

CY7C1061G/CY7C1061GE

16-Mbit (1M words × 16-bit) Static RAM with Error-Correcting Code (ECC)

Features

- High speed
 □ t_{AA} = 10 ns/15 ns
- Embedded error-correcting code (ECC) for single-bit error correction^[1, 2]
- Low active and standby currents □ I_{CC} = 90 mA typical at 100 MHz □ I_{SB2} = 20 mA typical
- Operating voltage range: 1.65 V to 2.2 V, 2.2 V to 3.6 V, and 4.5 V to 5.5 V
- 1.0 V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- Error indication (ERR) pin to indicate 1-bit error detection and correction
- Available in Pb-free 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages

Functional Description

CY7C1061G and CY7C1061GE are high-performance CMOS fast static RAM devices with embedded ECC^[1]. Both devices are offered in single and dual chip enable options and in multiple pin configurations. The CY7C1061GE device includes an ERR pin that signals a single-bit error-detection and correction event during a read cycle.

To access devices with a single chip enable input, assert the chip enable (CE) input LOW. To access dual chip enable devices, assert both chip enable inputs – CE_1 as LOW and CE_2 as HIGH.

To perform data writes, assert the Write Enable (\overline{WE}) input LOW, and provide the data and address on the device data pins (I/O_0 through I/O_{15}) and address pins (A_0 through A_{19}) respectively. The Byte High Enable (BHE) and Byte Low Enable (BLE) inputs control byte writes, and write data on the corresponding I/O lines to the memory location specified. BHE controls I/O₈ through I/O₁₅ and BLE controls I/O₀ through I/O₇.

To perform data reads, assert the Output Enable $(\overline{\text{OE}})$ input and provide the required address on the address lines. Read data is accessible on I/O lines (I/O₀ through I/O₁₅). You can perform byte accesses by asserting the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

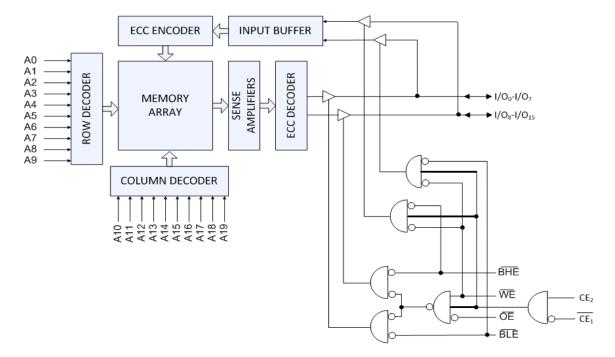
All I/Os (I/O₀ through I/O₁₅) are <u>placed</u> in a high-impedance state when the device is deselected (CE HIGH for a single chip enable device and \overline{CE}_1 HIGH / CE₂ LOW for a <u>dual chip enable</u> device), or control signals are de-asserted (OE, BLE, BHE).

On the CY7C1061GE devices, the detection and correction of a single-bit error in the accessed location is indicated by the assertion of the ERR output (ERR = High). See the Truth Table on page 16 for a complete description of read and write modes.

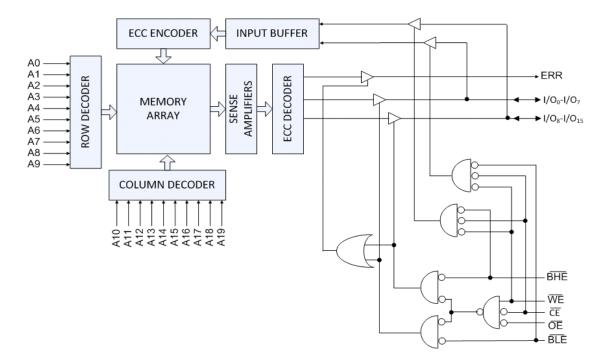
The logic block diagrams are on page 2.

The CY7C1061G and CY7C1061GE devices are available in 48-pin TSOP I, 54-pin TSOP II, and 48-ball VFBGA packages.

For a complete list of related documentation, click here.


Product Portfolio

					Current Consumption				
Product	Features and Options (see Pin Configurations on	Range	V _{CC} Range (V)	Speed (ns)	Operating I _{CC} , (mA)		Standby	la=a (m Δ)	
Troduct	page 4)			10/15		f _{max}	otanuby,	Standby, I _{SB2} (mA)	
					Typ ^[3]	Max	Typ ^[3]	Мах	
CY7C1061G18	Single or dual chip enables	Industrial	1.65 V–2.2 V	15	70	80	20	30	
CY7C1061G(E)30	Optional ERR pins		2.2 V–3.6 V	10	90	110			
CY7C1061G			4.5 V–5.5 V	10	90	110			
	Address MSB A ₁₉ pin placement options compatible with Cypress and other vendors								

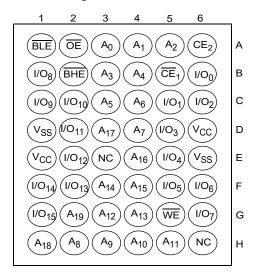

- 1. This device does not support automatic write-back on error detection.
- 2. SER FIT Rate <0.1 FIT/Mb. Refer AN88889 for details.
- Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V–2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V–3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V–5.5 V), T_A = 25 °C.

