

LOW VOLTAGE CMOS OCTAL D-TYPE LATCH (3-STATE NON INV.) WITH 5V TOLERANT INPUTS

- HIGH SPEED: t_{PD}=5.8ns (TYP.) at V_{CC} = 3.3V
- 5V TOLERANT INPUTS
- POWER-DOWN PROTECTION ON INPUTS
- INPUT VOLTAGE LEVEL: $V_{II} = 0.8V$, $V_{IH} = 2V$ at $V_{CC} = 3V$
- LOW POWER DISSIPATION: $I_{CC} = 4 \mu A \text{ (MAX.)}$ at $T_A = 25 \text{ °C}$
- LOW NOISE:

 $V_{OLP} = 0.3V$ (TYP.) at $V_{CC} = 3.3V$

- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4 mA (MIN) at V_{CC} =3V
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE:
 V_{CC}(OPR) = 2V to 3.6V (1.2V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 373
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

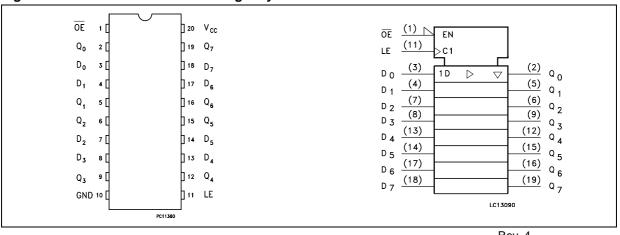
The 74LVX373 is a low voltage CMOS OCTAL D-TYPE LATCH with 3 STATE OUTPUT NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. It is ideal for low power, battery operated and low noise 3.3V applications.

This 8 bit D-Type latch is controlled by a <u>latch</u> enable input (LE) and an output enable input (OE). While the LE input is held at a high level, the Q outputs will follow the data input precisely.

SOP TSSOP

Table 1: Order Codes

PACKAGE	T & R
SOP	74LVX373MTR
TSSOP	74LVX373TTR


When the LE is taken low, the Q outputs will be latched precisely at the logic level of D input data. While the (OE) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

Power down protection is provided on all inputs and 0 to 7V can be accepted on inputs with no regard to the supply voltage.

This device can be used to interface 5V to 3V. It combines high speed performance with the true CMOS low power consumption.

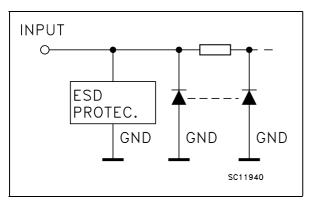
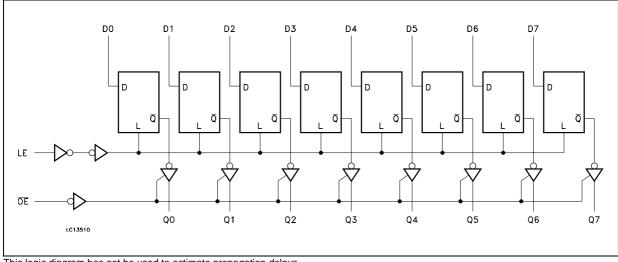

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

August 2004 Rev. 4 1/13

Figure 2: Input Equivalent Circuit


Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1	OE	3 State Output Enable Input (Active LOW)
3, 4, 7, 8, 13, 14, 17, 18	D0 to D7	Data Inputs
2, 5, 6, 9, 12, 15, 16,19	Q0 to Q7	3-State Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

Table 3: Truth Table

	INPUTS		OUTPUT
ŌĒ	LE	D	Q
Н	X	X	Z
L	L	X	NO CHANGE*
L	Н	L	L
L	Н	Н	Н

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

 $X:\mbox{Don't Care} \\ Z:\mbox{High Impedance} \\ *:\mbox{Q Outputs are Latched at the time when the LE INPUT is taken low logic level}$

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
V _I	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 50	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2 to 3.6	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2) (V _{CC} = 3V)	0 to 100	ns/V

¹⁾ Truth Table guaranteed: 1.2V to 3.6V 2) $V_{\mbox{\footnotesize{IN}}}$ from 0.8V to 2.0V

