FEATURES

Operating frequency from $100 \mathbf{~ M H z}$ to $\mathbf{4 0 0 0} \mathbf{~ M H z}$
Digitally controlled VGA with serial and parallel interfaces
6-bit, 0.5 dB digital step attenuator
31.5 dB gain control range with $\pm 0.25 \mathrm{~dB}$ step accuracy

Gain Block Amplifier 1
Gain: $\mathbf{1 9 . 2} \mathbf{~ d B}$ at 2140 MHz
OIP3: $\mathbf{4 0 . 2} \mathbf{~ d B m}$ at $2140 \mathbf{M H z}$
P1dB: 19.8 dBm at 2140 MHz
Noise figure: $\mathbf{2 . 9} \mathbf{~ d B}$ at $2140 \mathbf{M H z}$
1/4 W Driver Amplifier 2
Gain: $\mathbf{1 4 . 2} \mathbf{~ d B}$ at $2140 \mathbf{M H z}$
OIP3: $\mathbf{4 1 . 1} \mathbf{~ d B m}$ at 2140 MHz
P1dB: $\mathbf{2 6 . 0 ~ d B m}$ at $2140 \mathbf{~ M H z}$
Noise figure: $\mathbf{3 . 7} \mathbf{~ d B}$ at $\mathbf{2 1 4 0 ~ M H z}$
Gain block, DSA, or $1 / 4$ W driver amplifier can be first
Low quiescent current of 175 mA
The companion ADL5240 integrates a gain block with DSA

APPLICATIONS

Wireless infrastructure

Automated test equipment
RF/IF gain control

GENERAL DESCRIPTION

The ADL5243 is a high performance, digitally controlled variable gain amplifier operating from 100 MHz to 4000 MHz .

The VGA integrates two high performance amplifiers and a digital step attenuator (DSA). Amplifier 1 (AMP1) is an internally matched gain block amplifier with 20 dB gain, and Amplifier 2 (AMP2) is a broadband $1 / 4 \mathrm{~W}$ driver amplifier. The DSA is 6-bit with a 31.5 dB gain control range, 0.5 dB steps, and $\pm 0.25 \mathrm{~dB}$ step accuracy. The attenuation of the DSA can be controlled using a serial or parallel interface.

The gain block and DSA are internally matched to 50Ω at their inputs and outputs, and all three internal devices are separately biased. The separate bias allows all or part of the ADL5243 to be used, which allows for easy reuse throughout a design. The pinout of the ADL5243 also enables the gain block, DSA, or $1 / 4 \mathrm{~W}$ driver amplifier to be first, giving the VGA maximum flexibility in a signal chain.
The ADL5243 consumes 175 mA and operates off a single supply ranging from 4.75 V to 5.25 V . The VGA is packaged in a thermally efficient, $5 \mathrm{~mm} \times 5 \mathrm{~mm}, 32$-lead LFCSP and is fully specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. A fully populated evaluation board is available.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADL5243

TABLE OF CONTENTS

Features .. 1
General Description ... 1
Functional Block Diagram .. 1
Revision History .. 2
Specifications.. 3
Absolute Maximum Ratings.. 9
ESD Caution... 9
Pin Configuration and Function Descriptions.......................... 10
Typical Performance Characteristics ... 11
Applications Information .. 20

REVISION HISTORY

8/11-Rev. 0 to Rev. A
Changes to Features Section... 1

7/11—Revision 0: Initial Version

Basic Layout Connections 20
SPI Timing 21
ADL5243 Amplifier 2 Matching 23
ADL5243 Loop Performance. 26
Thermal Considerations 26
Soldering Information and Recommended PCB Land Pattern 26
Evaluation Board 27
Outline Dimensions 30
Ordering Guide 30

SPECIFICATIONS

$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VCC}=5 \mathrm{~V}, \mathrm{VCC} 2=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Unit \\
\hline OVERALL FUNCTION Frequency Range \& \& 100 \& \& 4000 \& MHz \\
\hline \begin{tabular}{l}
AMPLIFIER 1 FREQUENCY \(=150 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
\end{aligned}
\] \\
4.75 V to 5.25 V \\
S11 \\
S22 \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=3 \mathrm{dBm} /\) tone
\end{tabular} \& \& \[
\begin{aligned}
\& 18.2 \\
\& \pm 0.97 \\
\& \pm 0.07 \\
\& \pm 0.03 \\
\& -10.4 \\
\& -8.2 \\
\& 18.4 \\
\& 29.5 \\
\& 2.8
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER 1 FREQUENCY \(=450 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \mathrm{~S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\] \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=3 \mathrm{dBm} /\) tone
\end{tabular} \& \& \[
\begin{aligned}
\& 20.6 \\
\& \pm 0.10 \\
\& \pm 0.36 \\
\& \pm 0.01 \\
\& -17.8 \\
\& -16.5 \\
\& 19.5 \\
\& 38.4 \\
\& 2.8 \\
\& \hline
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER 1 FREQUENCY \(=748 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \mathrm{~S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\] \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=3 \mathrm{dBm} /\) tone
\end{tabular} \& \& \[
\begin{aligned}
\& 20.8 \\
\& \pm 0.02 \\
\& \pm 0.32 \\
\& \pm 0.01 \\
\& -22.0 \\
\& -21.6 \\
\& 19.6 \\
\& 39.6 \\
\& 2.7
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER 1 FREQUENCY \(=943 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
\& \pm 18 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
\end{aligned}
\] \\
4.75 V to 5.25 V \\
S11 \\
S22
\[
\Delta \mathrm{f}=1 \mathrm{MHz} \text {, Pout }=3 \mathrm{dBm} / \text { tone }
\]
\end{tabular} \& 19.0