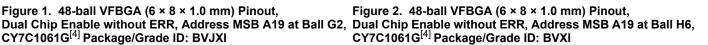
Logic Block Diagram – CY7C1061G

Logic Block Diagram – CY7C1061GE

CY7C1061G/CY7C1061GE

Contents


Pin Configurations	4
Maximum Ratings	7
Operating Range	7
DC Electrical Characteristics	7
Capacitance	8
Thermal Resistance	8
AC Test Loads and Waveforms	8
Data Retention Characteristics	9
Data Retention Waveform	9
AC Switching Characteristics	
Switching Waveforms	
Truth Table	
ERR Output – CY7C1061GE	


Ordering Information	. 17
Ordering Code Definitions	. 19
Package Diagrams	. 20
Acronyms	. 23
Document Conventions	. 23
Units of Measure	. 23
Document History Page	. 24
Sales, Solutions, and Legal Information	. 25
Worldwide Sales and Design Support	. 25
Products	. 25
PSoC® Solutions	. 25
Cypress Developer Community	. 25
Technical Support	

Pin Configurations

Figure 1. 48-ball VFBGA (6 × 8 × 1.0 mm) Pinout, CY7C1061G^[4] Package/Grade ID: BVJXI

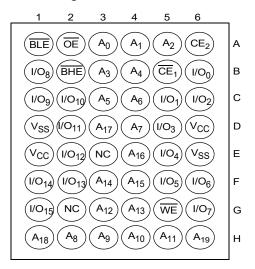
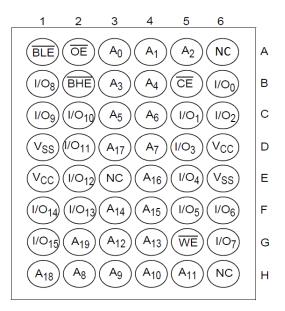



Figure 3. 48-ball VFBGA (6 × 8 × 1.0 mm) Pinout, Single Chip Enable without ERR, Address MSB A19 at Ball G2, CY7C1061G^[4] Package/Grade ID: BV1XI

Note 4. NC pins are not connected internally to the die.

Figure 5. 48-ball VFBGA (6 × 8 × 1.0 mm) Pinout,

CY7C1061GE^[5, 6] Package/Grade ID: BVJXI

Dual Chip Enable with ERR, Address MSB A19 at Ball G2.

Pin Configurations (continued)

Figure 4. 48-ball VFBGA (6 × 8 × 1.0 mm) Pinout, Single Chip Enable with ERR, Address MSB A19 at Ball G2, CY7C1061GE^[5, 6] Package/Grade ID: BV1XI

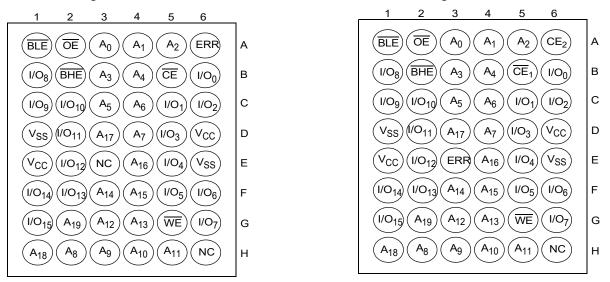
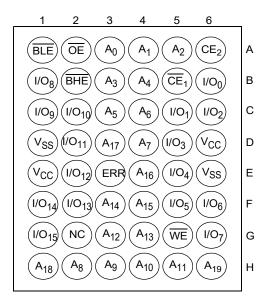



Figure 6. 48-ball VFBGA (6 × 8 × 1.0 mm) Pinout, Dual Chip Enable with ERR, Address MSB A19 at Ball H6, CY7C1061GE^[5, 6] Package/Grade ID: BVXI

Notes

5. NC pins are not connected internally to the die.

6. ERR is an Output pin. If not used, this pin should be left floating.

Pin Configurations (continued)

Figure 7. 48-pin TSOP I (12 × 18.4 × 1 mm) Pinout, Single Chip Enable with ERR, CY7C1061GE^[7, 8] Package/Grade ID: ZXI

	0		
A,	1	48	Ac
A -	2	47	Δ.
Δ.	3	16	- ^
^2 □	J	40	1 A7
<u>^1</u>	4 r	40	A8
A ₀	5	47 46 45 44	
ERR	6	43	BHE
CE 🗖	7	42	BLE
$\begin{array}{c} A_4 & \mathbf{I} \\ A_3 & A_2 & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ A_0 & \mathbf{R} & \mathbf{R} & \mathbf{I} & \mathbf{I} \\ A_0 & \mathbf{R} & \mathbf{R} & \mathbf{I} \\ \mathbf{E} & \mathbf{I} & \mathbf{E} \\ \mathbf{E} & $	8	41	I/O ₁₅
1/01	9	40	I/O ₁₄
I/O₂ □	10	39	■ I/O ₁₄ ■ I/O ₁₃
1/0 ₃ 🗖	11	38	I/O ₁₂ GND
Vnn -	12	37	GND
V _{DD} ∎ GND ■	13	36	T V _{DD}
I/O. H	14	35	■ I/O ₁₁
	15	34	■ 1/O ₁₀
1/05	10	22	1/O ₁₀
1/0 ₆	16	33	I/O ₉
	17	32	■ I/O ₈
I/O7 WE NC	18	31	NC
NC 🗖	19	30 =	A ₀
A ₁₉ 🗖	20	29	A ₁₀
A ₁₈	21	29 28	A ₁₁
A ₁₉ D A ₁₈ D A ₁₇ D	22	27	A ₁₂ A ₁₃
A ₁₇ □ A ₁₆ □ A ₁₅ □	23	26	A12
A ₁₅ -	24	25	
10			. 14

Figure 9. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) pinout, Dual Chip Enable without ERR, CY7C1061G^[7] Package/Grade ID: ZSXI

