

CLT03-2Q3

Self powered digital input current limiter

QFN 2X4-16L

Features

- 2 isolated channels device
- No power supply needed
- Digital input current limitation
- Deglitch filter for EMC robustness
- High side / Low side compatible
- Inputs are reverse plugin compatible
- Direct opto-coupler or 3.3 V LVTTL output
- Operating ambient temperature range from 30 °C to 125 °C
- QFN 2 x 4 16L 500 µm pitch
- Exceeds IEC 61000-4-2 level 1 standard:
 - ±4 kV (air discharge)
 - ±2 kV (contact discharge)
 - IEC61131-2 type 1 and 3
- IEC 61508

Applications

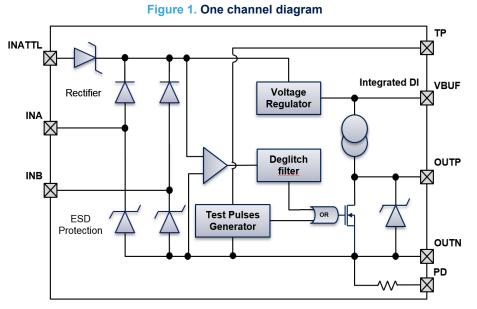
Where current limitation is required in factory automation applications:

- Programmable logic controller
- Remote input module

Description

The CLT03-2Q3 is a digital input current limiter which does not require external power supply.

The product is housed in a QFN 2 x 4 -16L and is high side and low side compatible, as well as reverse plugin compatible.

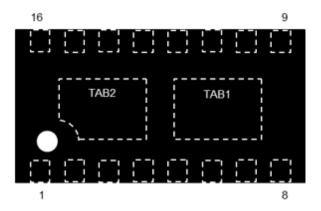

The CLT03-2Q3 can drive either opto-coupler or 3.3 V LVTTL circuit.

Product status link	
CLT03-2Q3	

Product summary					
Order code	CLT03-2Q3				
Package	QFN 2X4-16L				
Packing	Tape and reel				

1 Circuit block diagram

57



1.1 I/O pin description

Name	Pin #	Туре	Description
INA1 / INA2	7/3	Signal input	Logic input with current limitation
INATTL1 / INATTL2	6 / 2	Signal input	Logic input with current limitation for non-isolated configuration
INB1 / INB2	8 / 4	Signal input	Logic input with current limitation
TP1 / TP2	9 / 14	Test input	Test pulse input for capacitor
VBUF1 / VBUF2	10 / 15	Power output	Buffer capacitor
OUTN1	5 / TAB1	Ground	Logic output ground (channel 1 output ground)
OUTN2	13 / TAB2	Ground	Logic output ground (channel 2 output ground)
OUTP1 / OUTP2	11 / 16	Signal output	Data output
PD1/PD2	12 / 1	Ground	Logic output ground with pull down resistor (non-isolated mode)

Figure 2. QFN 2x4-16L pinout (top view)

Table 2. Thermal resistance parameter

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Thermal resistance junction to ambient, according to EIA/ JEDEC JESD51-7 and JESD51-5	41	°C/W

57

2 Characteristics

2.1 Absolute ratings

Stresses outside the absolute ratings range may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute rating conditions for extended periods may affect device reliability.

Symbol	Parameter name	Value	Unit
V _{PP}	Peak pulse voltage, HBM, MIL STD 883J-Method 3015.9	2	kV
V _{PP} ⁽¹⁾⁽²⁾	Peak pulse voltage (pins INA, INATTL & INB), IEC 61000-4-2 (contact)	2	kV
V _{IN}	Input voltage	-60 to +60	V
V _{ISO}	Isolation between channel 1 and 2	230	V _{AC}
Tj	Junction temperature	-30 to +125	°C
T _{STG}	Storage temperature	-55 to +150	°C

Table 3. Absolute ratings (T_{amb} = 25 °C, unless otherwise specified)

1. See application schematic

2. Performance level depends on layout and environment

2.2 Electrical characteristics

Table 4. Electrical characteristics (-30 °C < T_{ambient} < +125 °C, unless otherwise specified) (values)

