

### **Description**

The Si530/531 XO utilizes Silicon Laboratories' advanced DSPLL circuitry to provide a low-jitter clock at high frequencies. The Si530/531 is available with any-rate output frequency from 10 to 945 MHz and select frequencies to 1400 MHz. Unlike a traditional XO, where a different crystal is required for each output frequency, the Si530/531 uses one fixed-frequency crystal to provide a wide range of output frequencies. This ICbased approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides superior supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments typically found in communication systems. The Si530/531 IC-based XO is factory-configurable for a wide variety of user specifications including frequency, supply voltage, output format, and temperature stability. Specific configurations are factory-programmed at time of shipment, thereby eliminating long lead times associated with custom oscillators.

#### **Features**

- Available with any-rate output frequencies from 10 to 945 MHz and select frequencies to 1.4 GHz
- Ultra-low jitter: 0.3 ps RMS (12 kHz-20 MHz)
- 3x tighter stability than SAW oscillators
- 3.3 V, 2.5 V and 1.8 V V<sub>DD</sub> supply operation
- Differential (LVPECL, LVDS, CML) or CMOS output options
- Standard frequencies in stock and available for rapid delivery
- Custom frequencies available with < 2 week lead times

### **Applications**

- SONET/SDH/OTN
- Networking
- HD-SDI/3G-SDI Video
- Test and measurement
- Clock and data recovery
- FPGA/ASIC Clock generation

| _ | 1   |      | 0 - 1 |        | _   |     |
|---|-----|------|-------|--------|-----|-----|
| ч | roc | IUCt | Se    | lector | Gil | nae |

| XO Series | Description                           |  |  |  |
|-----------|---------------------------------------|--|--|--|
| Si530     | Single frequency oscillator, OE pin 2 |  |  |  |
| Si531     | Single frequency oscillator, OE pin 1 |  |  |  |

A complete Si530-531 data sheet can be found here: http://www.silabs.com/Support%20Documents/TechnicalDocs/si530.pdf

### Pin-out NC/OE 1 6 VDD OE/NC 5 CLK-GND 4 CLK+ (top view)

#### **Pin Description** Pin Description Si530: NC = No Connect 1 Si531: OE = Output Enable Si530: OE = Output Enable Si531: OE = No Connect 3 GND = Ground 4 CLK+ = Clock output 5 CLK- = Complementary Clock output 6 VDD = Power Supply

#### Selected Electrical Specifications

 $V_{DD} = 2.5 \text{ or } 3.3 \text{ V} + 10\%$   $T_A = -40 \text{ to } 85 \text{ °C}$ 

| Parameter                                                 | Symbol            | Test Condition/Comment                       | Min                  | Тур  | Max             | Unit     |
|-----------------------------------------------------------|-------------------|----------------------------------------------|----------------------|------|-----------------|----------|
| Frequency Range <sup>1</sup>                              | F <sub>CLK</sub>  | LVPECL/LVDS                                  | 10                   | _    | 945             | MHz      |
| Supply Voltage                                            | \/                | 3.3 V option                                 | 2.97                 | 3.3  | 3.63            | V        |
| Supply voltage                                            | $V_{DD}$          | 2.5 V option                                 | 2.25                 | 2.5  | 2.75            | V        |
|                                                           |                   | LVPECL (output enabled)                      | _                    | 111  | 121             | mA       |
| Supply Current                                            | $I_{DD}$          | LVDS (output enabled)                        | _                    | 90   | 98              | mA       |
|                                                           |                   | Tristate (output disabled)                   | _                    | 60   | 75              | mA       |
| Total Stability                                           | F <sub>STAB</sub> | Temperature stability: ±7 ppm                | -20                  | _    | 20              | ppm      |
| Rise/Fall Time                                            | $T_R/T_F$         | LVPECL/LVDS option                           | _                    | _    | 350             | ps       |
| Phase Jitter (RMS) for F <sub>CLK</sub> ≥ 500 MHz         | фл                | 12 kHz to 20 MHz integration DM2             | _                    | 0.25 | 0.40            | ps       |
| Phase Jitter (RMS) for F <sub>CLK</sub> of 125 to 500 MHz | фл                | 12 kHz to 20 MHz integration BW <sup>2</sup> |                      | 0.36 | 0.50            | ps       |
| Duty Cycle                                                | DC                | All formats                                  | 45                   | _    | 55              | %        |
| Output Enable (OE) <sup>3</sup>                           | $V_{IH}$          |                                              | $0.75 \times V_{DD}$ | _    | _               | V        |
| Output Enable (OE)                                        | $V_{IL}$          |                                              | _                    | _    | 0.5             | V        |
| LVPECL Output Option <sup>4</sup>                         | V <sub>oc</sub>   | mid-level                                    | $V_{DD} - 1.42$      | _    | $V_{DD} - 1.25$ | V        |
| LVF LGL Output Option                                     | Vo                | swing (diff)                                 | 1.1                  | _    | 1.9             | $V_{PP}$ |
| LVDS Output Option <sup>5</sup>                           | Voc               | mid-level                                    | 1.125                | 1.20 | 1.275           | V        |
| LVDS Output Option <sup>5</sup>                           | Vo                | swing (diff)                                 | 0.5                  | 0.7  | 0.9             | $V_{PP}$ |