	1	_			1	
I/O ₁₂		1		54		I/O ₁₁
V_{CC}		2		53		V_{SS}
I/O ₁₃		3		52		I/O ₁₀
I/O ₁₄		4		51		I/O ₉
V_{SS}		5		50		V _{CC}
I/O ₁₅		6		49		I/O ₈
A ₄		7		48	6	A ₅
A3		8		47	F.	A ₆
A ₂		9		46	F.	A ₇
A ₁	Η	10		45	F.	A ₈
A ₀	Η	11		44	Fi.	A ₉
BHE	F	12		43	F.	NC
CE ₁		13		42	F	OE
V _{CC}		14		41	E.	V _{SS}
WE		15		40	6	NC
CE_2		16		39		BLE
A ₁₉		17		38		A ₁₀
A ₁₈		18		37		A ₁₁
A ₁₇		19		36		A ₁₂
A ₁₆	С	20		35	Þ	A ₁₃
A ₁₅		21		34		A ₁₄
I/O ₀		22		33		I/O ₇
V_{CC}		23		32		V _{SS}
I/O ₁		24		31	\square	I/O ₆
I/O ₂	Ц	25		30		I/O ₅
V _{SS}		26		29		V_{CC}
I/O ₃		27		28	Р	I/O ₄

Figure 8. 48-pin TSOP I (12 × 18.4 × 1 mm) Pinout, Single Chip Enable without ERR, CY7C1061G^[7] Package/Grade ID: ZXI

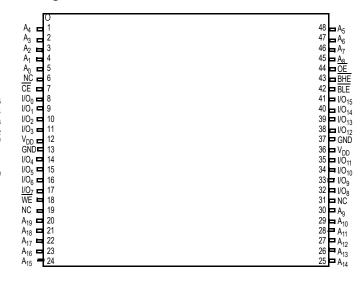


Figure 10. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) pinout, Dual Chip Enable with ERR, CY7C1061GE^[7, 8] Package/Grade ID: ZSXI

I/O ₁₂		54		I/O ₁₁
V _{CC}	2	53		V_{SS}
I/O ₁₃	3	52		I/O ₁₀
I/O ₁₄	4	51		I/O ₉
V _{SS}	5	50		V_{CC}
I/O ₁₅	6	49		I/O ₈
A ₄	7	48		A_5
A ₃	8	47		A ₆
A ₂	9	46		A ₇
A ₁	10	45		A ₈
A ₀	L 11	44	\square	A ₉
BHE	12	43		ERR
CE ₁	13	42	\square	OE
V _{CC}	14	41		V_{SS}
WE	15	40		NC
CE2	16	39	Н	BLE
A ₁₉	17	38	H	A ₁₀
A ₁₈		37	Н	A ₁₁
A ₁₇	19	36	H	A ₁₂
A ₁₆	20	35	H	A ₁₃
A ₁₅	21 22	34	H	A ₁₄
I/O ₀		33	H	1/0 ₇
V _{CC} I/O ₁	23	32 31	H	V _{SS} I/O ₆
	25	30	H	I/O ₅
I/O ₂ V _{SS}	26	29	Ħ	"US5
VSS I/O3	27	29	Ħ	V _{CC} I/O ₄
1/03	<u>لے</u>	20	Г	1/04

Notes

7. NC pins are not connected internally to the die.

8. ERR is an Output pin. If not used, this pin should be left floating.

CY7C1061G/CY7C1061GE

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature	65 °C to +150 °C
Ambient temperature with power applied	–55 °C to +125 °C
Supply voltage on V _{CC} relative to GND	–0.5 V to V _{CC} + 0.5 V
DC voltage applied to outputs in High Z State ^[9]	–0.5 V to V _{CC} + 0.5 V

DC input voltage ^[9]	–0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	
Static discharge voltage (MIL-STD-883, Method 3015)	> 2001 V
Latch-up current	> 140 mA

Operating Range

Grade	Ambient Temperature	V _{cc}
Industrial	–40 °C to +85 °C	1.65 V to 2.2 V, 2.2 V to 3.6 V, 4.5 V to 5.5 V

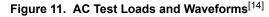
DC Electrical Characteristics

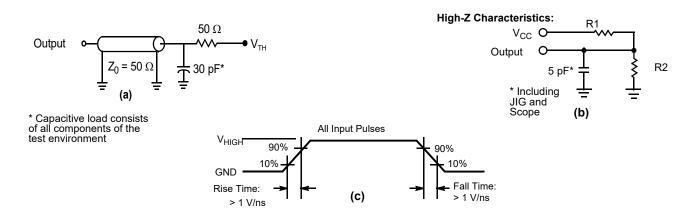
Over the operating range of -40 °C to 85 °C

Deverseter	Description		Test Canditia		1	0 ns / 15 n	IS	Unit
Parameter	Desc	ription	Test Conditions		Min	Typ ^[10]	Max	Unit
V _{OH}	Output	1.65 V to 2.2 V	V _{CC} = Min, I _{OH} = –0.1 mA		1.4	_	_	V
	HIGH voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OH} = –1.0 mA		2.0	_	_	
	· · · · · · · · · · · · · · · · · · ·	2.7 V to 3.0 V	V _{CC} = Min, I _{OH} = -4.0 mA		2.2	_	_	
		3.0 V to 3.6 V	V _{CC} = Min, I _{OH} = -4.0 mA		2.4	-	-	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -4.0 mA		2.4	_	_	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = –0.1 mA		V _{CC} -0.4 ^[11]	_	_	
V _{OL}	Output LOW	1.65 V to 2.2 V	V _{CC} = Min, I _{OL} = 0.1 mA		_	_	0.2	V
	voltage	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 2 mA		_	_	0.4	
		2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		-	-	0.4	
		4.5 V to 5.5 V	V _{CC} = Min, I _{OL} = 8 mA		-	-	0.4	
V _{IH} ^[9]	Input HIGH 1.65 V to 2				1.4	_	V _{CC} + 0.2	V
	voltage	2.2 V to 2.7 V			2.0	_	V _{CC} + 0.3	
		2.7 V to 3.6 V			2.0	_	V _{CC} + 0.3	
		4.5 V to 5.5 V			2.0	_	V _{CC} + 0.5	
V _{IL} ^[9]	Input LOW	1.65 V to 2.2 V			-0.2	_	0.4	V
	voltage	2.2 V to 2.7 V			-0.3	_	0.6	
		2.7 V to 3.6 V			-0.3	_	0.8	
		4.5 V to 5.5 V			-0.5	_	0.8	
I _{IX}	Input leakage	e current	GND <u><</u> V _{IN} <u><</u> V _{CC}		-1.0	_	+1.0	μA
I _{OZ}	Output leaka	ge current	GND <u><</u> V _{OUT} <u><</u> V _{CC} , Outpu	ut disabled	-1.0	_	+1.0	μA
I _{CC}	Operating su	pply current	V _{CC} = Max, I _{OUT} = 0 mA, CMOS levels	f = 100 MHz	_	90.0	110.0	mA
			CMOS levels	f = 66.7 MHz	-	70.0	80.0	
I _{SB1}	Automatic Cl current – TT	E power down L inputs	$\begin{array}{l} \text{Max } V_{CC}, \ \overline{CE} \geq V_{IH} \ ^{[12]}, \\ V_{IN} \geq V_{IH} \ \text{or} \ V_{IN} \leq V_{IL}, \ f = 1 \end{array}$	f _{MAX}	-	-	40.0	mA
I _{SB2}	Automatic Cl current – CN	E power down IOS inputs	$\begin{array}{l} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.2 \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \leq \end{array}$	V ^[12] , 0.2 V, f = 0	-	20.0	30.0	mA