Symbol	Description	Name	Min.	Тур.	Max.	Unit
		Input				
I _{LIM}	Input current – On state	2.5		4	mA	
V _{TLH}	Low to High state input voltage	9		9.4	11	V
V _{THL}	High to Low state input voltage	3	5	7.5		V
V _{HYST}	Input triggering voltage hystere	esis	1.2		2.6	V
V _{FAULT}	Fault mode threshold voltage		30	40		V
I _{FAULT}	Input current in fault region V _{IN} > V _{FAULT}				3	mA
		Timing parameters				
f _{IN}	Input frequency				35	kHz
t _{FAULT}	$_{\text{ULT}}$ Fault mode triggering latency after V _{IN} > V _{FAULT}			25		μs
t _{PLH}	Input to output low to high propagation time (including deglitch filter) ⁽¹⁾				5	μs
t _{PHL}	Input to output high to low propagation time (including deglitch filter) ⁽¹⁾				5	μs
		Ouput				
	On state	Isolated mode	2		4	mA
I _{OUT}	On state	Non-isolated mode			1	mA
	Off state	Isolated and non-isolated mode	-10		10	μA
	On state	Isolated mode	0.7		3.6	V
V _{OUT}	On state	Non-isolated mode	3		3.6	V
	Off state	-0.3		0.4	V	
R _{OUT}	OUTP to OUTN internal equiva	alent output resistance ($V_{INA} - V_{INB} = 0 V$)		24		kΩ
R _{PD}	OUTN to PD internal pull dowr	n resistor	2.85		4.25	kΩ

1. See Figure 8. t_{PLH} and t_{PHL} test condition

3 U-I operation description

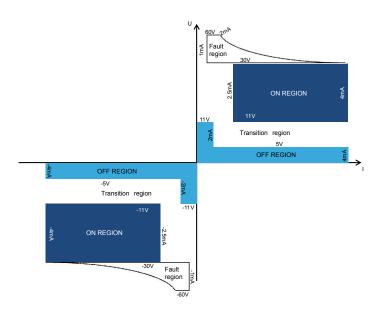
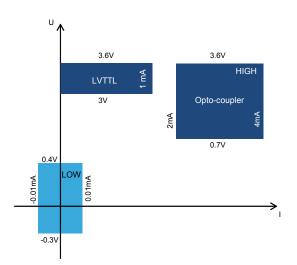



Figure 4. Output U-I operation

4 Fault mode description

When the input voltage V_{IN} exceeds a threshold V_{FAULT} = 30V the CLT03-2Q3 activates the Fault Mode with a defined latency t_{FAULT} . In this mode the CLT03-2Q3 further reduces the input current limitation down to I_{FAULT} and the corresponding output channel is deactivated.

Fault mode ensures defined and safe operation of the CLT03-2Q3 in overvoltage condition as it is often required by safety regulations.

5 Deglitch filter

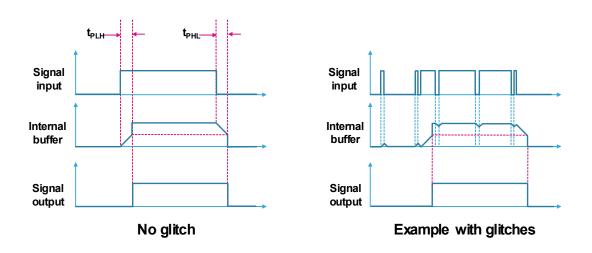
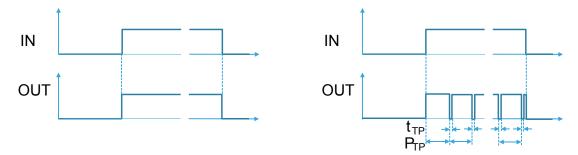


Figure 5. Deglitch filter

To provide the best EMI robustness solution, a deglitch filter based on a non-resettable mono-stable has been integrated. As described in Deglitch filter, to avoid parasitic spike in output signal when glitches occur in input signals, the integrated internal buffer cleans the glitch effect. The output activation and deactivation action times is defined by t_{PLH} and t_{PHL} when no glitch.

6 Test pulse feature description

The built-in test pulse feature complies with the latest safety standards. Thus, it is possible to know on a regular basis that CLT03-2Q3 is still working properly.

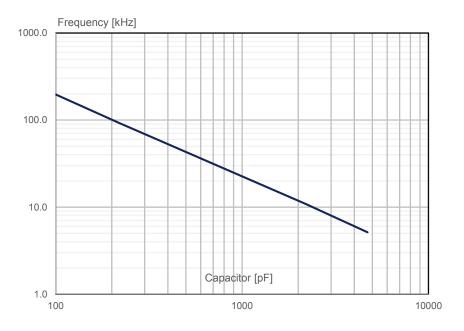

In order, to enable the Test Pulse feature a capacitor should be connected between TP and OUTN pins. When such a capacitor is connected, the OUTP value will be forced to low state every TP period (P_{TP}) for a define test pulse width (t_{TP}). TP period is equal to 256 times t_{TP} .

