Memory FRAM

256 K (32 K $\times 8$) Bit

MB85R256F

DESCRIPTIONS

The MB85R256F is an FRAM (Ferroelectric Random Access Memory) chip in a configuration of 32,768 words $\times 8$ bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.

The MB85R256F is able to retain data without using a back-up battery, as is needed for SRAM.
The memory cells used in the MB85R256F can be used for 10^{12} read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM.
The MB85R256F uses a pseudo - SRAM interface.

■ FEATURES

- Bit configuration : 32,768 words $\times 8$ bits
- Read/write endurance
: 10^{12} times / byte
- Data retention : 10 years ($+85^{\circ} \mathrm{C}$), 95 years ($+55^{\circ} \mathrm{C}$), over 200 years $\left(+35^{\circ} \mathrm{C}\right)$
- Operating power supply voltage
- Low power consumption : Operating power supply current 5 mA (Typ)

Standby current $5 \mu \mathrm{~A}$ (Typ)

- Operation ambient temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package
: 28-pin plastic SOP
: 28-pin plastic TSOP(1)
Both are RoHS compliant

MB85R256F

PIN ASSIGNMENTS
(TOP VIEW)

A14	1	28	$\square \mathrm{VDD}$
A12	$2 \bigcirc$	27	$\overline{\mathrm{WE}}$
A7	3	26	A13
A6	4	25	A8
A_{5}	5	24	A9
A4	6	23	A11
A3	7	22	$\overline{\mathrm{OE}}$
A2	8	21	A10
A_{1}	9	20	$\overline{C E}$
Ao	10	19	$\mathrm{I} / \mathrm{O}_{7}$
I/Oo \square	11	18	I/O6
I/O1	12	17	I/O5
I/O2	13	16	I/O4
GND	14	15	I/O3

(28-pin plastic SOP)

(28-pin plastic TSOP(1))

■ PIN FUNCTIONAL DESCRIPTIONS

Pin no.	Pin name	Functional description
1 to $10,21,23$ to 26	$\mathrm{~A}_{0}$ to A_{14}	Address input pins
11 to 13,15 to 19	$\mathrm{I} / \mathrm{O}_{0}$ to $\mathrm{I} / \mathrm{O}_{7}$	Data input/output pins
20	$\overline{\mathrm{CE}}$	Chip enable input pin
27	$\overline{\mathrm{WE}}$	Write Enable input pin
22	$\overline{\mathrm{OE}}$	Output enable input pin
28	VDD	Supply Voltage pin
14	GND	Ground pin

MB85R256F

BLOCK DIAGRAM

FUNCTION LIST

Operation mode	$\overline{\text { CE }}$	$\overline{\text { WE }}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathrm{O}_{0}$ to I／O7	Power supply current
Standby precharge	H	\times	\times	Hi－Z	Standby （lss）
	\times	L	L		
	\times	H	H		
Latch address	L	を	を	－	－
	そ	H	L		
	k	L	H		
Write	L	L	H	Data input	Operation（Ido）
Read	L	H	L	Data output	

H：High level，L：Low level，×：can be either H，L，飞 or §，Hi－Z：High impedance，₹ ：Latch address at falling edge

ABSOLUTE MAXIMUM RANGES

Parameter	Symbol	Rating		Unit
		Min	Max	
Power supply voltage*	VdD	-0.5	+ 4.0	V
Input voltage*	Vin	-0.5	VDD +0.5	V
Output voltage*	Vout	-0.5	VDD +0.5	V
Operation ambient temperature	TA	-40	+ 85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55	+ 125	${ }^{\circ} \mathrm{C}$

* : These parameters are based on the condition that V ss is 0 V .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power supply voltage $^{* 1}$	$\mathrm{~V}_{\mathrm{DD}}$	2.7	3.3	3.6	V
Operation ambient temperature $^{* 2}$	$\mathrm{~T}_{\mathrm{A}}$	-40	-	+85	${ }^{\circ} \mathrm{C}$