18.5 \& \[
$$
\begin{aligned}
& 20.3 \\
& \pm 0.01 \\
& \pm 0.28 \\
& \pm 0.02 \\
& -24.0 \\
& -21.5 \\
& 19.9 \\
& 40.4 \\
& 2.7
\end{aligned}
$$

\] \& 22.0 \& | dB |
| :--- |
| dB |
| dBm |
| dBm |
| dB |

\hline
\end{tabular}

ADL5243

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
AMPLIFIER 1 FREQUENCY \(=1960 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} \& \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
\& \pm 30 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \text { S} 11 \\
\& \mathrm{~S} 22
\end{aligned}
\] \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=3 \mathrm{dBm} /\) tone
\end{tabular} \& \& \[
\begin{aligned}
\& 19.5 \\
\& \pm 0.02 \\
\& \pm 0.26 \\
\& \pm 0.04 \\
\& -13.5 \\
\& -12.4 \\
\& 19.6 \\
\& 40.4 \\
\& 2.9
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline ```
AMPLIFIER 1 FREQUENCY \(=2140 \mathrm{MHz}\)
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
``` \& Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
\& \pm 30 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \text { S11 } \\
\& \text { S22 }
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz} \text {, Pout }=3 \mathrm{dBm} / \text { tone }
\] \& 17.5

17.5 \& \[
$$
\begin{aligned}
& 19.2 \\
& \pm 0.02 \\
& \pm 0.26 \\
& \pm 0.05 \\
& -13.3 \\
& -12.2 \\
& 19.8 \\
& 40.2 \\
& 2.9
\end{aligned}
$$

\] \& 21.5 \& | dB |
| :--- |
| dB |
| dBm |
| dBm |
| dB | <br>

\hline ```
AMPLIFIER 1 FREQUENCY = 2630 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure

``` & \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
& \pm 60 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}
\end{aligned}
\] \\
4.75 V to 5.25 V \\
S11 \\
S22 \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=3 \mathrm{dBm} /\) tone
\end{tabular} & 17.5

17.5 & \[
\begin{aligned}
& 19.0 \\
& \pm 0.03 \\
& \pm 0.22 \\
& \pm 0.05 \\
& -17.3 \\
& -12.3 \\
& 19.5 \\
& 39.5 \\
& 2.9
\end{aligned}
\] & 21.5 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER 1 FREQUENCY \(=3600 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} & \begin{tabular}{l}
Using the AMP1IN and AMP1OUT pins
\[
\begin{aligned}
& \pm 100 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \mathrm{~S} 11 \\
& \mathrm{~S} 22
\end{aligned}
\] \\
\(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=3 \mathrm{dBm} /\) tone
\end{tabular} & & \[
\begin{aligned}
& 18.0 \\
& \pm 0.10 \\
& \pm 0.05 \\
& \pm 0.12 \\
& -30.7 \\
& -9.0 \\
& 18.0 \\
& 34.6 \\
& 3.3 \\
& \hline
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
AMPLIFIER 2 FREQUENCY \(=748 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} & Using the AMP2IN and AMP2OUT pins
\[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& \mathrm{~S} 11 \\
& \mathrm{~S} 22
\end{aligned}
\]
\[
\Delta \mathrm{f}=1 \mathrm{MHz} \text {, Pour }=5 \mathrm{dBm} / \text { tone }
\] & & \[
\begin{aligned}
& 17.5 \\
& \pm 0.14 \\
& -12.7 \\
& -8.6 \\
& 24.7 \\
& 41.5 \\
& 5.6
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline
\end{tabular}