The frequency of the "Test Pulse low state" is managed through the capacitor value. In order to disable this feature, TP should be shorted to OUTN.

Symbol	Description	Min.	Тур.	Max.	Unit
f _{TP}	PTest pulse frequency	4.1		219	kHz
C _{TP}	External capacitor range			4700	pF
t _{TP}	Test pulse width	1/f _{TP}		ms	
P _{TP}	Test pulse period	256 x t _{TP}		ms	
Δf _{TP}	Test pulse frequency variation (out of capacitance variation)	-60		+60	%

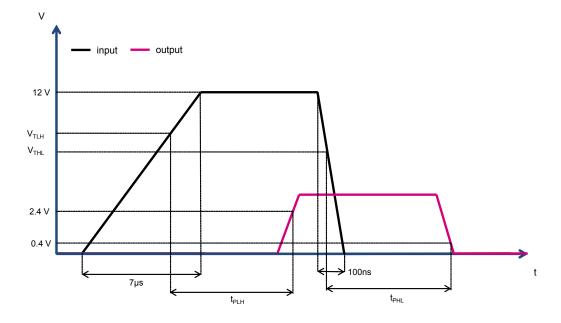
Table 5. Test pulse parameters

Figure 6. Test Pulse parameters description



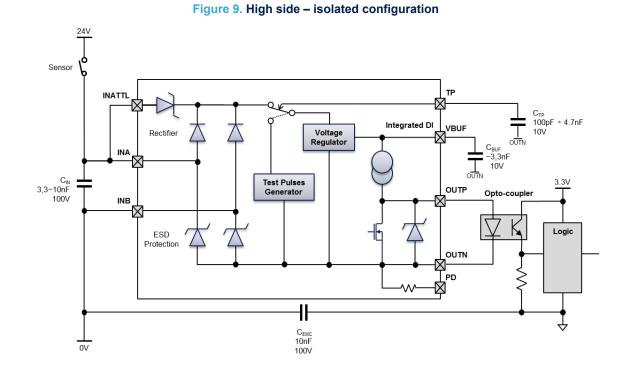
No test pulse

Test pulse activated



7 **Propagation time measurement description**

Note: for t_{PLH} and t_{PHL} measurement, V_{TLH} and V_{THL} should be determined for each sample. Timing measurement should be done with these samples specific V_{TLH} and V_{THL} thresholds.



8 Simplified application schematic

Table 6. Configuration compatibility of CLT03-2Q3

Symbol	High Side	Low Side
Isolated	Yes	Yes
Non-isolated	Yes	No

Each circuit given in this section is given for 1 channel only.

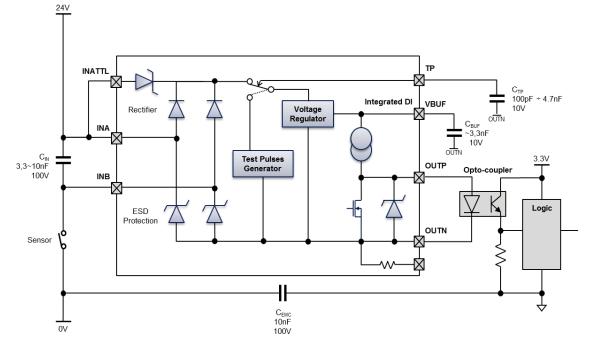
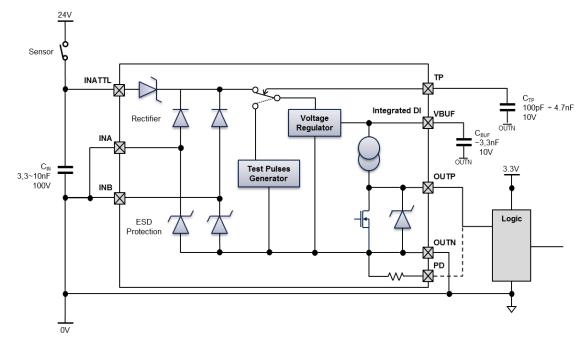



