°C of actual peak Temperature (t _p)		20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C to peak Temperature (T _P)		8 minutes Max.	
Do not exceed		280°C	



Compak Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-481-1 Standards