ADL5243
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Unit \\
\hline AMPLIFIER 2 FREQUENCY \(=943 \mathrm{MHz}\) & Using the AMP2IN and AMP2OUT pins & & & & \\
\hline Gain & & & 16.5 & & dB \\
\hline vs. Frequency & \(\pm 18 \mathrm{MHz}\) & & \(\pm 0.05\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.39\) & & dB \\
\hline vs. Supply & 4.75 V to 5.25 V & & \(\pm 0.10\) & & dB \\
\hline Input Return Loss & S11 & & -11.2 & & dB \\
\hline Output Return Loss & S22 & & -8.1 & & dB \\
\hline Output 1 dB Compression Point & & & 25.0 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 43.3 & & dBm \\
\hline Noise Figure & & & 5.3 & & dB \\
\hline AMPLIFIER 2 FREQUENCY \(=2140 \mathrm{MHz}\) & Using the AMP2IN and AMP2OUT pins & & & & \\
\hline Gain & & 13.0 & 14.2 & 15.5 & dB \\
\hline vs. Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.03\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.50\) & & dB \\
\hline vs. Supply & 4.75 V to 5.25 V & & \(\pm 0.09\) & & dB \\
\hline Input Return Loss & S11 & & -10.7 & & dB \\
\hline Output Return Loss & S22 & & -8.1 & & dB \\
\hline Output 1 dB Compression Point & & & 26.0 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 41.1 & & dBm \\
\hline Noise Figure & & & 3.7 & & dB \\
\hline AMPLIFIER 2 FREQUENCY \(=2630 \mathrm{MHz}\) & Using the AMP2IN and AMP2OUT pins & & & & \\
\hline Gain & & & 13.0 & & dB \\
\hline vs. Frequency & \(\pm 60 \mathrm{MHz}\) & & \(\pm 0.13\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.56\) & & dB \\
\hline vs. Supply & 4.75 V to 5.25 V & & \(\pm 0.09\) & & dB \\
\hline Input Return Loss & S11 & & -9.4 & & dB \\
\hline Output Return Loss & S22 & & -8.3 & & dB \\
\hline Output 1 dB Compression Point & & & 24.5 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 40.4 & & dBm \\
\hline Noise Figure & & & 4.1 & & dB \\
\hline DSA FREQUENCY \(=150 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -1.5 & & dB \\
\hline vs. Frequency & \(\pm 50 \mathrm{MHz}\) & & \(\pm 0.12\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.10\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 28.8 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.18\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 1.35\) & & dB \\
\hline Input Return Loss & & & -13.5 & & dB \\
\hline Output Return Loss & & & -13.3 & & dB \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 45.2 & & dBm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Unit \\
\hline DSA FREQUENCY \(=450 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -1.4 & & dB \\
\hline vs. Frequency & \(\pm 50 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.12\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 30.7 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.14\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.39\) & & dB \\
\hline Input Return Loss & & & -17.7 & & dB \\
\hline Output Return Loss & & & -17.4 & & dB \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 41.2 & & dBm \\
\hline DSA FREQUENCY \(=748 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -1.5 & & dB \\
\hline vs. Frequency & \(\pm 50 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.12\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 30.9 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.15\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.30\) & & dB \\
\hline Input Return Loss & & & -17.1 & & dB \\
\hline Output Return Loss & & & -17.1 & & dB \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 40.4 & & dBm \\
\hline DSA FREQUENCY \(=943 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -1.6 & & dB \\
\hline vs. Frequency & \(\pm 18 \mathrm{MHz}\) & & \(\pm 0.01\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.13\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 30.9 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.15\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.28\) & & dB \\
\hline Input Return Loss & & & -16.0 & & dB \\
\hline Output Return Loss & & & -15.9 & & dB \\
\hline Input 1 dB Compression Point & & & 30.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 48.3 & & dBm \\
\hline DSA FREQUENCY \(=1960 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -2.5 & & dB \\
\hline vs. Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.04\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.18\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 30.8 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.15\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.35\) & & dB \\
\hline Input Return Loss & & & -10.3 & & dB \\
\hline Output Return Loss & & & -9.6 & & dB \\
\hline Input 1 dB Compression Point & & & 31.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 44.7 & & dBm \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Unit \\
\hline DSA FREQUENCY \(=2140 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -2.6 & & dB \\
\hline vs. Frequency & \(\pm 30 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.19\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 30.9 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.13\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.32\) & & dB \\
\hline Input Return Loss & & & -9.8 & & dB \\
\hline Output Return Loss & & & -9.3 & & dB \\
\hline Input 1 dB Compression Point & & & 31.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 44.6 & & dBm \\
\hline DSA FREQUENCY \(=2630 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -2.8 & & dB \\
\hline vs. Frequency & \(\pm 60 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.21\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 31.2 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.18\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.24\) & & dB \\
\hline Input Return Loss & & & -10.0 & & dB \\
\hline Output Return Loss & & & -9.6 & & dB \\
\hline Input 1 dB Compression Point & & & 31.5 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 43.8 & & dBm \\
\hline DSA FREQUENCY \(=3600 \mathrm{MHz}\) & Using the DSAIN and DSAOUT pins, minimum attenuation & & & & \\
\hline Insertion Loss & & & -3.0 & & dB \\
\hline vs. Frequency & \(\pm 100 \mathrm{MHz}\) & & \(\pm 0.02\) & & dB \\
\hline vs. Temperature & \(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}\) & & \(\pm 0.23\) & & dB \\
\hline Attenuation Range & Between maximum and minimum attenuation states & & 31.7 & & dB \\
\hline Attenuation Step Error & All attenuation states & & \(\pm 0.38\) & & dB \\
\hline Attenuation Absolute Error & All attenuation states & & \(\pm 0.18\) & & dB \\
\hline Input Return Loss & & & -12.3 & & dB \\
\hline Output Return Loss & & & -11.7 & & dB \\
\hline Input 1 dB Compression Point & & & 31.0 & & dBm \\
\hline Input Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 42.2 & & dBm \\
\hline DSA Gain Settling & Using the DSAIN and DSAOUT pins & & & & \\
\hline Minimum Attenuation to Maximum Attenuation & & & 36 & & ns \\
\hline Maximum Attenuation to Minimum Attenuation & & & 36 & & ns \\
\hline LOOP FREQUENCY \(=943 \mathrm{MHz}\) & AMP1-DSA-AMP2, DSA at minimum attenuation & & & & \\
\hline Gain & & & 34.0 & & dB \\
\hline vs. Frequency & \(\pm 18 \mathrm{MHz}\) & & \(\pm 0.10\) & & dB \\
\hline Gain Range & Between maximum and minimum attenuation states & & 29.3 & & dB \\
\hline Input Return Loss & S11 & & -14.2 & & dB \\
\hline Output Return Loss & S22 & & -10.1 & & dB \\
\hline Output 1 dB Compression Point & & & 25.1 & & dBm \\
\hline Output Third-Order Intercept & \(\Delta \mathrm{f}=1 \mathrm{MHz}\), Pout \(=5 \mathrm{dBm} /\) tone & & 42.8 & & dBm \\
\hline Noise Figure & & & 2.9 & & dB \\
\hline
\end{tabular}