Notes

Notes
9. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
10. Typical values are included only for reference and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for a V_{CC} range of 1.65 V-2.2 V), V_{CC} = 3 V (for a V_{CC} range of 2.2 V-3.6 V), and V_{CC} = 5 V (for a V_{CC} range of 4.5 V-5.5 V), T_A = 25 °C.
11. This parameter is guaranteed by design and is not tested.
12. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.


Capacitance


Parameter ^[13]	Description	Test Conditions	54-pin TSOP II	48-ball VFBGA	48-pin TSOP I	Unit
C _{IN}	Input capacitance	$T_A = 25 \circ C$, f = 1 MHz, $V_{CC} = V_{CC(typ)}$	10	10	10	pF
C _{OUT}	I/O capacitance		10	10	10	pF

Thermal Resistance

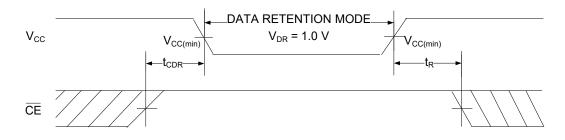
Parameter ^[13]	Description	Test Conditions	54-pin TSOP II	48-ball VFBGA	48-pin TSOP I	Unit
- JA		Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	93.63	31.50	57.99	°C/W
- 30	Thermal resistance (junction to case)		21.58	15.75	13.42	°C/W

AC Test Loads and Waveforms

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V _{TH}	0.9	1.5	1.5	V
V _{HIGH}	1.8	3	3	V

Notes

Tested initially and after any design or process changes that may affect these parameters.
 Full-device AC operation assumes a 100-µs ramp time from 0 to V_{CC} (min) and 100-µs wait time after V_{CC} stabilizes to its operational value.


Data Retention Characteristics

Over the operating range of -40 °C to 85 °C

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V _{CC} for data retention		1.0	Ι	V
I _{CCDR}	Data retention current	$ \begin{array}{l} V_{\mathrm{CC}} = V_{\mathrm{DR}}, \overline{\mathrm{CE}} \geq V_{\mathrm{CC}} - 0.2 \; V^{[15]}, \\ V_{\mathrm{IN}} \geq V_{\mathrm{CC}} - 0.2 \; V \; \mathrm{or} \; V_{\mathrm{IN}} \leq 0.2 \; V \end{array} $	_	30.0	mA
t _{CDR} ^[16]	Chip deselect to data retention time		0	-	ns
t _R ^[16, 17]	Operation recovery time	V _{CC} ≥ 2.2 V	10.0	Ι	ns
		V _{CC} < 2.2 V	15.0	-	ns

Data Retention Waveform

- 15. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 16. This parameter is guaranteed by design and is not tested

^{17.} Full-device operation requires linear V_{CC} ramp from V_{DR} to V_{CC} (min) \geq 100 μ s or stable at V_{CC} (min) \geq 100 μ s.

AC Switching Characteristics

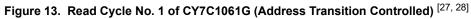
Over the operating range of -40 °C to 85 °C

Parameter [18]	Description	10	ns	15	Unit	
Parameter 1103	Description	Min	Max	Min	Мах	Unit
Read Cycle	•				•	
t _{POWER}	V _{CC} (stable) to the first access ^[19, 20]	100.0	_	100.0	_	μs
t _{RC}	Read cycle time	10.0	_	15.0	_	ns
t _{AA}	Address to data / ERR valid	-	10.0	_	15.0	ns
t _{OHA}	Data / ERR hold from address change	3.0	_	3.0	-	ns
t _{ACE}	CE LOW to data / ERR valid ^[21]	-	10.0	_	15.0	ns
t _{DOE}	OE LOW to data / ERR valid	-	5.0	_	8.0	ns
t _{LZOE}	OE LOW to low Z ^[22, 23, 24]	0	_	1.0	_	ns
t _{HZOE}	OE HIGH to high Z [22, 23, 24]	_	5.0	_	8.0	ns
t _{LZCE}	CE LOW to low Z [21, 22, 23, 24]	3.0	-	3.0	-	ns
t _{HZCE}	CE HIGH to high Z [21, 22, 23, 24]	_	5.0	-	8.0	ns
t _{PU}	CE LOW to power-up ^[20, 21]	0	-	0	-	ns
t _{PD}	CE HIGH to power-down ^[20, 21]	_	10.0	_	15.0	ns
t _{DBE}	Byte enable to data valid	_	5.0	-	8.0	ns
t _{LZBE}	Byte enable to low Z ^[22, 23]	0	-	1.0	-	ns
t _{HZBE}	Byte disable to high Z ^[22, 23]	_	6.0	_	8.0	ns
Write Cycle ^{[2}	5, 26]		1	1		
t _{WC}	Write cycle time	10.0	-	15.0	-	ns
t _{SCE}	CE LOW to write end ^[21]	7.0	_	12.0	_	ns
t _{AW}	Address setup to write end	7.0	-	12.0	-	ns
t _{HA}	Address hold from write end	0	-	0	-	ns
t _{SA}	Address setup to write start	0	_	0	_	ns
t _{PWE}	WE pulse width	7.0	-	12.0	_	ns
t _{SD}	Data setup to write end	5.0	-	8.0	-	ns
t _{HD}	Data hold from write end	0	_	0	_	ns
t _{LZWE}	WE HIGH to low Z [22, 23, 24]	3.0	-	3.0	_	ns
t _{HZWE}	WE LOW to high Z [22, 23, 24]	_	5.0	-	8.0	ns
t _{BW}	Byte Enable to write end	7.0	_	12.0	_	ns
			1	1	1	

