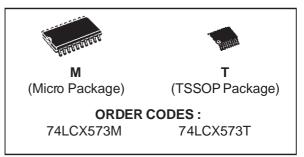


74LCX573


OCTAL D-TYPE LATCH NON INVERTING (3-STATE) WITH 5V TOLERANT INPUTS AND OUTPUTS

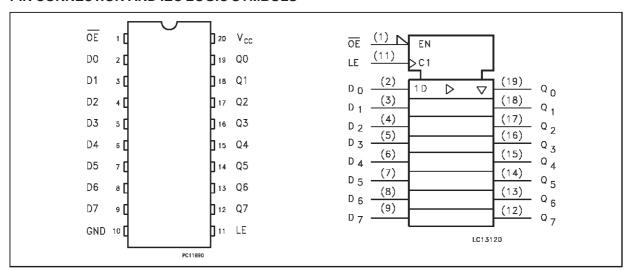
- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED: t_{PD} = 8 ns (MAX.) at V_{CC} = 3V
- POWER-DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24 mA (MIN)
- PCI BUS LEVELS GUARANTEED AT 24mA
- BALANCED PROPAGATION DELAYS:
 tpi h ≅ tphi
- OPERATING VOLTAGE RANGE:
 V_{CC} (OPR) = 2.0V to 3.6V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 573
- LATCH-UP PERFORMANCE EXCEEDS 500mA
- ESD PERFORMANCE: HBM >2000V; MM > 200V

DESCRIPTION

The LCX573 is a low voltage CMOS OCTAL D-TYPE LATCH with 3 STATE OUTPUT NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for both inputs and outputs.

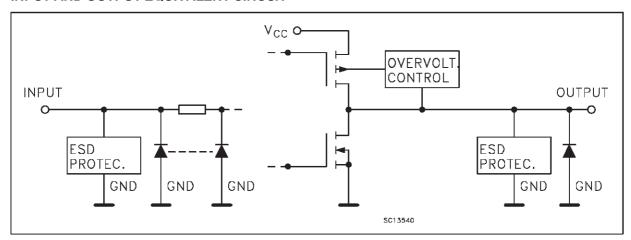
These 8 bit D-Type flip-flops are controlled by a latch enable input (LE) and an output enable

input (OE).


While the LE input is held at a high level, the Q outputs will follow the data input precisely.

When the LE is taken low, the Q outputs will be latched precisely at the logic level of D input data. While the (OE) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

It has same speed performance at 3.3V than 5V, AC/ACT family, combined with a lower power consumption.

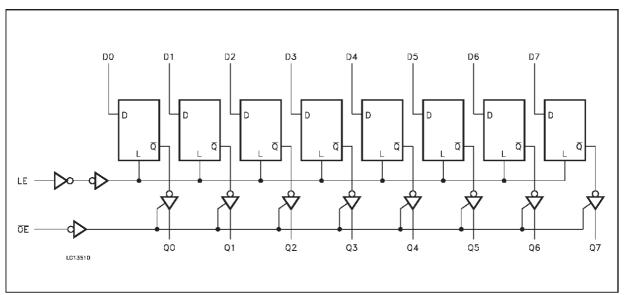

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

February 1999 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION


PIN No	SYMBOL	NAME AND FUNCTION
1	ŌĒ	3 State Output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3 State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

TRUTH TABLE

	INPUTS					
ŌĒ	LE	Q				
Н	Χ	Х	Z			
L	L	Χ	NO CHANGE *			
L	Н	L	L			
L	Н	Н	Н			

X:Don't care

LOGIC DIAGRAM

Z: High impedance
* Q output are latched at the time when the LE input is taken LOW

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to + 7.0	V
V_{I}	DC Input Voltage	-0.5 to + 7.0	V
Vo	DC Output Voltage (OFF state)	-0.5 to + 7.0	V
Vo	DC Output Voltage (High or Low State) (note1)	-0.5 to V _{CC} + 0.5	V
l _{IK}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note2)	± 50	mA
Io	DC Output Source/Sink Current	± 50	mA
Icc	DC Supply Current per Supply Pin	± 100	mA
I_{GND}	DC Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage (note 1)	2.0 to 3.6	V
V_{I}	Input Voltage	0 to 5.5	V
Vo	Output Voltage (OFF state)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7 to 3.0V)	± 12	mA
T _{op}	Operating Temperature:	-40 to +85	°C
dt/dv	Input Transition Rise or Fall Rate (V _{CC} = 3.0V) (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.5V to 3.6V 2) V_{IN} from 0.8V to 2.0V