Figure 10. Low side – isolated configuration

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

9.1 QFN 2X4 -16L package information

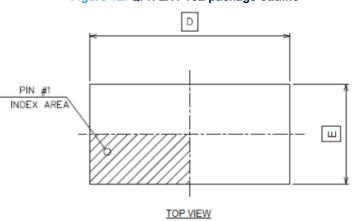
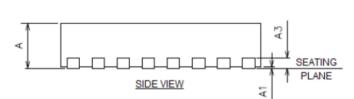
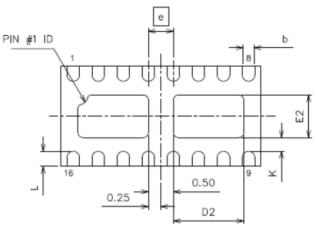
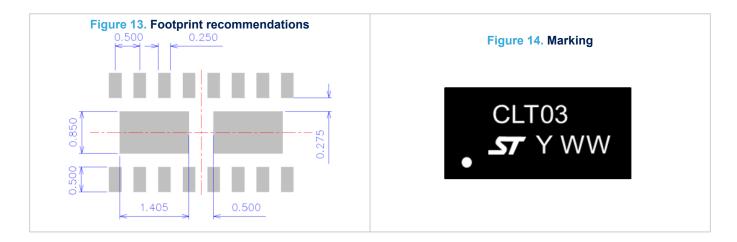




Figure 12. QFN 2X4-16L package outline



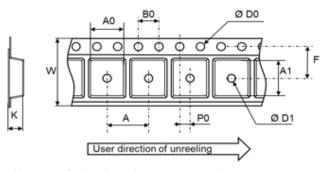

	Dimensions						
Ref.	Millimeters		Millimeters		Inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	0.0315	0.0354	0.0394	
A1		0.02	0.05		0.0008	0.0020	
A3		0.20			0.008		
В	0.18	0.25	0.30	0.0071	0.0100	0.0118	
D	3.95	4.00	4.05	0.1555	0.1574	0.1594	
E	1.95	2.00	2.05	0.0768	0.0787	0.0807	
D2	1.25	1.40	1.51	0.0492	0.0551	0.0594	
E2	0.70	0.85	0.95	0.0276	0.0334	0.0374	
е		0.50			0.0197		
К	0.15			0.0059			
L	0.20	0.30	0.40	0.0079	0.0118	0.0157	

Table 7. QFN 2X4-16L package mechanical data

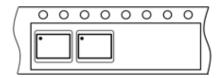

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 15. Tape and reel outline

Note: Pocket dimensions are not on scale Pocket shape may vary depending on package

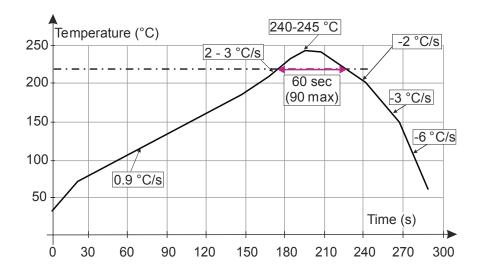


Table 8. Tape and reel mechanical data

	Dimensions					
Ref.	Millimeters					
	Min.	Тур.	Max.			
A	3.90	4.00	4.10			
A0	2.20	2.25	2.30			
A1	4.20	4.25	4.30			
B0	3.90	4.00	4.10			
ØD0	1.50		1.60			
ØD1	1.00					
F	1.65	1.75	1.85			
К	1.10	1.15	1.20			
P0	1.95	2.00	2.05			
W	11.90	12.00	12.30			

10 Reflow profile

57

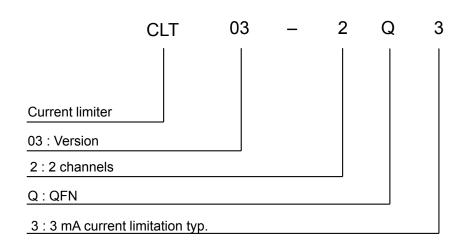


Figure 16. ST ECOPACK[®] recommended soldering reflow profile for PCB mounting

Note:Minimize air convection currents in the reflow oven to avoid component movement.Note:Maximum soldering profile corresponds to the latest IPC/JEDEC J-ST-020.

11 Ordering information

Figure 17. Ordering information scheme

Table 9. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
CLT03-2Q3	CLT03	QFN 2 x 4 – 16L	20 mg	3000	Tape and reel

Revision history

Table 10. Document revision history

Date	Revision	Changes
18-Dec-2017	1	Initial release.
11-Dec-2018	2	Minor text change to improve readability.
23-Dec-2019	3	Updated Section Features, Table 4. Electrical characteristics (-30 °C < Tj < +125 °C, unless otherwise specified) (values), Section 8 Simplified application schematic and Figure 6. Test Pulse parameters description. Added Table 2. Thermal resistance parameter and Section 5 Deglitch filter.
06-Feb-2020	4	Updated Table 4. Electrical characteristics (-30 $^{\circ}C < Tj < +125 ^{\circ}C$, unless otherwise specified) (values) and Figure 4. Output U-I operation
04-Mar-2020	5	Updated Section Features, Section 2.1 Absolute ratings and Section 2.2 Electrical characteristics.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved