

CY7S1049G CY7S1049GE

4-Mbit (512K words × 8-bit) Static RAM with PowerSnooze™ and Error Correcting Code (ECC)

Features

- High speed
 □ Access time (t_{AA}) = 10 ns / 15 ns
- Ultra-low power Deep-Sleep (DS) current □ I_{DS} = 15 µA
- Low active and standby currents
 Active Current I_{CC} = 38-mA typical
 Standby Current I_{SB2} = 6-mA typical
- Wide operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V
- Embedded ECC for single-bit error correction^[1, 2]
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- 1.0-V data retention
- TTL- compatible inputs and outputs
- Available in Pb-free 44-pin TSOP II, and 36-pin (400-mil) molded SOJ

Functional Description

The CY7S1049G/CY7S1049GE^[1] is a high-performance PowerSnoozeTM static RAM organized as 512K words × 8 bits. This device features fast access times (10 ns) and a unique ultra-low power Deep-Sleep mode^[3]. With Deep-Sleep mode currents as low as 15 μ A, the CY7S1049G/CY7S1049GE devices combine the best features of fast and low- power SRAMs in industry-standard package options. The device also features embedded ECC. logic which can detect and correct single-bit errors in the accessed location.

Deep-Sleep input $(\overline{\text{DS}})$ must be deasserted HIGH for normal operating mode.

To perform data writes, assert the Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW, and provide the data and address on device data pins (I/O₀ through I/O₇) and address pins (A₀ through A₁₈) respectively.

To perform data reads, assert the Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) inputs LOW and provide the required address on the address lines. Read data is accessible on the I/O lines (I/O₀ through I/O₇).

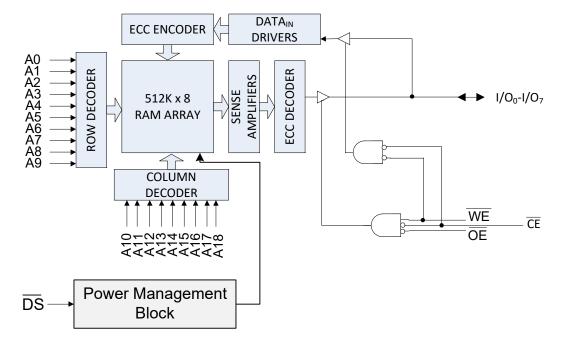
The device is placed in a low-power Deep-Sleep mode when the Deep-Sleep input (\overline{DS}) is asserted LOW. In this state, the device is disabled for normal operation and is placed in a low power data retention mode. The device can be activated by deasserting the Deep-Sleep input (\overline{DS}) to HIGH.

The CY7S1049G is available in 44-pin TSOP II, and 36-pin Molded SOJ (400 Mils).

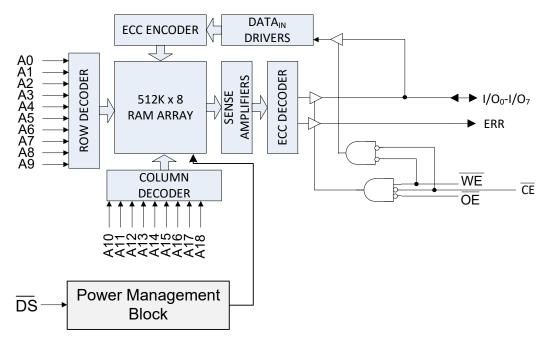
Product Portfolio

					F	Power Dissipation				
Product ^[4]	Range	V _{CC} Range (V)	Range (V) Speed (mA) (mA) (mA) (mA)		(mA)		(mA) Standby, I _{SB2} De		Deep-Sleep current (µA)	
			(113)	f = f						
				Typ ^[5]	Max	Typ ^[5]	Max	Typ ^[5]	Max	
CY7S1049G(E)18	Industrial	1.65 V–2.2 V	15	_	40	6	8	_	15	
CY7S1049G(E)30		2.2 V–3.6 V	10	38	45					
CY7S1049G(E)		4.5–5.5 V	10	38	45					

Notes


- 1. This device does not support automatic write back on error detection.
- 2. SER FIT Rate <0.1 FIT/Mb. Refer AN88889 for details.
- 3. Refer AN89371 for details on PowerSnooze™ feature.
- 4. ERR pin is available only for devices which have ERR option "E" in the ordering code. Refer Ordering Information on page 17 for details.
- 5. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

Cypress Semiconductor Corporation Document Number: 001-95414 Rev. *F 198 Champion Court


San Jose, CA 95134-1709

Logic Block Diagram – CY7S1049G

Logic Block Diagram – CY7S1049GE

Contents

Pin Configurations	4
Maximum Ratings	
Operating Range	
DC Electrical Characteristics	6
Capacitance	7
Thermal Resistance	7
AC Test Loads and Waveforms	8
Data Retention Characteristics	9
Data Retention Waveform	9
Deep-Sleep Mode Characteristics	
AC Switching Characteristics	
Switching Waveforms	12
Truth Table	
ERR Output – CY7S1049GE	

Ordering Information	17
Ordering Code Definitions	
Package Diagrams	
Acronyms	19
Document Conventions	19
Units of Measure	19
Document History Page	20
Sales, Solutions, and Legal Information	21
Worldwide Sales and Design Support	21
Products	21
PSoC® Solutions	21
Cypress Developer Community	21
Technical Support	21

Pin Configurations

Figure 1. 44-pin TSOP II pinout without ERR ^[6]

		/		,
NC 🗖	•1	<u> </u>	44	■ NC
NC 🗖	2		43	■ NC
A0 🗖	3		42	DS
A1 🗖	4		41	🗖 A18
A2 🗖	5		40	A 17
A3 🗖	6		39	= A16
A4 🗖	7		38	= A15
/CE 🗖	8		37	■/OE
I/O0 🗖	9	44-pin TSOP II	36	= I/O7
I/O1 🗖	10		35	= I/O6
VCC 🗖	11		34	■ VSS
VSS 🗖	12		33	
I/O2 🗖	13		32	= I/O5
I/O3 🗖	14		31	= I/O4
/WE 🗖	15		30	= A14
A5 🗖	16		29	= A13
A6 🗖	17		28	= A12
A7 🗖	18		27	= A11
A8 🗖	19		26	= A10
A9 🗖	20		25	■ NC
NC 🗖	21		24	NC I
NC 🗖	22		23	■ NC

NC 🗖	•1	\bigcirc	44	■ NC
NC 🗖	2		43	NC NC
A0 🗖	3		42	DS
A1 🗖	4		41	A 18
A2 🗖	5		40	A 17
A3 🗖	6		39	A 16
A4 🗖	7		38	= A15
/CE 🗖	8		37	I/OE
I/O0 🗖	9	44-pin TSOP II	36	I/07
I/O1 🗖	10		35	I /O6
VCC 🗖	11		34	■ VSS
VSS 🗖	12	:	33	
I/O2 🗖	13		32	I /O5
I/O3 🗖	14		31	I /04
/WE 🗖	15		30	A 14
A5 🗖	16		29	A 13
A6 🗖	17		28	A 12
A7 🗖	18		27	A 11
A8 🗖	19		26	A 10
A9 🗖	20		25	NC NC
NC 🗖	21		24	ERR
NC 🗖	22		23	■ NC

Notes6. NC pins are not connected internally to the die.7. ERR is an output pin.

Pin Configurations (continued)

A_0 1 36 DS A_1 2 35 A_{18} A_2 3 34 A_{17} A_3 4 33 A_{16} A_4 5 32 A_{15} CE 6 31 OE I/O_0 7 30 I/O_7 I/O_1 8 29 I/O_6 Vcc 9 28 GND GND 10 SOJ 27 Vcc I/O_2 11 26 I/O_5 I/O_5 I/O_3 12 25 I/O_4 I/O_4 WE 13 24 A_{14} A_5 14 23 A_{13} A_6 15 22 A_{12} A_7 16 21 A_{11}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A0 🗖	• ₁	\bigcirc	36 = DS
A3 4 33 A16 A4 5 32 A15 \overline{CE} 6 31 \overline{OE} I/O_0 7 30 I/O_7 I/O_1 8 29 I/O_7 I/O_1 8 29 I/O_7 I/O_2 10 SOJ 27 Vcc I/O_2 11 26 I/O_5 I/O_5 I/O_3 12 25 I/O_4 XI_2 $A14$ $A5$ 14 23 $A13$ $A6$ $A15$ $A7$ 16 21 $A11$ $A11$ $A8$ 17 20 $A10$	A1 🗖	2		35 🗖 A18
$\begin{array}{c} A_4 \\ \hline CE \\ \hline CE \\ \hline 6 \\ \hline 0 \\ \hline 0$	A2 🗖	3		34 🗖 A17
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Аз 🗖	4		33 🗖 A16
	A4 🗖	5		32 🗖 A15
I/O1 8 29 $I/O6$ Vcc 9 28 GND GND 10 SOJ 27 Vcc $I/O2$ 11 26 $I/O5$ $I/O5$ $I/O3$ 12 25 $I/O4$ $A14$ A5 14 23 $A13$ A6 15 22 $A12$ A7 16 21 $A11$ A8 17 20 $A10$	CE 🗖	6		31 🗖 OE
Vcc 9 28 GND GND 10 SOJ 27 Vcc I/O2 11 26 I/O5 I/O3 12 25 I/O4 WE 13 24 A14 A5 14 23 A13 A6 15 22 A12 A7 16 21 A11 A8 17 20 A10	I/Oo 🗖	7		30 🗖 I/O7
GND 10 SOJ 27 Vcc I/O2 11 26 I/O5 I/O3 12 25 I/O4 WE 13 24 A14 A5 14 23 A13 A6 15 22 A12 A7 16 21 A11 A8 17 20 A10	I/O1 🗖	8		29 🗖 I/O6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vcc 🗖	9		28 🗖 GND
$I/O_3 = 12$ 25 I/O_4 WE 13 24 A_{14} A5 14 23 A_{13} A6 15 22 A_{12} A7 16 21 A_{11} A8 17 20 A_{10}	GND 🗖	10	SOJ	27 🗖 Vcc
WE 13 24 A_{14} A_5 14 23 A_{13} A_6 15 22 A_{12} A_7 16 21 A_{11} A_8 17 20 A_{10}	I/O2 🗖	11		26 🗖 I/O5
A5 14 23 A13 A6 15 22 A12 A7 16 21 A11 A8 17 20 A10	I/O3 🗖	12		25 🗖 I/O4
$A_6 = 15$ $22 = A_{12}$ $A_7 = 16$ $21 = A_{11}$ $A_8 = 17$ $20 = A_{10}$	WE 🗖	13		24 🗖 A14
A7 = 16 21 = A11 A8 = 17 20 = A10	A5 🗖	14		23 🗖 A13
As = 17 20 = A10	A6 🗖	15		22 🗖 A12
	A7 🗖	16		21 🗖 A11
A9 = 18 19 = NC	A8 🗖	17		20 🗖 A10
	A9 🗖	18		19 🗖 NC

Figure 3. 36-pin SOJ pinout without ERR ^[8]

Figure 4.	36-pin	SOJ	pinout	with	ERR	[8,	9]
-----------	--------	-----	--------	------	-----	-----	----

A0 🗖	•1	\bigcirc	36 = DS
A1 🗖	2		35 🗖 A18
A2 🗖	3		34 🗖 A17
A3 🗖	4		33 🗖 A16
A4 🗖	5		32 🗖 A15
CE 🗖	6		31 🗖 OE
I/Oo 🗖	7		30 🗖 I/O7
I/O1 ■	8		29 🗖 I/O6
Vcc 🗖	9		28 🗖 GND
GND 🗖	10	SOJ	27 🗖 Vcc
I/O2 🗖	11		26 🗖 I/O5
I/O3 🗖	12		25 🗖 I/O4
WE 🗖	13		24 🗖 A14
A5 🗖	14		23 🗖 A13
A6 🗖	15		22 🗖 A12
A7 🗖	16		21 🗖 A11
A8 🗖	17		20 🗖 A10
A9 🗖	18		19 🗖 ERR

Notes

8. NC pins are not connected internally to the die.9. ERR is an output pin.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied–55 °C to +125 °C
Supply voltage on V_{CC} relative to GND $^{[10]}$ –0.5 V to V_{CC} + 0.5 V
DC voltage applied to outputs in HI-Z State $^{[10]}$ 0.5 V to V_{CC} + 0.5 V

DC input voltage ^[10]	–0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage	
(MIL-STD-883, Method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Range Ambient Temperature		V _{cc}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

DC Electrical Characteristics

Over the Operating Range of –40 °C to +85 °C

	Description		Total Constitution	10	10 ns/ 15 ns		
Parameter	Des	cription	Test Conditions	Min	Typ ^[11]	Max	Unit
V _{OH}	Output HIGH	1.65 V to 2.2 V	V _{CC} = Min, I _{OH} = -0.1 mA	1.4	_	_	V
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OH} = -1.0 mA	2	_	-	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OH} = -4.0 mA	2.4	_	_	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -4.0 mA	2.4	_	_	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -0.1 mA	V _{CC} – 0.5 ^[12]	_	_	
V _{OL}	Output LOW	1.65 V to 2.2 V	V _{CC} = Min, I _{OL} = 0.1 mA	-	_	0.2	V
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 2 mA	-	_	0.4	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA	-	_	0.4	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OL} = 8 mA	_	_	0.4	
V _{IH} ^[10, 13]	Input HIGH	1.65 V to 2.2 V	-	1.4	_	V _{CC} + 0.2	V
	voltage	2.2 V to 2.7 V		2	_	V _{CC} + 0.3	
		2.7 V to 3.6 V	-	2	_	V _{CC} + 0.3	
		4.5 V to 5.5 V	-	2	_	V _{CC} + 0.5	
V _{IL} ^[10, 13]	Input LOW	1.65 V to 2.2 V		-0.2	_	0.4	V
	voltage	2.2 V to 2.7 V	-	-0.3	_	0.6	
		2.7 V to 3.6 V	_	-0.3	_	0.8	
		4.5 V to 5.5 V		-0.5	_	0.8	
I _{IX}	Input leakage of	current	$GND \leq V_{IN} \leq V_{CC}$	-1	_	+1	μA
I _{OZ}	Output leakage	e current	GND \leq V _{OUT} \leq V _{CC} , Output disable	ed –1	_	+1	μA
I _{CC}			V _{CC} = Max, f = 100 MHz	_	38	45	mA
	V _{CC} operating	supply current	$I_{OUT} = 0 \text{ mA},$ CMOS levels $f = 66.7 \text{ MHz}$	_	_	40	
I _{SB1}	Standby currer	it – TTL inputs	$\begin{array}{l} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{array}$	-	-	15	mA

Notes

^{10.} V_{IL} (min) = -2.0 V and V_{IH} (max) = V_{CC} + 2 V for pulse durations of less than 20 ns.

^{11.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

^{12.} Guaranteed by design and not tested.

^{13.} For the $\overline{\text{DS}}$ pin, V_{IH} (min) is V_{CC} – 0.2 V and V_{IL} (max) is 0.2 V.

DC Electrical Characteristics (continued)

Over the Operating Range of -40 °C to +85 °C

Parameter	Description	Test Conditions	10	Unit		
Falailletei	Description	Test conditions	Min	Тур [11]	Max	onit
I _{SB2}		$\begin{array}{l} \underline{\text{Max}} \ V_{\text{CC}}, \ \overline{\text{CE}} \geq V_{\text{CC}} - 0.2 \ \text{V}, \\ \overline{\text{DS}} \geq V_{\text{CC}} - 0.2 \ \text{V}, \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.2 \ \text{V} \text{ or } \\ V_{\text{IN}} \leq 0.2 \ \text{V}, \ \text{f} = 0 \end{array}$	-	6	8	mA
I _{DS}	Deep-Sleep current	$\begin{array}{l} \text{Max} \text{V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V}, \overline{\text{DS}} \leq 0.2 \text{ V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V} \text{ or } \text{V}_{\text{IN}} \leq 0.2 \text{ V}, \text{ f} = 0 \end{array}$	_	_	15	μA

Capacitance

Parameter ^[14]	Description	Test Conditions	All packages	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC(typ)}	10	pF
C _{OUT}	I/O capacitance		10	pF

Thermal Resistance

Parameter ^[14]	Description	Test Conditions	36-pin SOJ Package	44-pin TSOP II Package	Unit
- JA		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.52	68.85	°C/W
- 30	Thermal resistance (junction to case)		31.48	15.97	°C/W

Note

14. Tested initially and after any design or process changes that may affect these parameters.

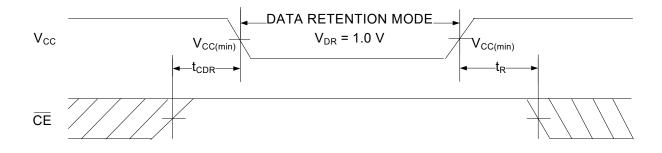
AC Test Loads and Waveforms

Figure 5. AC Test Loads and Waveforms ^[15]

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V _{TH}	V _{CC} /2	1.5	1.5	V
V _{HIGH}	1.8	3.0	3.0	V

Note

15. Full-device AC operation assumes a 100- μ s ramp time from 0 to V_{CC(min)} or 100- μ s wait time after V_{CC} stabilization.


Data Retention Characteristics

Over the Operating Range of -40 °C to +85 °C

Parameter	Description	Conditions ^[16]	Min	Max	Unit
V _{DR}	V_{CC} for data retention	_	1.0	-	V
I _{CCDR}	Data retention current	$ \begin{array}{l} V_{CC} = V_{DR}, \overline{CE} \geq V_{CC} - 0.2 \; V, \overline{DS} \geq V_{CC} - 0.2 \; V, \\ V_{IN} \geq V_{CC} - 0.2 \; V \; \text{or} \; V_{IN} \leq 0.2 \; V \end{array} $	_	8	mA
t _{CDR} ^[17]	Chip deselect to data retention time	-	0	-	ns
t _R ^[17, 18]	Operation recovery time	2.2 V < V _{CC} <u><</u> 5.5 V	10	-	ns
		$V_{CC} \le 2.2 V$	15	_	ns

Data Retention Waveform

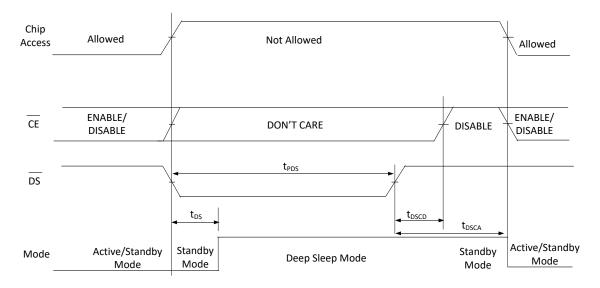
Figure 6. Data Retention Waveform ^[18]

- Notes______

 16. DS signal must be HIGH during Data Retention Mode.

 17. These parameters are guaranteed by design.

 18. Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} \geq 100 µs or stable at V_{CC(min.)} \geq 100 µs.



Deep-Sleep Mode Characteristics

Over the Operating Range of –40 °C to +85 °C

Parameter	Description	Conditions	Min	Max	Unit
I _{DS}	Deep-Sleep mode current	$V_{CC} = V_{CC} \text{ (max), } \overline{DS} \le 0.2 \text{ V,}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	-	15	μA
t _{PDS} ^[19]	Minimum time for DS to be LOW for part to successfully exit Deep-Sleep mode		100	_	ns
t _{DS} ^[20]	DS assertion to Deep-Sleep mode transition time	_	-	1	ms
t _{DSCD} ^[19]	DS deassertion to chip disable	If $t_{PDS} \ge t_{PDS(min)}$	-	100	μs
		If t _{PDS} < t _{PDS(min)}	_	0	μs
t _{DSCA}	DS deassertion to chip access	If $t_{PDS} \ge t_{PDS(min)}$	300	-	μs
	(Active/Standby)	If t _{PDS} < t _{PDS(min)}			

Notes

19. CE must be pulled HIGH within t_{DSCD} time of DS de-assertion to avoid SRAM data loss.

20. After assertion of DS signal, device will take a maximum of t_{DS} time to stabilize to Deep-Sleep current I_{DS}. During this period, DS signal must continue to be asserted to logic level LOW to keep the device in Deep-Sleep mode.

AC Switching Characteristics

Over the Operating Range of -40 °C to +85 °C

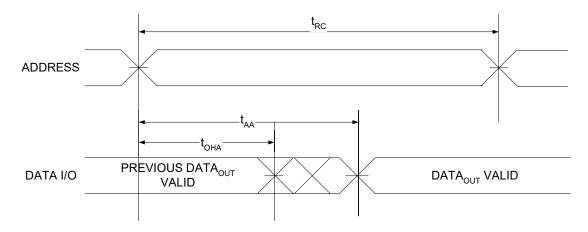
Parameter [21]	Description	10	10 ns		15 ns		
	Description	Min	Max	Min	Мах	Unit	
Read Cycle			•	•			
t _{RC}	Read cycle time	10	_	15	-	ns	
t _{AA}	Address to data valid	-	10	-	15	ns	
t _{OHA}	Data hold from address change	3	-	3	-	ns	
t _{ACE}	CE LOW to data valid	-	10	-	15	ns	
t _{DOE}	OE LOW to data valid	-	4.5	-	8	ns	
t _{LZOE}	OE LOW to low impedance ^[22, 23, 24]	0	_	0	-	ns	
t _{HZOE}	OE HIGH to HI-Z [22, 23, 24]	-	5	-	8	ns	
t _{LZCE}	CE LOW to low impedance ^[22, 23, 24]	3	_	3	-	ns	
t _{HZCE}	CE HIGH to HI-Z [22, 23, 24]	-	5	-	8	ns	
t _{PU}	CE LOW to power-up ^[24]	0	_	0	-	ns	
t _{PD}	CE HIGH to power-down ^[24]	-	10	-	15	ns	
Write Cycle [25,	, 26]						
t _{WC}	Write cycle time	10	_	15	-	ns	
t _{SCE}	CE LOW to write end	7	_	12	-	ns	
t _{AW}	Address setup to write end	7	-	12	-	ns	
t _{HA}	Address hold from write end	0	_	0	_	ns	
t _{SA}	Address setup to write start	0	_	0	_	ns	
t _{PWE}	WE pulse width	7	_	12	_	ns	
t _{SD}	Data setup to write end	5	_	8	_	ns	
t _{HD}	Data hold from write end	0	-	0	-	ns	
t _{LZWE}	WE HIGH to low impedance ^[22, 23, 24]	3	-	3	-	ns	
t _{HZWE}	WE LOW to HI-Z ^[22, 23, 24]	-	5	-	8	ns	

Notes

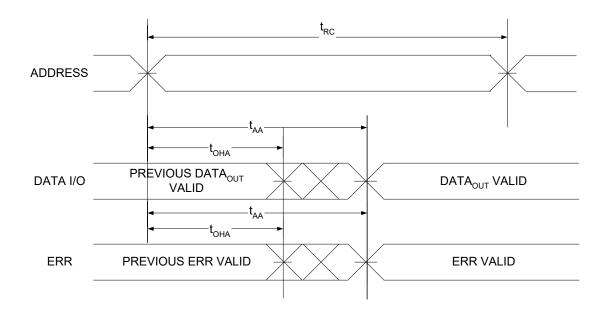
21. Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use output loading shown in part (a) of Figure 5 on page 8, unless specified otherwise. 22. t_{HZOE}, t_{HZCE}, t_{HZXE}, t_{LZCE}, and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of Figure 5 on page 8. Transition is measured ±200 mV from steady state voltage. 23. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device.

24. These parameters are guaranteed by design.

25. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$, $\overline{DS} = V_{IH}$ and \overline{WE} , \overline{CE} , signals must be LOW


and DS must be HIGH to initiate a write, and a HIGH transition of any of WE, CE, signals or LOW transition on DS signal can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

^{26.} The minimum write pulse width for Write Cycle No. 2 (WE Controlled, OE LOW) should be the sum of t_{HZWE} and t_{SD}.



Switching Waveforms

Figure 8. Read Cycle No. 1 of CY7S1049G (Address Transition Controlled) ^[27, 28, 29]

Notes

27. The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$.

28. $\overline{\text{WE}}$ is HIGH for read cycle.

29. $\overline{\text{DS}}$ is HIGH for chip access.

Switching Waveforms (continued)

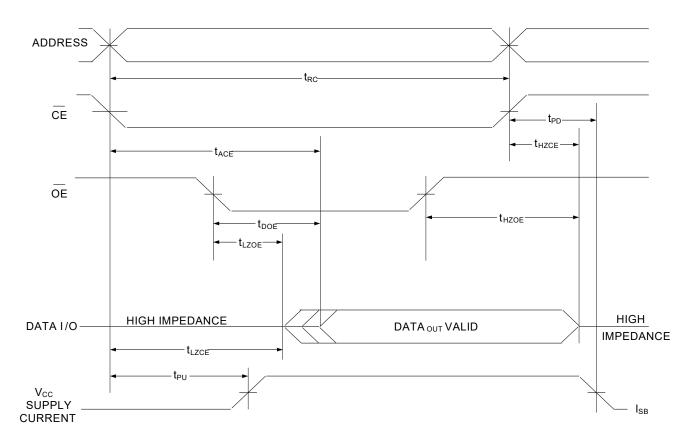


Figure 10. Read Cycle No. 3 (OE Controlled) ^[30, 31, 32]

Notes30. WE is HIGH for read cycle.31. Address valid prior to or coincident with \overline{CE} LOW transition.

32. DS must be HIGH for chip access.

Switching Waveforms (continued)

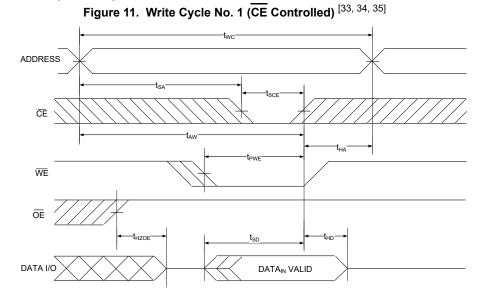
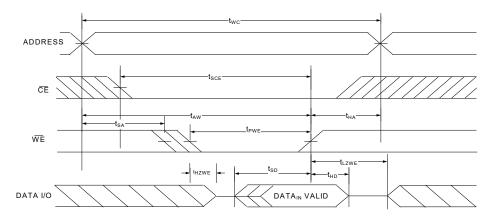
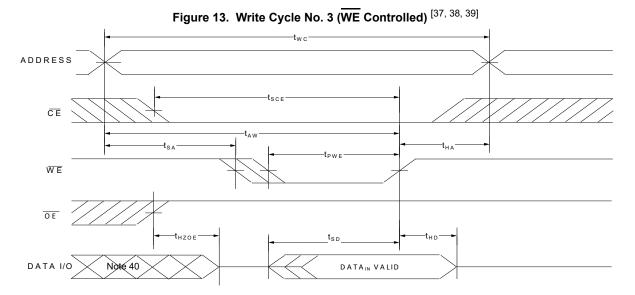



Figure 12. Write Cycle No. 2 (WE Controlled, OE LOW) ^[33, 34, 35, 36]

Notes


- 33. The internal write time of the memory is defined by the overlap of WE = V_{IL}, <u>CE</u> = V_{IL}, <u>DS</u> = V_{IL} and WE, <u>CE</u> signals must be LOW and <u>DS</u> must be HIGH to initiate a write, and a HIGH transition of any of WE, <u>CE</u> signals or LOW transition on <u>DS</u> signal can terminate the operation. The input data setup and <u>hold</u> timing should be referenced to the edge of the signal that terminates the write.
- 34. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$.

35. DS must be HIGH for chip access.

36. The minimum write pulse width for Write Cycle No. 2 (WE Controlled, OE LOW) should be sum of t_{HZWE} and t_{SD}.

Switching Waveforms (continued)

Notes

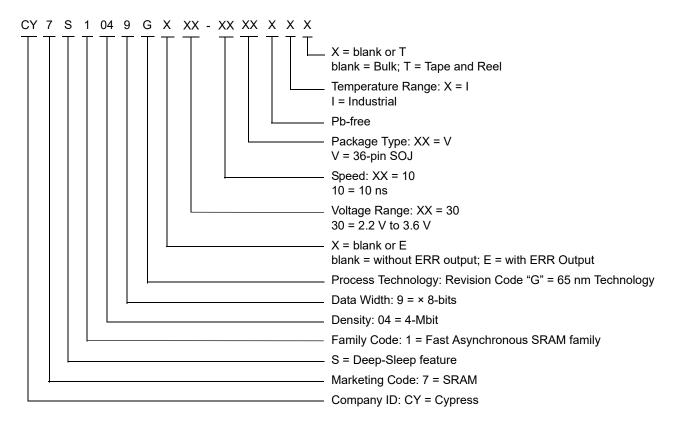
- 37. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{II}$, $\overline{CE} = V_{IL}$, $\overline{DS} = V_{IH}$ and \overline{WE} , \overline{CE} , signals must be LOW and \overline{DS} must be HIGH to initiate a write, and a HIGH transition of any of \overline{WE} , \overline{CE} , signals or LOW transition on \overline{DS} signal can terminate the operation.
- The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 38. Data I/O is in HI-Z state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or $\overline{DS} = V_{IL}$.
- 39. DS must be HIGH for chip access.
- 40. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

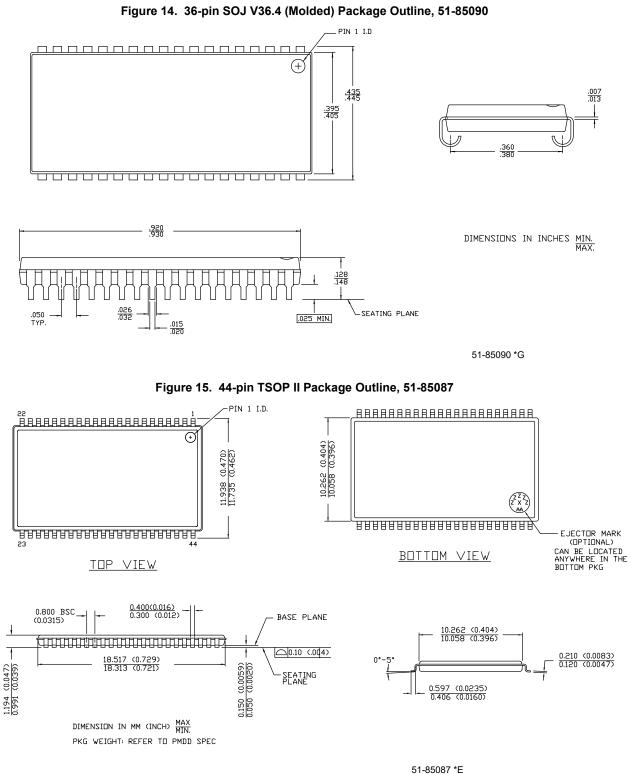
DS	CE	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Н	X ^[41]	X ^[41]	HIGH-Z	Standby	Standby (I _{SB})
Н	L	L	Н	Data out	Read all bits	Active (I _{CC})
Н	L	Х	L	Data in	Write all bits	Active (I _{CC})
Н	L	Н	Н	HI-Z	Selected, outputs disabled	Active (I _{CC})
L ^[42]	Х	Х	Х	HI-Z	Deep-Sleep	Deep-Sleep Ultra Low Power (I _{DS})

ERR Output – CY7S1049GE

Output ^[43] Mode				
0 Read operation, no single-bit error in the stored data.				
1	Read operation, single-bit error detected and corrected.			
High-Z	Device deselected / outputs disabled / Write operation			


- $\begin{array}{l} \textbf{Notes} \\ \textbf{41. The input voltage levels on these pins should be either at V_{IH} or V_{IL}. \\ \textbf{42. V}_{IL} \text{ on } DS \text{ must be } \leq 0.2 \text{ V}. \\ \textbf{43. ERR is an Output pin.If not used, this pin should be left floating.} \end{array}$

Ordering Information


Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (All Pb-free)	Operating Range
10	2.2 V–3.6 V	CY7S1049G30-10VXI	51-85090	36-pin SOJ	Industrial
		CY7S1049G30-10VXIT	51-85090	36-pin SOJ, Tape and Reel	
		CY7S1049GE30-10VXI	51-85090	36-pin SOJ, ERR Output	
		CY7S1049GE30-10VXIT	51-85090	36-pin SOJ, ERR Output, Tape and Reel	

Ordering Code Definitions

Package Diagrams

Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SOJ	Small-Outline J-lead
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
TTL	Transistor-Transistor Logic
WE	Write Enable
ECC	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degrees Celsius		
MHz	megahertz		
μA	microampere		
μs	microsecond		
mA	milliampere		
mm	millimeter		
ns	nanosecond		
Ω	ohm		
%	percent		
pF	picofarad		
V	volt		
W	watt		

Document History Page

Document Title: CY7S1049G/CY7S1049GE, 4-Mbit (512K words × 8-bit) Static RAM with PowerSnooze™ and Error Correcting Code (ECC) Document Number: 001-95414						
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change		
*В	5025315	VINI	11/24/2015	Changed status from Preliminary to Final.		
*C	5090263	NILE	01/18/2016	Updated Ordering Information: Updated part numbers. Completing Sunset Review.		
*D	5428860	NILE	09/07/2016	Updated Functional Description: Added Note 1 and referred the same note in "CY7S1049G/CY7S1049GE". Updated Maximum Ratings: Updated Note 10 (Replaced "2 ns" with "20 ns"). Updated DC Electrical Characteristics: Changed minimum value of V _{OH} parameter from 2.2 V to 2.4 V corresponding to Operating Range "2.7 V to 3.6 V" and Test Condition "V _{CC} = Min, I _{OH} = -4.0 mA". Changed minimum value of V _{IH} parameter from 2.2 V to 2 V corresponding to Operating Range "4.5 V to 5.5 V". Updated Ordering Information: Updated part numbers. Updated to new template.		
*E	5981584	AESATMP8	12/01/2017	Updated logo and Copyright.		
*F	6120487	NILE	04/03/2018	Updated Features: Referred Note 1 in "Embedded ECC for single-bit error correction". Added Note 2 and referred the same note in "Embedded ECC for single-bit error correction". Updated Functional Description: Added Note 3 and referred the same note at the end of sentence "This device features fast access times (10 ns) and a unique ultra-low power Deep-Sleep mode". Updated to new template. Completing Sunset Review.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2015-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software is positive to exoft and ever not one of the contransferable license (without the right to sublicense) (1) under its copyright rights in the Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor: CY7S1049GE30-10VXI CY7S1049G30-10VXI