Table 6: DC Specifications

		Т	est Condition	Value							
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	2.0		1.5			1.5		1.5		
	Voltage	3.0		2.0			2.0		2.0		V
		3.6		2.4			2.4		2.4		
V_{IL}	Low Level Input	2.0				0.5		0.5		0.5	
	Voltage	3.0				0.8		8.0		0.8	V
		3.6				0.8		0.8		0.8	
V _{OH}	High Level Output	2.0	I _O =-50 μA	1.9	2.0		1.9		1.9		
	Voltage	3.0	I _O =-50 μA	2.9	3.0		2.9		2.9		V
		3.0	I _O =-4 mA	2.58			2.48		2.4		
V _{OL}	Low Level Output	2.0	I _O =50 μA		0.0	0.1		0.1		0.1	
	Voltage	3.0	I _O =50 μA		0.0	0.1		0.1		0.1	V
		3.0	I _O =4 mA			0.36		0.44		0.55	
l _{OZ}	High Impedance Output Leakage Current	3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = V_{CC} \text{ or GND}$			±0.25		± 2.5		± 5	μΑ
I _I	Input Leakage Current	3.6	V _I = 5V or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	3.6	$V_I = V_{CC}$ or GND			4		40		40	μΑ

Table 7: Dynamic Switching Characteristics

		1	est Condition	Value							
Symbol Parameter	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit	
	(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
V _{OLP}	Dynamic Low				0.3	0.8					
V _{OLV}	Voltage Quiet Output (note 1, 2)	3.3		-0.8	-0.3						1
V _{IHD}	Dynamic High Voltage Input (note 1, 3)	3.3	C _L = 50 pF	2.0							V
V _{ILD}	Dynamic Low Voltage Input (note 1, 3)	3.3				0.8					

Table 8: AC Electrical Characteristics (Input $t_r = t_f = 3ns$)

		1	est Co	ondition	Value							
Symbol	Parameter	v _{cc}	CL		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)	(pF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	2.7	15			7.5	14.5	1.0	17.5	1.0	18.5	
t _{PHL}	HL Time LE to Q	2.7	50			10.0	18.0	1.0	21.0	1.0	22.0	
	LL 10 Q	3.3 ^(*)	15			6.8	10.3	1.0	12.0	1.0	13.0	ns
		3.3 ^(*)	50			9.3	13.8	1.0	15.5	1.0	16.5	
t _{PLH}	Propagation Delay	2.7	15			7.7	15.0	1.0	18.5	1.0	19.5	
t _{PHL}	Time D to Q	2.7	50			10.2	18.5	1.0	22.0	1.0	23.0	
	D to Q	3.3 ^(*)	15			5.8	9.7	1.0	11.5	1.0	12.5	ns
	3.3 ^(*)	50			8.5	13.2	1.0	15.0	1.0	16.0		
t _{PZL}	Output Enable	2.7	15			7.7	15.0	1.0	18.5	1.0	19.5	
t _{PZH}	Time	2.7	50			10.2	18.5	1.0	22.0	1.0	23.0	20
		3.3 ^(*)	15			6.0	9.7	1.0	11.5	1.0	12.5	ns
		3.3 ^(*)	50			8.5	13.2	1.0	15.0	1.0	16.0	
t _{PLZ}	Output Disable	2.7	50			9.8	18.0	1.0	21.0	1.0	22.0	20
t _{PHZ}	Time	3.3 ^(*)	50			8.2	12.8	1.0	14.5	1.0	15.5	ns
4	LE pulse Width,	2.7	50				6.5		7.5		7.5	
t _W	HIGH	3.3 ^(*)	50				5.0		5.0		5.0	ns
4	Setup Time D to LE	2.7	50				6.0		6.0		6.0	
t _S	HIGH or LOW	3.3 ^(*)	50				4.0		4.0		4.0	ns
4	Hold Time D to LE	2.7	50				1.0		1.0		1.0	
t _h	HIGH or LOW	3.3 ^(*)	50				1.0		1.0		1.0	ns
t _{OSLH}	Output to Output	2.7	50			0.5	1.0		1.5		1.5	
toshl	Skew Time (note 1,2)	3.3 ^(*)	50			0.5	1.0		1.5		1.5	ns