\section*{ADL5243}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
LOOP FREQUENCY \(=2140 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
Gain Range \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} & \begin{tabular}{l}
AMP1 - DSA - AMP2, DSA at minimum attenuation
\[
\pm 30 \mathrm{MHz}
\] \\
Between maximum and minimum attenuation states \\
S11 \\
S22
\[
\Delta \mathrm{f}=1 \mathrm{MHz} \text {, Pout }=5 \mathrm{dBm} / \text { tone }
\]
\end{tabular} & & \[
\begin{aligned}
& 31.3 \\
& \pm 0.03 \\
& 32.5 \\
& -9.3 \\
& -5.4 \\
& 25.3 \\
& 40.0 \\
& 3.1
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
LOOP FREQUENCY \(=2630 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
Gain Range \\
Input Return Loss \\
Output Return Loss \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} & \begin{tabular}{l}
AMP1 - DSA - AMP2, DSA at minimum attenuation
\[
\pm 60 \mathrm{MHz}
\] \\
Between maximum and minimum attenuation states \\
S11 \\
S22
\[
\Delta \mathrm{f}=1 \mathrm{MHz} \text {, Pour }=5 \mathrm{dBm} / \text { tone }
\]
\end{tabular} & & \[
\begin{aligned}
& 29.5 \\
& \pm 0.56 \\
& 30.0 \\
& -12.6 \\
& -5.8 \\
& 24.6 \\
& 39.3 \\
& 3.1
\end{aligned}
\] & & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline POWER SUPPLIES Voltage Supply Current & \[
\begin{aligned}
& \text { AMP1 } \\
& \text { AMP2 } \\
& \text { DSA }
\end{aligned}
\] & 4.75 & \[
\begin{aligned}
& 5.0 \\
& 89 \\
& 86 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.25 \\
& 120 \\
& 120
\end{aligned}
\] & \begin{tabular}{l}
V \\
mA \\
mA \\
mA
\end{tabular} \\
\hline
\end{tabular}

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 2.
\begin{tabular}{l|l}
\hline Parameter & Rating \\
\hline Supply Voltage (VDD, VCC, VCC2) & 6.5 V \\
Input Power & \\
\(\quad\) AMP1IN & 16 dBm \\
\(\quad\) AMP2IN (50 \(\Omega\) Impedance) & 20 dBm \\
DSAIN & 30 dBm \\
Internal Power Dissipation & 1.0 W \\
\(\theta_{\mathrm{JA}}\) (Exposed Paddle Soldered Down) & \(34.8^{\circ} \mathrm{C} / \mathrm{W}\) \\
\(\theta_{\mathrm{c}}\) (Exposed Paddle) & \(6.2^{\circ} \mathrm{C} / \mathrm{W}\) \\
Maximum Junction Temperature & \(150^{\circ} \mathrm{C}\) \\
Lead Temperature (Soldering, 60 sec) & \(240^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ESD CAUTION}
\begin{tabular}{l|l}
\hline & \begin{tabular}{l}
ESD (electrostatic discharge) sensitive device. \\
Charged devices and circuit boards can discharge \\
without detection. Although this product features \\
patented or proprietary protection circuitry, damage \\
may occur on devices subjected to high energy ESD. \\
Therefore, proper ESD precautions should be taken to \\
avoid performance degradation or loss of functionality.
\end{tabular} \\
\hline
\end{tabular}

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}

Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
\begin{tabular}{|c|c|c|}
\hline Pin No. & Mnemonic & Description \\
\hline 1,24 & VDD & Supply Voltage for DSA. Connect this pin to a 5 V supply. \\
\hline \[
\begin{aligned}
& 2,3,5,7,8,9,11,12,13,14 \\
& 17,18,20,22,23
\end{aligned}
\] & NC & No Connect. Do not connect to this pin. \\
\hline 4 & DSAIN & RF Input to DSA. \\
\hline 6 & AMP10UT/VCC & RF Output from Amplifier 1/Supply Voltage for Amplifier 1. Bias to Gain Block Amplifier 1 is provided through a choke to this pin when connected to VCC. \\
\hline 10 & AMP1IN & RF Input to Gain Block Amplifier 1. \\
\hline 15 & AMP2OUT/VCC2 & RF Output from Amplifier 2/Supply Voltage for Amplifier 2. Bias to Driver Amplifier 2 is provided through a choke to this pin when connected to VCC2. \\
\hline 16 & VBIAS & Bias for Driver Amplifier 2. \\
\hline 19 & AMP2IN & RF Input to Amplifier 2. \\
\hline 21 & DSAOUT & RF Output from DSA. \\
\hline 25 & D6 & Data Bit in Parallel Mode (LSB). Connect to supply in serial mode. \\
\hline 26 & D5 & Data Bit in Parallel Mode. Connect to ground in serial mode. \\
\hline 27 & D4 & Data Bit in Parallel Mode. Connect to ground in serial mode. \\
\hline 28 & D3 & Data Bit in Parallel Mode. Connect to ground in serial mode. \\
\hline 29 & D2/LE & Data Bit in Parallel Mode/Latch Enable in Serial Mode. \\
\hline 30 & D1/DATA & Data Bit in Parallel Mode (MSB)/Data in Serial Mode. \\
\hline 31 & D0/CLK & Connect this pin to ground in parallel mode. This pin functions as a clock in serial mode. \\
\hline \multirow[t]{2}{*}{32} & SEL & Select Pin. Connect this pin to the supply for parallel mode operation; connect this pin to ground for serial mode operation. \\
\hline & EPAD & Exposed Paddle. The exposed paddle must be connected to ground. \\
\hline
\end{tabular}

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. AMP1: Gain, P1dB, OIP3 at Pout \(=3 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency

Figure 4. AMP1: Gain vs. Frequency and Temperature

Figure 5. AMP1: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

Figure 6. AMP1: OIP3 at Pout \(=3 d B m / T o n e ~ a n d ~ P 1 d B ~ v s\). Frequency and Temperature

Figure 7. AMP1: OIP3 vs. Pout and Frequency

Figure 8. AMP1: Noise Figure vs. Frequency and Temperature

Figure 9. AMP2-943 MHz: Gain, P1dB, OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency

Figure 10. AMP2-943 MHz: Gain vs. Frequency and Temperature

Figure 11. AMP2-943 MHz: Input Return Loss (S11), Output Return Loss (S22,) and Reverse Isolation (S12) vs. Frequency

Figure 12. AMP2-943 MHz: OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and \(P 1 d B\) vs. Frequency and Temperature

Figure 13. AMP2-943 MHz: OIP3 vs. Pout and Frequency

Figure 14. AMP2-943 MHz: Noise Figure vs. Frequency and Temperature

Figure 15. AMP2-2140 MHz: Gain, P1dB, OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency

Figure 16. AMP2-2140 MHz: Gain vs. Frequency and Temperature

Figure 17. AMP2-2140 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

Figure 18. AMP2-2140 MHz: OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and \(P 1 \mathrm{~dB}\) vs. Frequency and Temperature

Figure 19. AMP2-2140 MHz: OIP3 vs. Pout and Frequency

Figure 20. AMP2-2140 MHz: Noise Figure vs. Frequency and Temperature

Figure 21. AMP2-2630 MHz: Gain, P1dB, OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency

Figure 22. AMP2-2630 MHz: Gain vs. Frequency and Temperature

Figure 23. AMP2-2630 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

Figure 24. AMP2-2630 MHz: OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and \(P 1 \mathrm{~dB}\) vs. Frequency and Temperature

Figure 25. AMP2-2630 MHz: OIP3 vs. Pout and Frequency

Figure 26. AMP2-2630 MHz: Noise Figure vs. Frequency and Temperature

Figure 27. DSA: Attenuation vs. Frequency

Figure 28. DSA: Attenuation vs. Frequency and Temperature

Figure 29. DSA: Step Error vs. Attenuation

Figure 30. DSA: Absolute Error vs. Attenuation

Figure 31. DSA: Input Return Loss vs. Frequency, All States

Figure 32. DSA: Output Return Loss vs. Frequency, All States

Figure 33. DSA: Input P1dB and Input IP3 vs. Frequency, Minimum Attenuation State

Figure 34. DSA: Gain Settling Time, 0 dB to \(31.5 d B\)

Figure 35. DSA: Gain Settling Time, \(31.5 d B\) to \(0 d B\)

Figure 36. DSA: Phase vs. Attenuation

Figure 37. Loop-943 MHz: Gain, P1dB, OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency, Minimum Attenuation State

Figure 38. Loop-943 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State

Figure 39. Loop-943 MHz: OIP3 vs. Pout and Frequency, Minimum Attenuation State

Figure 40. Loop-2140 MHz: Gain, P1dB, OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency, Minimum Attenuation State

Figure 41. Loop-2140 MHz: Input Return Loss (S11), Output Return Loss

Figure 42. Loop-2140 MHz: OIP3 vs. Pout and Frequency, Minimum Attenuation State

Figure 43. Loop-2630 MHz: Gain, P1dB, OIP3 at Pout \(=5 \mathrm{dBm} /\) Tone and Noise Figure vs. Frequency, Minimum Attenuation State

Figure 44. Loop-2630 MHz: Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State

Figure 45. Loop-2630 MHz: OIP3 vs. Pout and Frequency, Minimum Attenuation State

Figure 46. AMP1: Supply Current vs. Voltage and Temperature

Figure 47. AMP2: Supply Current vs. Voltage and Temperature

Figure 48. AMP1: Gain Distribution at 2140 MHz

Figure 49. AMP1: P1dB Distribution at 2140 MHz

Figure 50. AMP1: OIP3 Distribution at 2140 MHz

Figure 51. AMP1: Noise Figure Distribution at 2140 MHz

Figure 52. AMP2: Gain Distribution at 2140 MHz

Figure 53. AMP2: P1dB Distribution at 2140 MHz

Figure 54. AMP2: OIP3 Distribution at 2140 MHz

Figure 55. AMP2: Noise Figure Distribution at 2140 MHz

\section*{APPLICATIONS INFORMATION}

\section*{BASIC LAYOUT CONNECTIONS}

The basic connections for operating the ADL5243 are shown in Figure 56. The schematic is configured for 2140 MHz operation.

Figure 56. Basic Connections

\section*{Amplifier 1 Power Supply}

AMP1 in the ADL5243 is a broadband gain block. The dc bias is supplied through Inductor L1 and is connected to the AMP1OUT pin. Three decoupling capacitors (C13, C14, and C 25) are used to prevent RF signals from propagating on the dc lines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC test pin.

\section*{Amplifier 1 RF Input Interface}

Pin 10 is the RF input for AMP1 of the ADL5243. The amplifier is internally matched to \(50 \Omega\) at the input; therefore, no external components are required. Only a dc blocking capacitor (C21) is required.

\section*{Amplifier 1 RF Output Interface}

Pin 6 is the RF output for AMP1 of the ADL5243. The amplifier is internally matched to \(50 \Omega\) at the output as well; therefore, no external components are required. Only a dc blocking capacitor (C4) is required. The bias is provided through this pin via a choke inductor, L1.