Notes

- 18. Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use the output loading, shown in part (a) of Figure 11 on page 8, unless specified otherwise
- 19. t_{POWER} gives the minimum amount of time that the power supply is at stable V_{CC} until the first memory access is performed.
- 20. These parameters are guaranteed by design and are not tested.
- 21. For all dual chip enable devices, CE is the logical combination of CE1 and CE2. When CE1 is LOW and CE2 is HIGH, CE is LOW; when CE1 is HIGH or CE2 is LOW, CE is HIGH.

23. At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZEE}, t_{HZDE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZWE} for any device.


24. Tested initially and after any design or process changes that may <u>affect these parameters</u>. 25. The internal write time of the memory is defined by the overlap of $WE = V_{|L}$, $CE = V_{|L}$, and BHE or $BLE = V_{|L}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

26. The minimum write pulse width for Write Cycle No. 2 (WE Controlled, OE LOW) should be sum of tHZWE and tSD.

^{22.} t_{HZOE}, t_{HZCE}, t_{HZCE}, and t_{HZBE} are specified with a load capacitance of 5 pF, as shown in part (b) of Figure 11 on page 8. Hi-Z, Lo-Z transition is measured ±200 mV from steady state voltage.

Switching Waveforms

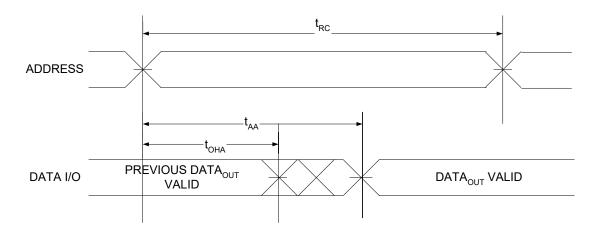
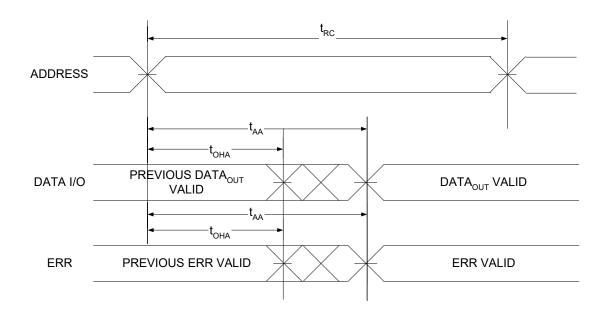



Figure 14. Read Cycle No. 2 of CY7C1061GE (Address Transition Controlled) ^[27, 28]

Notes 27. The device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$, \overline{BHE} or \overline{BLE} or both = V_{IL} . 28. \overline{WE} is HIGH for read cycle.

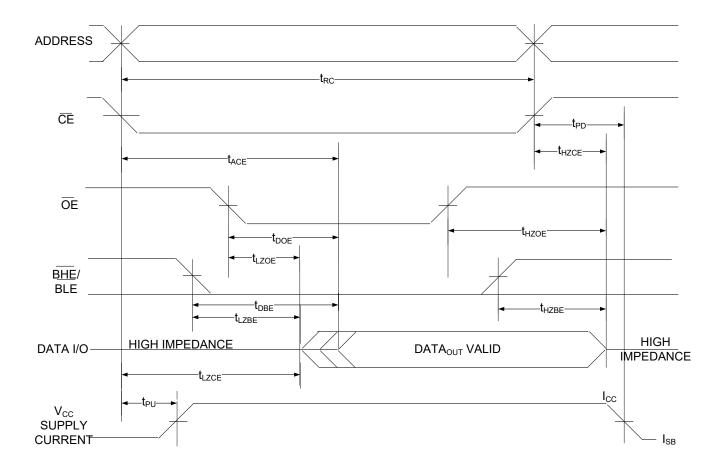


Figure 15. Read Cycle No. 3 (OE Controlled) ^[29, 30, 31]

Notes

29. For all dual chip enable devices, \overrightarrow{CE} is the logical combination of \overrightarrow{CE}_1 and \overrightarrow{CE}_2 . When \overrightarrow{CE}_1 is LOW and \overrightarrow{CE}_2 is HIGH, \overrightarrow{CE} is LOW; when \overrightarrow{CE}_1 is HIGH or \overrightarrow{CE}_2 is LOW, \overrightarrow{CE} is HIGH.