*1: These parameters are based on the condition that V ss is 0 V .
*2 : Ambient temperature when only this device is working. Please consider it to be the almost same as the package surface temperature.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges.
Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB85R256F

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics
(within recommended operating conditions)

Parameter	Symbol	Conditions	Value			Unit	
			Min	Typ	Max		
Input leakage current		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {do }}$	-	-	10	$\mu \mathrm{A}$	
Output leakage current	\| ILo		$\begin{aligned} & \text { Vout }=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \\ & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	-	-	10	$\mu \mathrm{A}$
Operating power supply current*1	IDD	$\begin{aligned} & \overline{\mathrm{CE}}=0.2 \mathrm{~V}, \\ & \text { Other inputs }=\mathrm{VDD}-0.2 \mathrm{~V} / 0.2 \mathrm{~V}, \\ & \text { trc (Min), lout }=0 \mathrm{~mA} \end{aligned}$	-	5	10	mA	
Standby current*2	IsB	$\overline{\mathrm{CE}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{DD}}$	-	5	50	$\mu \mathrm{A}$	
High level input voltage	$\mathrm{V}_{\text {IH }}$	$V_{D D}=2.7 \mathrm{~V}$ to 3.6 V	V $\mathrm{DD} \times 0.8$	-	$\begin{gathered} V_{D D}+0.5 \\ (\leq 4.0) \end{gathered}$	V	
Low level input voltage	VIL	$V_{D D}=2.7 \mathrm{~V}$ to 3.6 V	-0.5	-	+ 0.6	V	
High level output voltage	Vor	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	V $\mathrm{DD} \times 0.8$	-	-	V	
Low level output voltage	Vol	$\mathrm{loL}=2.0 \mathrm{~mA}$	-	-	0.4	V	

*1: During the measurement of IDD, the Address and Data In were taken to only change once per active cycle. lout: output current
*2: All pins other than setting pins shall be input at the CMOS level voltages such as $\mathrm{H} \geq \mathrm{V}_{\mathrm{DD}}, \mathrm{L} \leq 0 \mathrm{~V}$.

2. AC Characteristics

- AC Characteristics Test Condition

Power supply voltage : 2.7 V to 3.6 V
Operation ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input voltage amplitude : 0.3 V to 2.7 V
Input rising time : 10 ns
Input falling time : 10 ns
Input evaluation level : Vdo/2
Output evaluation level : VDD/2
Output Load Capacitance: 100 pF
(1) Read cycle

Parameter	Symbol	Value		Unit
		Min	Max	
Read cycle time	trc	150	-	ns
$\overline{\mathrm{CE}}$ active time	tca	70	500	
Read pulse width	$t_{\text {RP }}$	70	500	
Precharge time	tpc	80	-	
Address setup time	$\mathrm{t}_{\text {As }}$	0	-	
Address hold time	$\mathrm{taH}_{\text {A }}$	25	-	
$\overline{\mathrm{CE}}$ access time	tce	-	70	
$\overline{\mathrm{OE}}$ access time	toe	-	70	
$\overline{\mathrm{CE}}$ output floating time	thz	-	25	
$\overline{\mathrm{OE}}$ output floating time	tohz	-	25	

(2) Write cycle

Parameter	Symbol	Value		Unit
		Min	Max	
Write cycle time	twc	150	-	
CE active time	tcA	70	500	
Write pulse width	twp	70	500	
Precharge time	tpc	80	-	ns
Address setup time	t_{As}	0	-	
Address hold time	t_{AH}	25	-	
Data setup time	tos	50	-	
Data hold time	toh	0	-	

MB85R256F

3. Pin Capacitance

Parameter	Symbol	Conditions	Value			Unit
			Min	Typ	Max	
Input capacitance	CIN	$\begin{aligned} & V_{D D}=V_{\text {IN }}=V_{\text {OUT }}=0 \mathrm{~V}, \\ & f=1 \mathrm{MHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	-	10	pF
Output capacitance	Cout		-	-	10	pF

■ TIMING DIAGRAM

1. Read cycle ($\overline{\mathrm{CE}}$ Control)

2. Read cycle (OE Control)

MB85R256F

3. Write cycle ($\overline{\mathrm{CE}}$ Control)

4. Write cycle ($\overline{\mathrm{WE}}$ Control)

■ POWER ON/OFF SEQUENCE

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
$\overline{\mathrm{CE}}$ level hold time at power OFF	tpd	80	-	-	ns
$\overline{\mathrm{CE}}$ level hold time at power ON	tpu	80	-	-	ns
Power supply rising time	tr	0.05	-	200	ms

If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

FRAM CHARACTERISTICS

Item	Min	Max	Unit	Parameter
Read/Write Endurance ${ }^{* 1}$	10^{12}	-	Times/byte	Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$
Data Retention*2	10	-		Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$
	95	-		Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+55^{\circ} \mathrm{C}$
	≥ 200	-		Operation Ambient Temperature $\mathrm{T}_{\mathrm{A}}=+35^{\circ} \mathrm{C}$

*1: Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism.
*2 : Minimum values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.

- NOTES ON USE

We recommend programming of the device after reflow. Data written before reflow cannot be guaranteed.

MB85R256F

ESD AND LATCH-UP

Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant	MB85R256FPNF-G-JNE2 MB85R256FPFCN-G-BNDE1	$\geq 12000 \mathrm{VI}$
ESD MM (Machine Model) JESD22-A115 compliant		$\geq 1200 \mathrm{VI}$
ESD CDM (Charged Device Model) JESD22-C101 compliant		$\geq 11000 \mathrm{VI}$
Latch-Up (I-test) JESD78 compliant		-
Latch-Up (Vsupply overvoltage test) JESD78 compliant		-
Latch-Up (Current Method) Proprietary method		$\geq 1300 \mathrm{mAl}$
Latch-Up (C-V Method) Proprietary method		-

- Current method of Latch-Up Resistance Test

Note: The voltage Vin is increased gradually and the current lin of 300 mA at maximum shall flow.
Confirm the latch up does not occur under $\mathrm{lin}= \pm 300 \mathrm{~mA}$.
In case the specific requirement is specified for I/O and lin cannot be 300 mA , the voltage shall be increased to the level that meets the specific requirement.

- C-V method of Latch-Up Resistance Test

Note : Charge voltage alternately switching 1 and 2 approximately 2 sec interval. This switching process is considered as one cycle.
Repeat this process 5 times. However, if the latch-up condition occurs before completing 5 times, this test must be stopped immediately.

■ REFLOW CONDITIONS AND FLOOR LIFE

[JEDEC MSL] : Moisture Sensitivity Level 3 (ISP/JEDEC J-STD-020D)

■ CURRENT STATUS ON CONTAINED RESTRICTED SUBSTANCES
This product complies with the regulations of REACH Regulations, EU RoHS Directive and China RoHS.

MB85R256F

■ ORDERING INFORMATION

Part number	Package	Shipping form	Minimum shipping quantity
MB85R256FPNF-G-JNE2	28-pin plastic SOP	Tube	$-^{*}$
MB85R256FPFCN-G-BNDE1	28-pin plastic TSOP(1)	Tray	$-^{*}$
MB85R256FPNF-G-JNERE2	28-pin plastic SOP	Embossed carrier tape	1000

[^0]
■ PACKAGE DIMENSION

Le-pin plastic SOP	1.27 mm	
Package width \times package length	$7.6 \times 17.75 \mathrm{~mm}$	
	Lead shape	Gullwing
Sealing method	Plastic mold	
		2.80 mm MAX

(Continued)

MB85R256F

(Continued)

28-pin plastic TSOP (1)	Lead pitch	0.55 mm
Package width \times package length	$11.80 \times 8.00 \mathrm{~mm}$	
	Lead shape	Gullwing
	Mounting height	1.20 mm Max

28-pin plastic TSOP (1)

[MB85R256FPNF-G-JNERE2]

[28-pin plastic SOP]
[MB85R256FPFCN-G-BNDE1]

[28-pin plastic TSOP(1)]

MB85R256F

■ PACKING INFORMATION

1. Tube

1.1 Tube Dimensions

- Tube/stopper shape (example)

- Tube cross-sections and Maximum quantity

(Dimensions in mm)
- Direction of index in tube

1.2 Product label indicators(example)

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label $(50 \mathrm{~mm} \times 100 \mathrm{~mm})$ Supplemental Label $(20 \mathrm{~mm} \times 100 \mathrm{~mm})$]

MB85R256F

1.3 Dimensions for Containers

(1) Dimensions for inner box

\mathbf{L}	\mathbf{W}	\mathbf{H}
540	125	75

(Dimensions in mm)
(2) Dimensions for outer box

\mathbf{L}	\mathbf{W}	\mathbf{H}
549	277	180

(Dimensions in mm)

2. Tray

2.1 Tray Dimensions

MB85R256F

2.2 IC orientation

2.3 Product label indicators(example)

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label $(50 \mathrm{~mm} \times 100 \mathrm{~mm})$ Supplemental Label $(20 \mathrm{~mm} \times 100 \mathrm{~mm})$]

MB85R256F

2.4 Dimensions for Containers

(1) Dimensions for inner box

L	W	H
165	360	75

(Dimensions in mm)
(2) Dimensions for outer box

L	W	H
355	385	195

(Dimensions in mm)

3. Emboss Tape

3.1 Tape Dimensions (not drawn to scale) (8-pin plastic SOP 150mil)

Maximum storage capacity		
pcs/reel $(\varphi 330 \mathrm{~mm})$	pcs/inner box	pcs/uter boxo
1000	1000	7000

SEC.A-A
(Dimensions in mm)
Heat proof temperature : No heat resistance.
Package should not be baked by using tape and reel.

MB85R256F

3.2 IC orientation

8-pin plastic SOP 150mil

3.3 Reel dimensions

Dimensions in mm				
A	B	C	W1	W2
330	100	13	25.4	29.4

3.4 Product label indicators(example)

Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label $(50 \mathrm{~mm} \times 100 \mathrm{~mm})$ Supplemental Label $(20 \mathrm{~mm} \times 100 \mathrm{~mm})$]

MB85R256F

3.5 Dimensions for Containers

(1) Dimensions for inner box

Tape width	\mathbf{L}	W	H
24	365	345	40

(Dimensions in mm)
(2) Dimensions for outer box

\mathbf{L}	\mathbf{W}	\mathbf{H}
415	400	315

(Dimensions in mm)

■ MAJOR CHANGES IN THIS EDITION

A change on a page is indicated by a vertical line drawn on the left side of that page.

Page	Section	Change Results
14	■ ORDERING INFORMATION	Deleted obsolete parts numbers.
18 to 20	■ PACKING INFORMATION 1. Tube	Tube information is added.
25 to 28	■ PACKING INFORMATION 3. EmbossTape	Tape information is added.

FUJITSU SEMICONDUCTOR MEMORY SOLUTION LIMITED

Shin-Yokohama TECH Building, 3-9-1 Shin-Yokohama,
Kohoku-ku, Yokohama, Kanagawa 222-0033, Japan
https://www.fujitsu.com/jp/fsm/en/

Abstract

All Rights Reserved. FUJITSU SEMICONDUCTOR MEMORY SOLUTION LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR MEMORY SOLUTION ") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR MEMORY SOLUTION sales representatives before order of FUJITSU SEMICONDUCTOR MEMORY SOLUTION device. Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR MEMORY SOLUTION device. FUJITSU SEMICONDUCTOR MEMORY SOLUTION disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR MEMORY SOLUTION device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR MEMORY SOLUTION assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof. Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR MEMORY SOLUTION or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR MEMORY SOLUTION assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof. The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR MEMORY SOLUTION shall not be liable for you and/or any third party for any claims or damages arising out of or in connection with above-mentioned uses of the products. Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions. The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.

Edited: Marketing Division

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fujitsu Semiconductor:
MB85R256FPNF-G-JNE2 MB85R256FPFCN-G-BNDE1

[^0]: *: Please contact our sales office about minimum shipping quantity.