\section*{Amplifier 2 Power Supply}

The collector bias for AMP2 is supplied through Inductor L2 and is connected to the AMP2OUT pin, whereas the base bias is provided through Pin 16. The base bias is connected to the same supply pin as the collector bias. Three decoupling capacitors (C3, C20, and C25) are used to prevent RF signals from propagating on the dc lines. The dc supply ranges from 4.75 V to 5.25 V and should be connected to the VCC2 test pin.

\section*{Amplifier 2 RF Input Interface}

Pin 19 is the RF input for AMP2 of the ADL5243. The input of the amplifier is easily matched to \(50 \Omega\) with a combination of series and shunt capacitors and a microstrip line serving as an inductor. Figure 56 shows the input matching components and is configured for 2140 MHz .

\section*{Amplifier 2 RF Output Interface}

Pin 15 is the RF input for AMP2 of the ADL5243. The output of the amplifier is easily matched to \(50 \Omega\) with a combination of series and shunt capacitors and a microstrip line serving as an inductor.

Additionally, bias is provided through this pin. Figure 56 shows the output matching components and is configured for 2140 MHz .

\section*{DSA RF Input Interface}

Pin 4 is the RF input for the DSA of the ADL5243. The input impedance of the DSA is close to \(50 \Omega\) over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C1) is required.

\section*{DSA RF Output Interface}

Pin 21 is the RF output for the DSA of the ADL5243. The output impedance of the DSA is close to \(50 \Omega\) over the entire frequency range; therefore, no external components are required. Only a dc blocking capacitor (C5) is required.

\section*{DSA SPI Interface}

The DSA of the ADL5243 can operate in either serial or parallel mode. Pin 32 (SEL) controls the mode of operation. For serial mode operation, connect SEL to ground, and for parallel mode operation, connect SEL to VDD. In parallel mode, Pin 25 to Pin 30 (D6 to D1) are the data bits, with D6 being the LSB. Connect Pin 31 (D0) to ground during parallel mode of operation. In serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data (DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28 are not used in the serial mode and should be connected to ground. Pin 25 (D6) should be connected to VDD during the serial mode of operation. To prevent noise from coupling onto the digital signals, an RC filter can be used on each data line.

\section*{SPI TIMING}

\section*{SPI Timing Sequence}

Figure 58 shows the timing sequence for the SPI function using a 6-bit operation. The clock can be as fast as 20 MHz . In serial mode operation, Register B5 (MSB) is first, and Register B0 (LSB) is last.

Table 4. Mode Selection Table
\begin{tabular}{l|l}
\hline Pin 32 (SEL) & Functionality \\
\hline Connect to Ground & Serial mode \\
Connect to Supply & Parallel mode \\
\hline
\end{tabular}

Table 5. SPI Timing Specifications
\begin{tabular}{l|l|l|l}
\hline Parameter & Limit & Unit & Test Conditions/Comments \\
\hline \(\mathrm{F}_{\text {CLK }}\) & 10 & MHz & Data clock frequency \\
\(\mathrm{t}_{1}\) & 30 & ns min & Clock high time \\
\(\mathrm{t}_{2}\) & 30 & ns min & Clock low time \\
\(\mathrm{t}_{3}\) & 10 & ns min & Data to clock setup time \\
\(\mathrm{t}_{4}\) & 10 & ns min & Clock to data hold time \\
\(\mathrm{t}_{5}\) & 10 & ns min & Clock low to LE setup time \\
\(\mathrm{t}_{6}\) & 30 & ns min & LE pulse width \\
\hline
\end{tabular}

Figure 58. SPI Timing Sequence
Table 6. DSA Attenuation Truth Table-Serial Mode
\begin{tabular}{l|l|l|l|l|l|l}
\hline Attenuation State & B5 (MSB) & B4 & B3 & B2 & B1 & B0 (LSB) \\
\hline 0 dB (Reference) & 1 & 1 & 1 & 1 & 1 & 1 \\
0.5 dB & 1 & 1 & 1 & 1 & 0 \\
1.0 dB & 1 & 1 & 1 & 0 & 1 \\
2.0 dB & 1 & 1 & 0 & 1 & 1 \\
4.0 dB & 1 & 0 & 1 & 1 & 1 \\
8.0 dB & 1 & 1 & 1 & 1 & 1 \\
16.0 dB & 0 & 0 & 0 & 1 & 1 \\
31.5 dB & 0 & 1 & 0 & 0 \\
\hline
\end{tabular}

Table 7. DSA Attenuation Truth Table-Parallel Mode
\begin{tabular}{l|l|l|l|l|l|l}
\hline Attenuation State & D1 (MSB) & D2 & D3 & D4 & D5 & D6 (LSB) \\
\hline 0 dB (Reference) & 1 & 1 & 1 & 1 & 1 & 1 \\
0.5 dB & 1 & 1 & 1 & 1 & 1 & 0 \\
1.0 dB & 1 & 1 & 1 & 0 & 1 \\
2.0 dB & 1 & 1 & 1 & 1 \\
4.0 dB & 1 & 0 & 1 & 1 & 1 \\
8.0 dB & 1 & 1 & 1 & 1 & 1 \\
16.0 dB & 0 & 1 & 0 & 1 & 1 \\
31.5 dB & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{ADL5243 AMPLIFIER 2 MATCHING}

The AMP2 input and output of the ADL5243 can be easily matched to \(50 \Omega\) with two or three external components and the microstrip line used as an inductor. Table 8 lists the required matching components values. All capacitors are Murata GRM155 series (0402 size), and Inductor L1 is a Coilcraft \({ }^{\circ}\) 0603CS series (0603 size). For all frequency bands, the
placement of Capacitors C22, C26, and C28 is critical. Table 9 lists the recommended component spacing of C22, C26, and C28 for the various frequencies. The component spacing is referenced from the center of the component to the edge of the package. Figure 59 to Figure 62 show the graphical representation of the matching network.

Table 8. Component Values
\begin{tabular}{l|l|l|l|l|l|l|l|l|l}
\hline Frequency & C27 & C26 & C28 & C8 & C22 & C23 & L2 & R10 & R12 \\
\hline 748 MHz & \(0 \Omega\) & Open & 5.1 pF & 12 pF & 1.3 pF & 100 pF & 56 nH & \(18 \Omega\) & 3.9 nH \\
943 MHz & \(0 \Omega\) & 3.9 pF & Open & 6 pF & 1.3 pF & 100 pF & 56 nH & \(18 \Omega\) & 3.3 nH \\
2140 MHz & 2.2 pF & Open & 1.8 pF & 10 pF & 1 pF & 10 pF & 9.5 nH & \(0 \Omega\) & \(0 \Omega\) \\
2630 MHz & 2.7 pF & 1.1 pF & Open & 10 pF & 1.3 pF & 20 pF & 9.5 nH & \(0 \Omega\) & \(0 \Omega\) \\
\hline
\end{tabular}

Table 9. Component Spacing
\begin{tabular}{l|l|l|l}
\hline Frequency & C26: \(\boldsymbol{\lambda 1}\) (mils) & C28: \(\boldsymbol{\lambda 2}\) (mils) & C22: \(\boldsymbol{\lambda} \mathbf{3}\) (mils) \\
\hline 748 MHz & \(\mathrm{N} / \mathrm{A}\) & 315 & 201 \\
943 MHz & 236 & \(\mathrm{~N} / \mathrm{A}\) & 394 \\
2140 MHz & \(\mathrm{N} / \mathrm{A}\) & 366 & 244 \\
2630 MHz & 126 & \(\mathrm{~N} / \mathrm{A}\) & 240 \\
\hline
\end{tabular}

Figure 62. AMP2: Matching Circuit at 2630 MHz

\section*{ADL5243 LOOP PERFORMANCE}

The typical configuration of the ADL5243 is to connect in AMP1-DSA-AMP2 mode, as shown in Figure 63. Because AMP1and DSA are broadband in nature and internally matched, only an ac-coupling capacitor is required between them. The AMP2 is externally matched for each frequency band of operation, and these matching elements should be placed between the DSA and AMP2 and at the output of AMP2. Figure 37 to Figure 45 show the performance of the ADL5243 when connected in a loop for the three primary frequency bands of operation, namely \(943 \mathrm{MHz}, 2140 \mathrm{MHz}\), and 2630 MHz .

Figure 63. ADL5243 Loop Block Diagram

\section*{THERMAL CONSIDERATIONS}

The ADL5243 is packaged in a thermally efficient, \(5 \mathrm{~mm} \times 5 \mathrm{~mm}\), 32-lead LFCSP. The thermal resistance from junction to air (\(\theta_{\mathrm{JA}}\)) is \(34.8^{\circ} \mathrm{C} / \mathrm{W}\). The thermal resistance for the product was extracted assuming a standard 4-layer JEDEC board with 25 copper platter thermal vias. The thermal vias are filled with conductive copper paste, AE3030, with a thermal conductivity of \(7.8 \mathrm{~W} / \mathrm{mk}\) and thermal expansion as follows: \(\alpha 1\) of \(4 \times 10^{-5} /{ }^{\circ} \mathrm{C}\) and \(\alpha 2\) of \(8.6 \times 10^{-5} /{ }^{\circ} \mathrm{C}\). The thermal resistance from junction to case \(\left(\theta_{\mathrm{JC}}\right)\) is \(6.2^{\circ} \mathrm{C} / \mathrm{W}\), where case is the exposed pad of the lead frame package.

For the best thermal performance, it is recommended to add as many thermal vias as possible under the exposed pad of the LFCSP. The above thermal resistance numbers assume a minimum of 25 thermal vias arranged in a \(5 \times 5\) array with a via diameter of 13 mils, via pad of 25 mils, and pitch of 25 mils. The vias are plated with copper, and the drill hole is filled with a conductive copper paste. For optimal performance, it is recommended to fill the thermal vias with a conductive paste of equivalent thermal conductivity, as mentioned above, or use an external heat sink to dissipate the heat quickly without affecting the die junction temperature. It is also recommended to extend the ground pattern as shown in Figure 64 to improve thermal efficiency.

\section*{SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN}

Figure 64 shows the recommended land pattern for the ADL5243. To minimize thermal impedance, the exposed paddle on the \(5 \mathrm{~mm} \times 5 \mathrm{~mm}\) LFCSP package is soldered down to a ground plane. To improve thermal dissipation, 25 thermal vias are arranged in a \(5 \times 5\) array under the exposed paddle. If multiple ground layers exist, they should be tied together using vias. For more information on land pattern design and layout, see the AN-772 Application Note, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).

Figure 64. Recommended Land Pattern

\section*{EVALUATION BOARD}

The schematic of the ADL5243 evaluation board is shown in Figure 65. All RF traces on the evaluation board have a characteristic impedance of \(50 \Omega\) and are fabricated from Rogers3003 material. The traces are CPWG with a width of 25 mils, spacing of 20 mils, and dielectric thickness of 10 mils. The input and output to the DSA and amplifier should be accoupled with capacitors of appropriate value to ensure broadband performance. The bias to AMP1 is provided through a choke connected to the AMP1OUT pin and, similarly, bias to AMP2 is provided through a choke connected to the AMP2OUT pin. Bypassing capacitors are recommended on all supply lines to minimize RF coupling. The DSA and the amplifiers can be
individually biased or connected to the VDD plane through Resistors R1, R2, and R11.
When configuring the ADL5243 evaluation board in the AMP1-DSA-AMP2 loop, remove Capacitors C1, C4, C5, and C8 and remove Resistor R10. Place 100 pF in place of C2, 10 pF in place of C6, and \(0 \Omega\) in place of C7 and C24. If needed, placing a shunt capacitor \((1.3 \mathrm{pF})\) at the output of the DSA improves the output return loss of this loop.
On the digital signal traces, provisions for an RC filter are made to clean any potential coupled noise. In normal operation, Resistors R3 to R9 are \(0 \Omega\) and Capacitors C9 to C15 are open.

Table 10. Evaluation Board Configurations Options
\begin{tabular}{|c|c|c|}
\hline Component & Function & Default Value \\
\hline C1, C5 & AC coupling caps for DSA. & C1, C5 = 100 pF \\
\hline C4, C21 & AC coupling capacitors for AMP1. & \(\mathrm{C} 4, \mathrm{C} 21=0.1 \mu \mathrm{~F}\) \\
\hline C13, C14, C15 & Power supply bypassing capacitors for AMP1. Capacitor C15 should be closest to the device. & \[
\begin{aligned}
& \mathrm{C} 13=1 \mu \mathrm{~F} \\
& \mathrm{C} 14=1.2 \mathrm{nF} \\
& \mathrm{C} 15=68 \mathrm{pF}
\end{aligned}
\] \\
\hline L1 & The bias for AMP1 comes through L1 when connected to a 5 V supply. L1 should be high impedance for the frequency of operation, while providing low resistance for the dc current. & \(\mathrm{L} 1=470 \mathrm{nH}\) \\
\hline C8 & AMP2 input ac-coupling capacitor. & \(\mathrm{C} 8=10 \mathrm{pF}\) \\
\hline C23 & AMP2 output ac-coupling capacitor. & \(\mathrm{C} 23=10 \mathrm{pF}\) \\
\hline C22 & AMP2 shunt output tuning capacitor. & \(\mathrm{C} 22=1.0 \mathrm{pF}\) at 244 mils from edge of package \\
\hline C26 & ANP2 shunt input tuning capacitor. & DNP \\
\hline C27 & AMP2 series input tuning capacitor. & \(\mathrm{C} 27=2.2 \mathrm{pF}\) \\
\hline C28 & AMP2 shunt input tuning capacitor. & \(\mathrm{C} 28=1.8 \mathrm{pF}\) at 366 mils from edge of package \\
\hline C3, C25, C20 & Power supply bypassing capacitors for AMP2. Capacitor C3 should be closest to the device. & \[
\begin{aligned}
& \mathrm{C} 3=10 \mathrm{pF} \\
& \mathrm{C} 25=10 \mathrm{nF} \\
& \mathrm{C} 20=10 \mu \mathrm{~F}
\end{aligned}
\] \\
\hline L2 & The bias for AMP2 comes through L2 when connected to a 5 V supply. L1 should be high impedance for the frequency of operation, while providing low resistance for the dc current. & \(\mathrm{L} 2=9.5 \mathrm{nH}\) \\
\hline C17 & Power supply bypassing capacitor. & \(\mathrm{C} 17=0.1 \mu \mathrm{~F}\) \\
\hline R10, R12 & Placeholder for the series component for the other frequency band. & R10, R12 \(=0 \Omega\) \\
\hline \[
\begin{aligned}
& \text { R3, R4, R5, R6, R7, } \\
& \text { R8, R9 }
\end{aligned}
\] & Digital signal filter resistors. & R3, R4, R5, R6, R7, R8, R9 = \(0 \Omega\) \\
\hline \[
\begin{aligned}
& \mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12 \text {, } \\
& \mathrm{C} 16, \mathrm{C} 18, \mathrm{C} 9
\end{aligned}
\] & Digital signal filter capacitors. & C9, C10, C11, C12, C16, C18, C19 = open \\
\hline C2, C6, C7, C24 & Replace with capacitors and resistors to connect the device in a loop. & C2, C6, C7, C24 = open \\
\hline R1, R2, R11 & Resistors to connect the supply for the amplifier and the DSA to the same VDD plane. & R1, R2 = open \\
\hline S1 & Switch to change between serial and parallel mode operation; connect to a supply for parallel mode and to ground for serial mode operation. & 3-pin rocker \\
\hline P1 & Digital control. & 9-pin connector \\
\hline
\end{tabular}

Figure 67. Evaluation Board Layout—Bottom

\section*{ADL5243}

\section*{OUTLINE DIMENSIONS}

COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
05-25-2011-A
Figure 68. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
\(5 \mathrm{~mm} \times 5 \mathrm{~mm}\) Body, Very Thin Quad
(CP-32-3)
Dimensions shown in millimeters
\begin{tabular}{l}
ORDERING GUIDE \\
\hline Model \(^{1}\)
\end{tabular}\(|\) Temperature Range \(\quad\) Package Description \(\quad\)\begin{tabular}{l}
Package Option \\
\hline ADL5243ACPZ-R7 \(^{\text {ADL5243-EVALZ }} 8\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1} Z=\) RoHS Compliant Part.
}
Data Sheet ADL5243

NOTES

\section*{NOTES}```