30. WE is HIGH for read cycle. 31. Address valid prior to or coincident with \overline{CE} LOW transition.

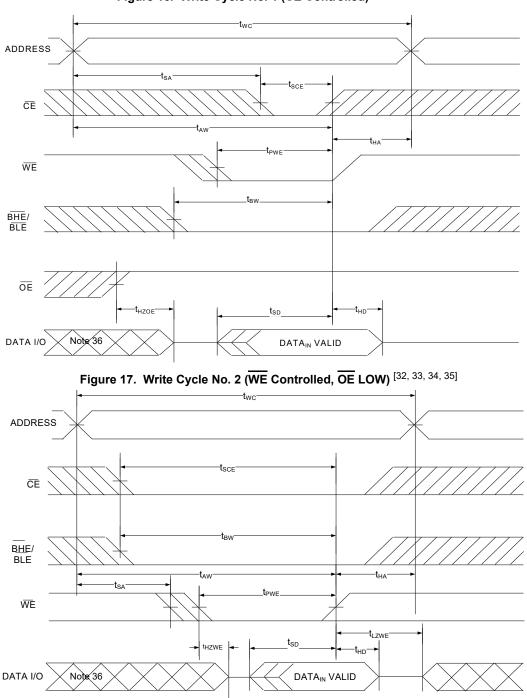


Figure 16. Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled) [32, 33, 34]

- 32. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 33. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$ and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 34. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 35. The minimum write cycle pulse width should be equal to sum of t_{HZWE} and t_{SD} .
- 36. During this period the I/Os are in output state. Do not apply input signals.

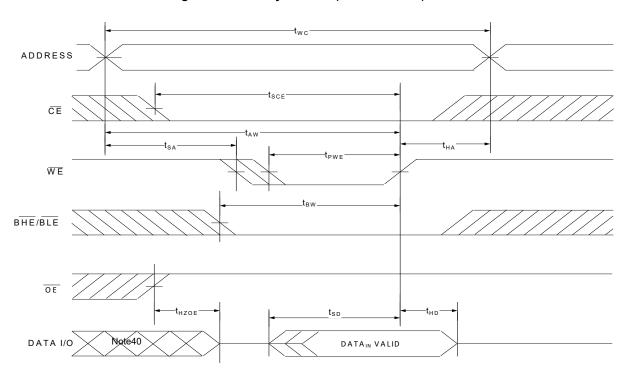


Figure 18. Write Cycle No. 3 (WE Controlled) [37, 38, 39]

- 37. For all dual chip enable devices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
- 38. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$ and \overline{BHE} or $\overline{BLE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 39. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$. 40. During this period, the I/Os are in output state. Do not apply input signals.

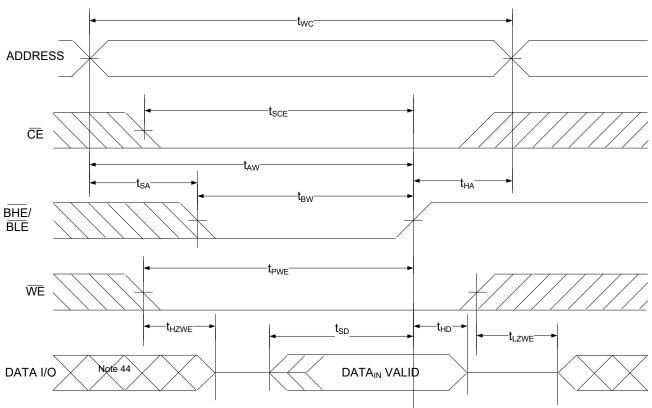


Figure 19. Write Cycle No. 4 (BLE or BHE Controlled) [41, 42, 43]

- 41. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.
- 42. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{|L}$, $\overline{CE} = V_{|L}$ and \overline{BHE} or $\overline{BLE} = V_{|L}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 43. Data I/O is in high-impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$ or \overline{BHE} , and/or $\overline{BLE} = V_{IH}$.
- 44. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

CE ^[45]	OE	WE	BLE	BHE	I/O ₀ –I/O ₇	I/O ₈ –I/O ₁₅	Mode	Power
Н	X ^[46]	X ^[46]	X ^[46]	X ^[46]	High-Z	High-Z	Power down	Standby (I _{SB})
L	L	Н	L	L	Data out	Data out	Read all bits	Active (I _{CC})
L	L	Н	L	Н	Data out	High-Z	Read lower bits only	Active (I _{CC})
L	L	Н	Н	L	High-Z	Data out	Read upper bits only	Active (I _{CC})
L	Х	L	L	L	Data in	Data in	Write all bits	Active (I _{CC})
L	Х	L	L	Н	Data in	High-Z	Write lower bits only	Active (I _{CC})
L	Х	L	Н	L	High-Z	Data in	Write upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})
L	Х	Х	Н	Н	High-Z	High-Z	Selected, outputs disabled	Active (I _{CC})

ERR Output – CY7C1061GE

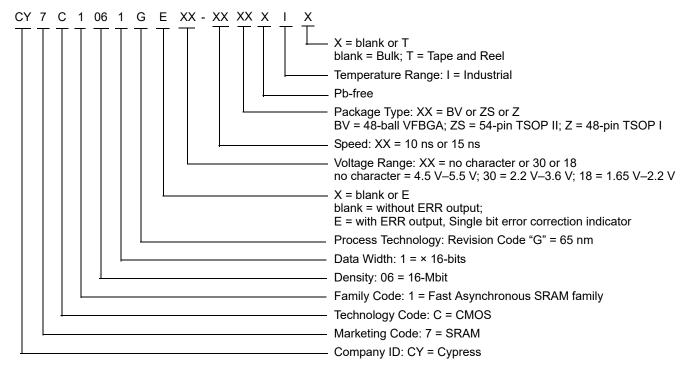
Output ^[47]	Mode
0	Read operation, no single-bit error in the stored data.
1	Read operation, single-bit error detected and corrected.
High-Z	Device deselected or outputs disabled or Write operation

^{45.} For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and CE_2 . When \overline{CE}_1 is LOW and CE_2 is HIGH, \overline{CE} is LOW; when \overline{CE}_1 is HIGH or CE_2 is LOW, \overline{CE} is HIGH.

^{46.} The input voltage levels on these pins should be either at V_{IH} or V_{IL}. 47. ERR is an Output pin. If not used, this pin should be left floating.

Ordering Information

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features / Differentiators	ERR Pin / Ball	Operating Range
10	4.5 V–5.5 V	CY7C1061G-10BV1XI	51-85150	48-ball VFBGA	Single Chip Enable,	No	Industrial
		CY7C1061GE-10BV1XI			Address MSB A19 at ball G2	Yes	
		CY7C1061G-10BVJXI	-		Dual Chip Enable,	No	
		CY7C1061GE-10BVJXI			Address MSB A19 at ball G2	Yes	
		CY7C1061G-10BVXI			Dual Chip Enable,	No	
		CY7C1061GE-10BVXI	-		Address MSB A19 at ball H6	Yes	
		CY7C1061G-10ZSXI	51-85160	54-pin TSOP II	Dual Chip Enable	No	
		CY7C1061GE-10ZSXI				Yes	
		CY7C1061G-10ZXI	51-85183	48-pin TSOP I	Single Chip Enable	No	
		CY7C1061GE-10ZXI				Yes	
	2.2 V-3.6 V	CY7C1061G30-10BV1XI	51-85150	48-ball VFBGA	Single Chip Enable,	No	
		CY7C1061GE30-10BV1XI	-		Address MSB A19 at ball G2	Yes	
		CY7C1061G30-10BVJXI			Dual Chip Enable,	No	
		CY7C1061GE30-10BVJXI			Address MSB A19 at ball G2	Yes	
		CY7C1061G30-10BVXI			Dual Chip Enable,	No	
		CY7C1061GE30-10BVXI			Address MSB A19 at ball H6	Yes	
		CY7C1061G30-10ZSXI	51-85160	54-pin TSOP II Dual	Dual Chip Enable	No	
		CY7C1061GE30-10ZSXI				Yes	
		CY7C1061G30-10ZXI	51-85183	48-pin TSOP I	Single Chip Enable	No	
		CY7C1061GE30-10ZXI				Yes	
15	1.65 V–2.2 V	CY7C1061GE18-15BV1XI	51-85150	48-ball VFBGA	Single Chip Enable,	Yes	
		CY7C1061G18-15BV1XI			Address MSB A19 at ball G2	No	
		CY7C1061GE18-15BVJXI			Dual Chip Enable,	Yes	
		CY7C1061G18-15BVJXI			Address MSB A19 at ball G2	No	
		CY7C1061GE18-15BVXI			Dual Chip Enable,	Yes	
		CY7C1061G18-15BVXI			Address MSB A19 at ball H6	No	
		CY7C1061GE18-15ZSXI	51-85160	54-pin TSOP II	Dual Chip Enable	Yes	
		CY7C1061G18-15ZSXI	1			No	
		CY7C1061GE18-15ZXI	51-85183	48-pin TSOP I	Single Chip Enable	Yes	
		CY7C1061G18-15ZXI	1			No	



Ordering Information (continued)

Speed (ns)	Voltage Range	Ordering Code	Package Diagram	Package Type (all Pb-free)	Key Features / Differentiators	ERR Pin / Ball	Operating Range
10	4.5 V–5.5 V	CY7C1061G-10BV1XIT	51-85150	48-ball VFBGA	Single Chip Enable,	No	Industrial
		CY7C1061GE-10BV1XIT			Address MSB A19 at ball G2, Tape and Reel	Yes	
		CY7C1061G-10BVJXIT			Dual Chip Enable,	No	
		CY7C1061GE-10BVJXIT			Address MSB A19 at ball G2, Tape and Reel	Yes	
		CY7C1061G-10BVXIT			Dual Chip Enable,	No	
		CY7C1061GE-10BVXIT			Address MSB A19 at ball H6, Tape and Reel	Yes	
		CY7C1061G-10ZSXIT	51-85160	54-pin TSOP II	Dual Chip Enable,	No	
		CY7C1061GE-10ZSXIT			Tape and Reel	Yes	
		CY7C1061G-10ZXIT	51-85183	48-pin TSOP I	Single Chip Enable,	No	
		CY7C1061GE-10ZXIT			Tape and Reel	Yes	
	2.2 V–3.6 V	CY7C1061G30-10BV1XIT	51-85150	48-ball VFBGA	Single Chip Enable,	No	
		CY7C1061GE30-10BV1XIT	_		Address MSB A19 at ball G2, Tape and Reel	Yes	
		CY7C1061G30-10BVJXIT			Dual Chip Enable,	No	
		CY7C1061GE30-10BVJXIT			Address MSB A19 at ball G2, Tape and Reel	Yes	
		CY7C1061G30-10BVXIT			Dual Chip Enable,	No	
		CY7C1061GE30-10BVXIT			Address MSB A19 at ball H6, Tape and Reel	Yes	
		CY7C1061G30-10ZSXIT	51-85160	54-pin TSOP II	Dual Chip Enable, Tape and Reel	No	
		CY7C1061GE30-10ZSXIT				Yes	
		CY7C1061G30-10ZXIT	51-85183	48-pin TSOP I	Single Chip Enable, Tape and Reel	No	
		CY7C1061GE30-10ZXIT				Yes	
15	1.65 V–2.2 V	CY7C1061GE18-15BV1XIT	51-85150	48-ball VFBGA	Single Chip Enable,	Yes	
		CY7C1061G18-15BV1XIT			Address MSB A19 at ball G2, Tape and Reel	No	
		CY7C1061GE18-15BVJXIT			Dual Chip Enable,	Yes	
		CY7C1061G18-15BVJXIT			Address MSB A19 at ball G2, Tape and Reel	No	
		CY7C1061GE18-15BVXIT			Dual Chip Enable,	Yes	
		CY7C1061G18-15BVXIT			Address MSB A19 at ball H6, Tape and Reel	No	
		CY7C1061GE18-15ZSXIT	51-85160	54-pin TSOP II	Dual Chip Enable,	Yes	
		CY7C1061G18-15ZSXIT			Tape and Reel	No	
		CY7C1061GE18-15ZXIT	51-85183	48-pin TSOP I	Single Chip Enable,	Yes	
		CY7C1061G18-15ZXIT			Tape and Reel	No	1