#### Notes:

- Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz. 1.
- 2. All Crystal Oscillator (XO) devices are screened for jitter at production test.
- OE pin includes a 17 k $\Omega$  pullup resistor to VDD. 3.
- $50 \Omega$  to VDD -2.0 V.
- $R_{term} = 100 \Omega$  (differential).





### 10 MHz to 1.4 GHz Crystal Oscillator (XO) Series

### Absolute Maximum Ratings<sup>1</sup>

|                                               | 9-                |                             |      |
|-----------------------------------------------|-------------------|-----------------------------|------|
| Parameter                                     | Symbol            | Rating                      | Unit |
| Maximum Operating Temp.                       | T <sub>AMAX</sub> | 85                          | °С   |
| Storage Temperature                           | Ts                | -55 to 125                  | °С   |
| Supply Voltage                                | $V_{DD}$          | -0.5 to 3.8                 | °С   |
| Input Voltage                                 | V <sub>IN</sub>   | 0.5 to V <sub>DD</sub> +0.3 | V    |
| ESD HBM (JESD22-A114)                         | HBM               | 2.5                         | kV   |
| Solder Temperature <sup>2</sup>               | $T_{PEAK}$        | 260                         | °С   |
| Solder Time at T <sub>PEAK</sub> <sup>2</sup> | $T_P$             | 20-40                       | sec  |

- Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. The device is compliant with JEDEC J-STD-020.

### **Environmental Compliance and Package Information**

| Parameter                        | Test Condition           |
|----------------------------------|--------------------------|
| Mechanical Shock                 | MIL-STD-883, Method 2002 |
| Mechanical Vibration             | MIL-STD-883, Method 2007 |
| Solderability                    | MIL-STD-883, Method 2003 |
| Gross and Fine Leak              | MIL-STD-883, Method 1014 |
| Resistance to Solder Heat        | MIL-STD-883, Method 2036 |
| Moisture Sensitivity Level (MSL) | 1                        |
| Contact Pads                     | Gold over Nickel         |

### **Thermal Conditions**

| Parameter         | Symbol        | Test Condition | Value | Unit |
|-------------------|---------------|----------------|-------|------|
| Thermal Impedance | $\Theta_{JA}$ | Still air      | 84.6  | °C/W |

## **Standard Frequency Orderable Part Numbers**

| Si530 5x7mm | 106.25 MHz     | 125 MHz        | 148.3517 MHz  | 148.5 MHz      | 155.52 MHz     | 156.25 MHz     |
|-------------|----------------|----------------|---------------|----------------|----------------|----------------|
| 3.3V LVPECL | 530AC106M250DG | 530AC125M000DG | 530AC000110DG | 530AC148M500DG | 530AC155M520DG | 530AC156M250DG |
| 3.3V LVDS   | 530BC106M250DG | 530BC125M000DG | 530BC000110DG | 530BC148M500DG | 530BC155M520DG | 530BC156M250DG |
| 2.5V LVPECL | 530EC106M250DG | 530EC125M000DG | 530EC000110DG | 530EC148M500DG | 530EC155M520DG | 530EC156M250DG |
| 2.5V LVDS   | 530FC106M250DG | 530FC125M000DG | 530FC000110DG | 530FC148M500DG | 530FC155M520DG | 530FC156M250DG |
| Si531 5x7mm | 106.25 MHz     | 125 MHz        | 148.3517 MHz  | 148.5 MHz      | 155.52 MHz     | 156.25 MHz     |
| 3.3V LVPECL | 531AC106M250DG | 531AC125M000DG | 531AC000110DG | 531AC148M500DG | 531AC155M520DG | 531AC156M250DG |
| 3.3V LVDS   | 531BC106M250DG | 531BC125M000DG | 531BC000110DG | 531BC148M500DG | 531BC155M520DG | 531BC156M250DG |
| 2.5V LVPECL | 531EC106M250DG | 531EC125M000DG | 531EC000110DG | 531EC148M500DG | 531EC155M520DG | 531EC156M250DG |
| 2.5V LVDS   | 531FC106M250DG | 531FC125M000DG | 531FC000110DG | 531FC148M500DG | 531FC155M520DG | 531FC156M250DG |

| Si530 5x7mm  | 187.5 MHz          | 200 MHz           | 250 MHz          | 311.04 MHz           | 312.5 MHz      | 622.08 MHz     |
|--------------|--------------------|-------------------|------------------|----------------------|----------------|----------------|
| 3.3V LVPECL  | 530AC187M500DG     | 530AC200M000DG    | 530AC250M000DG   | 530AC311M040DG       | 530AC312M500DG | 530AC622M080DG |
| 3.3V LVDS    | 530BC187M500DG     | 530BC200M000DG    | 530BC250M000DG   | 530BC311M040DG       | 530BC312M500DG | 530BC622M080DG |
| 2.5V LVPECL  | 530EC187M500DG     | 530EC200M000DG    | 530EC250M000DG   | 530EC311M040DG       | 530EC312M500DG | 530EC622M080DG |
| 2.5V LVDS    | 530FC187M500DG     | 530FC200M000DG    | 530FC250M000DG   | 530FC311M040DG       | 530FC312M500DG | 530FC622M080DG |
| Si531 5x7mm  | 187.5 MHz          | 200 MHz           | 250 MHz          | 311.04 MHz           | 312.5 MHz      | 622.08 MHz     |
| 3.3V LVPECL  | 531AC187M500DG     | 531AC200M000DG    | 531AC250M000DG   | 531AC311M040DG       | 531AC312M500DG | 531AC622M080DG |
| 3.3V LVDS    | 531BC187M500DG     | 531BC200M000DG    | 531BC250M000DG   | 531BC311M040DG       | 531BC312M500DG | 531BC622M080DG |
| 2.5V LVPECL  | 531EC187M500DG     | 531EC200M000DG    | 531EC250M000DG   | 531FC311M040DG       | 531FC312M500DG | 531EC622M080DG |
| 2.01 211 202 | 1331EC 107101300DC | 33 1LO200101000DO | 0012020011100000 | OO I LOOT TIVIO TODO |                | 00.200220002   |

For customized frequencies: <a href="http://www.silabs.com/custom-timing">http://www.silabs.com/custom-timing</a>

2 Rev. 0.1



# Si530/Si531

### 10 MHz to 1.4 GHz Crystal Oscillator (XO) Series

### **CONTACT INFORMATION**

#### Silicon Laboratories Inc.

400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

#### Patent Notice

Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

Rev. 0.1 3