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW 2) Parameter guaranteed by design (*) Voltage range is $3.3V \pm 0.3V$

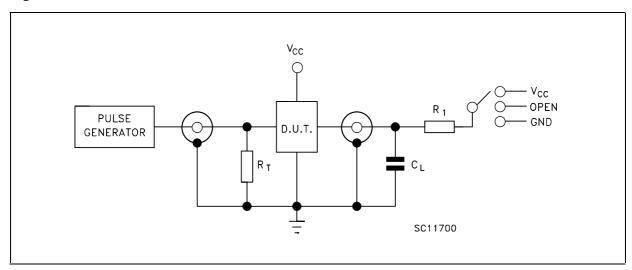

¹⁾ Worst case package.
2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND.
3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f=1MHz.

Table 9: Capacitive Characteristics

			Test Condition		Value						
Symbol Parameter	V _{CC}		T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	3.3			5			10		10	pF
C _{OUT}	Output Capacitance	3.3			10						pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	f _{IN} = 10MHz		40						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per circuit)

Figure 4: Test Circuit

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	V _{CC}
t _{PZH} , t _{PHZ}	GND

 C_L =15/50pF or equivalent (includes jig and probe capacitance) $R_L=R1=1K\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

477

Figure 5: Waveform - LE To Qn Propagation Delays, LE Minimum Pulse Width, Dn To LE Setup And Hold Times (f=1MHz; 50% duty cycle)

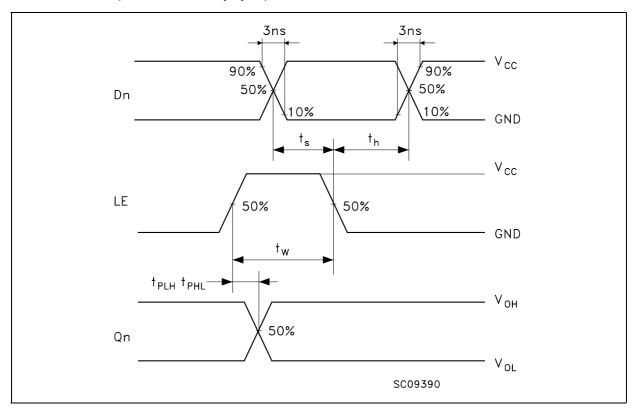
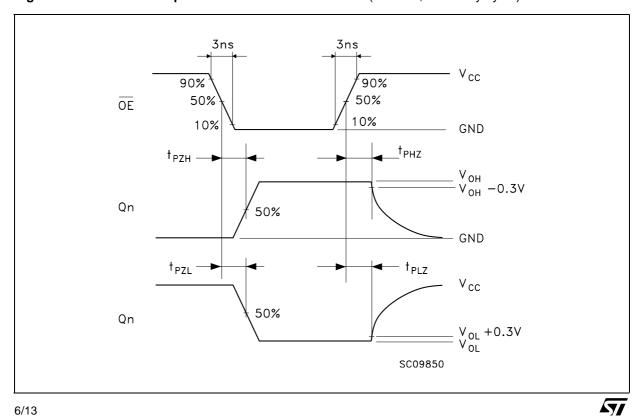



Figure 6: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle)

Downloaded from Arrow.com.

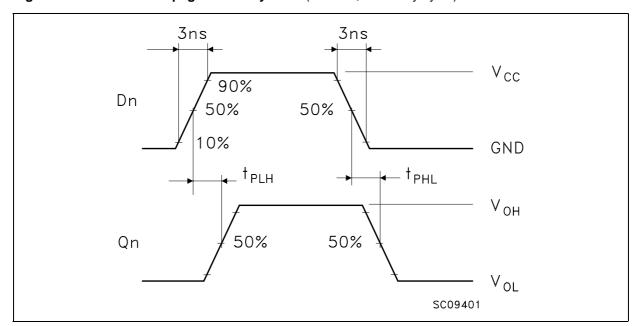
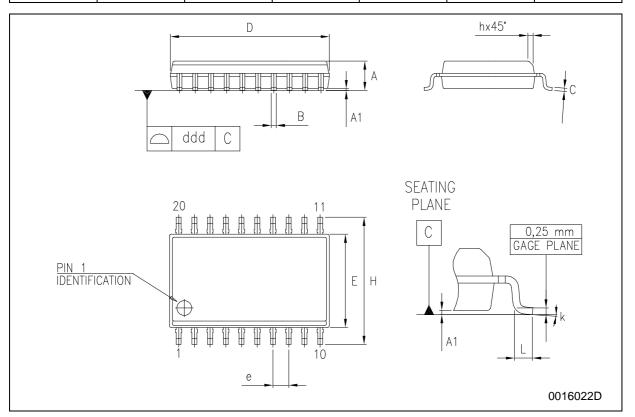
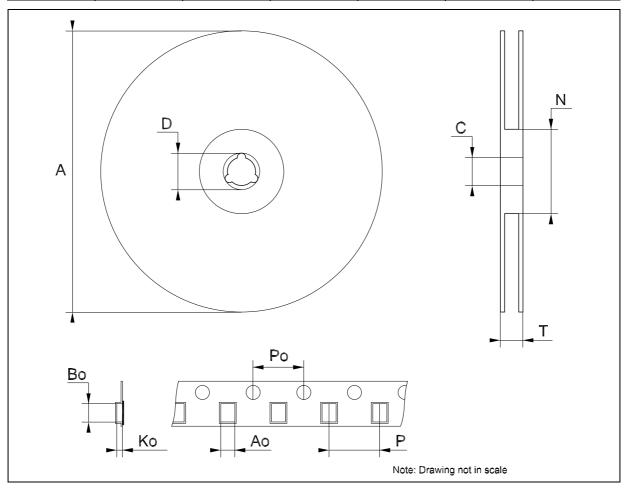



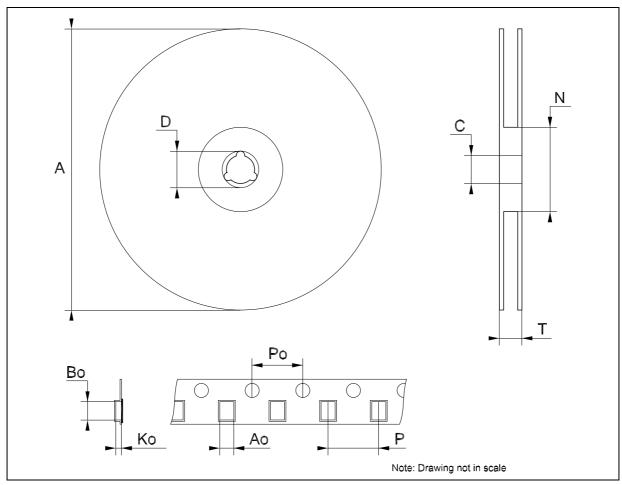
Figure 7: Waveform - Propagation Delay Time (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А	2.35		2.65	0.093		0.104		
A1	0.1		0.30	0.004		0.012		
В	0.33		0.51	0.013		0.020		
С	0.23		0.32	0.009		0.013		
D	12.60		13.00	0.496		0.512		
Е	7.4		7.6	0.291		0.299		
е		1.27			0.050			
Н	10.00		10.65	0.394		0.419		
h	0.25		0.75	0.010		0.030		
L	0.4		1.27	0.016		0.050		
k	0°		8°	0°		8°		
ddd			0.100			0.004		

TSSOP20 MECHANICAL DATA


DIM.		mm.		inch				
DIWI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.		
А			1.2			0.047		
A1	0.05		0.15	0.002	0.004	0.006		
A2	0.8	1	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.0079		
D	6.4	6.5	6.6	0.252	0.256	0.260		
Е	6.2	6.4	6.6	0.244	0.252	0.260		
E1	4.3	4.4	4.48	0.169	0.173	0.176		
е		0.65 BSC			0.0256 BSC			
K	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		


Tape & Reel SO-20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			30.4			1.197
Ao	10.8		11	0.425		0.433
Во	13.2		13.4	0.520		0.528
Ko	3.1		3.3	0.122		0.130
Ро	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP20 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272		0.280
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

74LVX373

Table 10: Revision History

Date	Revision	Description of Changes
27-Aug-2004	4	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com