477

¹⁾ I_O absolute maximum rating must be observed 2) V_O < GND, V_O > V_{CC}

DC SPECIFICATIONS

Symbol	Parameter	Test Conditions			Val	ue	Unit
		Vcc			-40 to	85 °C	
		(V)			Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6			2.0		V
V _{IL}	Low Level Input Voltage	2.7 10 3.0				0.8	V
V _{OH}	High Level Output Voltage	2.7 to 3.6	Vı =	I _O =-100 μA	V _{CC} -0.2		
		2.7	V _I – V _{IH} or	I _O =-12 mA	2.2		l _v l
		3.0	V _{IL}	I _O =-18 mA	2.4		
		3.0		I _O =-24 mA	2.2		
V _{OL}	Low Level Output Voltage	2.7 to 3.6	V ₁ =	I _O =100 μA		0.2	
		2.7	V _{IH} or	I _O =12 mA		0.4	V
		3.0	V _{IL}	I _O =16 mA		0.4]
		3.0		I _O =24 mA		0.55	
l _l	Input Leakage Current	2.7 to 3.6	V _I =	0 to 5.5 V		±5	μΑ
l _{OZ}	3 State Output Leakage Current	2.7 to 3.6	$V_I = V_{IH} \text{ or } V_{IL}$ $V_O = 0 \text{ to } 5.5 \text{V}$			±5	μА
I _{off}	Power Off Leakage Current	0	V _I or	$V_0 = 5.5V$		100	μΑ
Icc	Quiescent Supply Current	2.7 to 3.6	$V_I = V_{CC}$ or GND			10	
			V_1 or $V_0 = 3.6$ to 5.5V			±10	μΑ
ΔI_{CC}	ICC incr. per input	2.7 to 3.6	V _{IH} =	V _{CC} -0.6V		500	μΑ

DYNAMIC SWITCHING CHARACTERISTICS

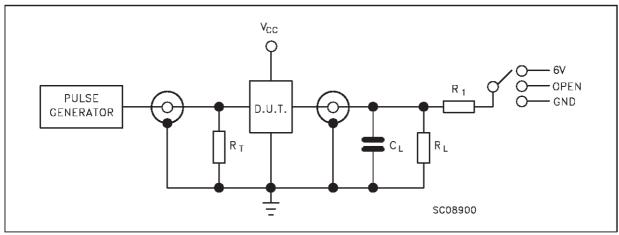
Symbol	Parameter	Test Conditions		Value			Unit
		Vcc		T,	λ = 25 °	ο̈́	
		(V)		Min.	Тур.	Max.	
V _{OLP}	Dynamic Low Voltage Quiet Output	3.3	$C_L = 50 pF$		0.8		
V _{OLV}	(note 1)		$V_{IL} = 0 V$		-0.8		V
			$V_{1H} = 3.3V$				

¹⁾ Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}, R_L = 500 \Omega$, Input $t_r = t_f = 2.5 \text{ ns}$)

Symbol	Parameter	Test (Condition	Value		Unit	
		Vcc	Waveform	Waveform -40 to 8			
		(V)		Min.	Max.		
t _{PLH}	Propagation Delay Time Dn to Qn	2.7	3	1.5	9.0	ns	
t _{PHL}		3.0 to 3.6	3	1.5	8.0	113	
t _{PLH}	Propagation Delay Time LE to Qn	2.7	1	1.5	9.5	ns	
t _{PHL}		3.0 to 3.6	'	1.5	8.5	113	
t _{PZL}	Output Enable Time to HIGH and LOW	2.7	2	1.5	9.5	0.5 ns	
t _{PZH}	level	3.0 to 3.6	2	1.5	8.5	115	
t _{PLZ}	Output Disable Time from HIGH and	2.7	2	1.5	8.5		
t _{PHZ}	LOW level	3.0 to 3.6	2	1.5	7.5	ns	
ts	Setup Time, HIGh or LOW level Dn to	2.7	4	2.5		ns	
	LE	3.0 to 3.6	'	2.5			
t _h	Hold Time, HIGh or LOW level Dn to LE	2.7	4	1.5			
		3.0 to 3.6	'	1.5		ns	
t _w	LE Pulse Width, HIGH	2.7	1	3.3		ne	
		3.0 to 3.6		3.3		ns	
t _{OSLH}	Output to Output Skew Time (note 1, 2)	3.0 to 3.6			1.0	ns	

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($t_{OSLH} = |t_{PLHn} - t_{PLHn}|$, $t_{OSHL} = |t_{PHLm} - t_{PLHn}|$)

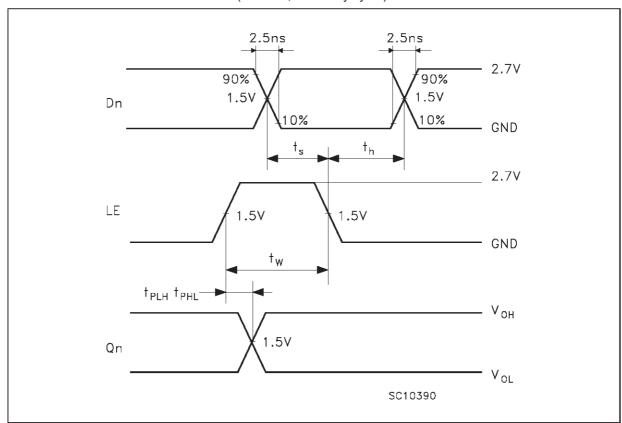

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions		Value			Unit
		Vcc		T,	T _A = 25 °C		
		(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		6		pF
C _{i/o}	I/O Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		12		pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	f _{IN} = 10MHz		25		pF
			$V_{IN} = 0 \text{ or } V_{CC}$				

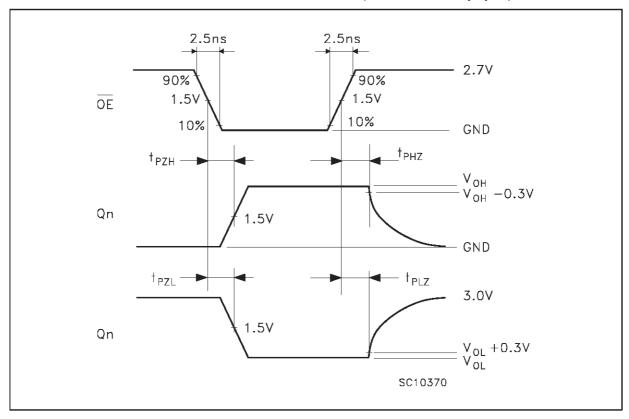
¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. Average operting current can be obtained by the following equation. I_{CC}(opr) = C_{PD} • V_{CC} • f_{IN} + I_{CC}/8 (per Latch)

²⁾ Parameter guaranteed by design

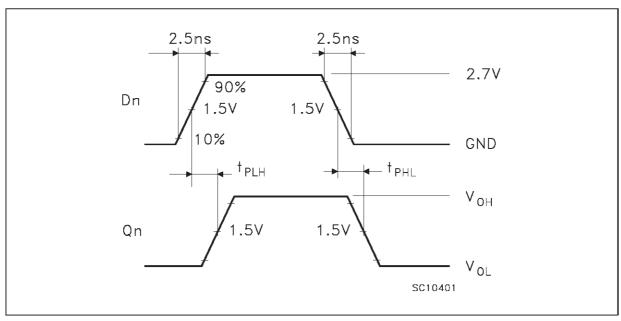
TEST CIRCUIT


TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
t _{PZH} , t _{PHZ}	GND

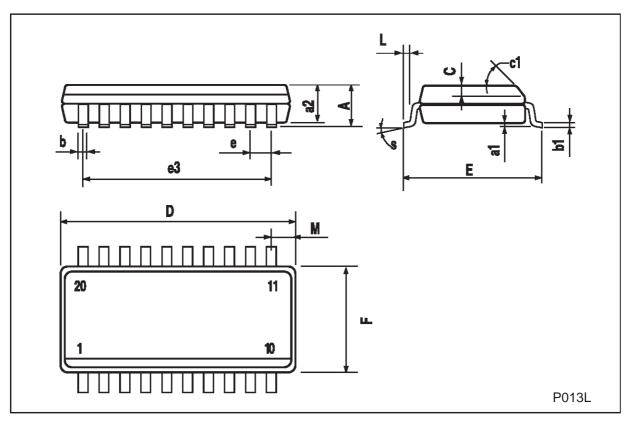
C_L = 50 pF or equivalent (includes jig and probe capacitance)


 $R_L = R_1 = 500\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)


WAVEFORM 1: LE TO Qn PROPAGATION DELAYS, LE MINIMUM PULSE WIDTH, Dn TO LE SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)



WAVEFORM 3: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

SO-20 MECHANICAL DATA

DIM.		mm			inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.10		0.20	0.004		0.007		
a2			2.45			0.096		
b	0.35		0.49	0.013		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.50			0.020			
c1			45	(typ.)				
D	12.60		13.00	0.496		0.512		
Е	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.299		
L	0.50		1.27	0.19		0.050		
М			0.75			0.029		
S			8 (r	nax.)				

TSSOP20 MECHANICAL DATA

DIM.	mm			inch			
J	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.1			0.433	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.85	0.9	0.95	0.335	0.354	0.374	
b	0.19		0.30	0.0075		0.0118	
С	0.09		0.2	0.0035		0.0079	
D	6.4	6.5	6.6	0.252	0.256	0.260	
Е	6.25	6.4	6.5	0.246	0.252	0.256	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
K	0°	4°	8°	0°	4°	8°	
L	0.50	0.60	0.70	0.020	0.024	0.028	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