Ordering Code Definitions

Package Diagrams

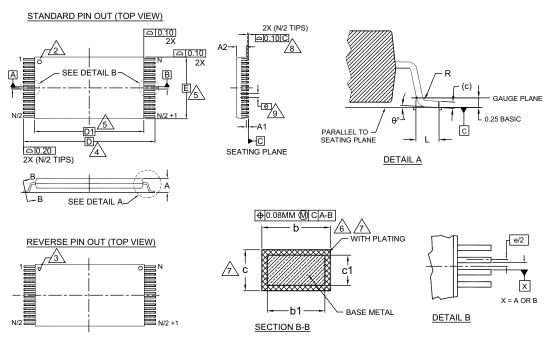
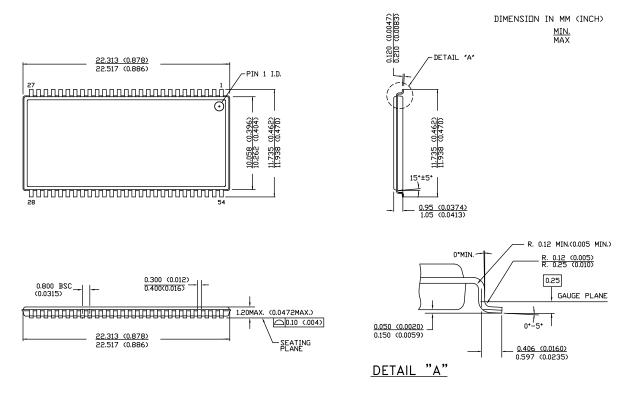


Figure 20. 48-pin TSOP I (12 × 18.4 × 1.0 mm) Z48A Package Outline, 51-85183

	_					
SYMBOL	Ľ	DIMENSIONS				
0111202	MIN.	NOM.	MAX.			
A			1.20			
A1	0.05	-	0.15			
A2	0.95	1.00	1.05			
b1	0.17	0.20	0.23			
b	0.17	0.22	0.27			
c1	0.10		0.16			
с	0.10		0.21			
D	20	0.00 BASIC				
D1	18	.40 BAS	IC			
Е	12	.00 BAS	SIC			
е	0.	50 BAS	IC			
L	0.50	0.60	0.70			
θ	0°	_	8			
R	0.08	—	0.20			
N		48				

NOTES:

DIMENSIONS ARE IN MILLIMETERS (mm).

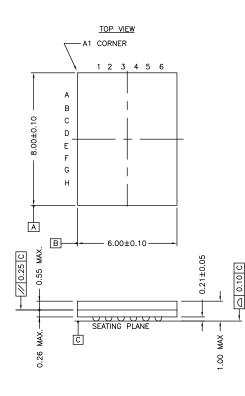

- 2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).
- 3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.
- TO BE DETERMINED AT THE SEATING PLANE [-C-]. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.
- DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE

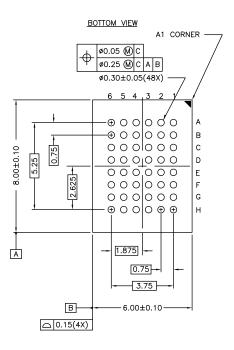
 MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX. MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.
- DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.
- 10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Package Diagrams (continued)

Figure 21. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Z54-II Package Outline, 51-85160


51-85160 *E



Package Diagrams (continued)

Figure 22. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline, 51-85150

NOTE:

PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Acronyms

Acronym	Description
BHE	Byte High Enable
BLE	Byte Low Enable
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
TTL	Transistor-Transistor Logic
VFBGA	Very Fine-Pitch Ball Grid Array
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μS	microsecond
mA	milliampere
mm	millimeter
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1061G/CY7C1061GE, 16-Mbit (1M words × 16-bit) Static RAM with Error-Correcting Code (ECC) Document Number: 001-81540

Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
*P	4791835	NILE	06/09/2015	Changed status from Preliminary to Final.
*Q	5436639	NILE	09/14/2016	Updated Maximum Ratings: Updated Note 9 (Replaced "2 ns" with "20 ns"). Updated DC Electrical Characteristics: Removed Operating Range "2.7 V to 3.6 V" and all values corresponding to V_{OH} parameter. Included Operating Ranges "2.7 V to 3.0 V" and "3.0 V to 3.6 V" and all values corresponding to V_{OH} parameter. Changed minimum value of V_{IH} parameter from 2.2 V to 2 V corresponding to Operating Range "4.5 V to 5.5 V". Updated Ordering Information: Updated part numbers. Updated to new template.
*R	5580947	NILE	01/10/2017	Updated Logic Block Diagram – CY7C1061G. Updated Package Diagrams: spec 51-85183 – Changed revision from *D to *F. Updated to new template.
*S	5775815	AESATMP9	06/16/2017	Updated logo and copyright.
*T	6245720	NILE	07/13/2018	Updated Features: Added Note 2 and referred the same note in "Embedded error-correcting code (ECC) for single-bit error correction". Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of the applications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from any conducts.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[©] Cypress Semiconductor Corporation, 2012–2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other countries intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software is no form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor:

CY7C1061G30-10BVXIT CY7C1061GE30-10BV1XI CY7C1061GE-10BVXI CY7C1061GE30-10BVJXI