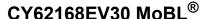


### Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.


### **Continuity of document content**

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

## **Continuity of ordering part numbers**

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com





# 16-Mbit (2M × 8) Static RAM

#### **Features**

■ Very high speed: 45 ns

■ Wide voltage range: 2.20 V to 3.60 V

■ Ultra low standby power

□ Typical standby current: 1.5 µA

Maximum standby current: 12 μA

■ Ultra low active power

□ Typical active current: 7 mA at f = 1 MHz

■ Easy memory expansion with  $\overline{\text{CE}}_1$ ,  $\text{CE}_2$  and  $\overline{\text{OE}}$  features

■ Automatic power-down when deselected

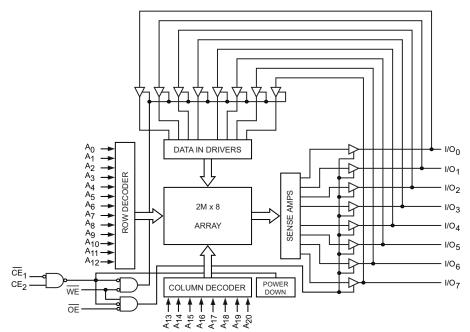
■ CMOS for optimum speed/power

Offered in Pb-free 48-ball FBGA package. For Pb-free 48-pin TSOP I package, refer to CY62167EV30 data sheet.

### **Functional Description**

The CY62168EV30 is a high performance CMOS static RAM organized as 2M words by 8-bits. This device features advanced circuit design to provide an ultra low active current. This is ideal for providing More Battery Life (MoBL) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 90% when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected (Chip Enable 1 ( $\overline{CE}_1$ ) HIGH or Chip Enable 2 ( $\overline{CE}_2$ ) LOW). The input and output pins (I/O0 through I/O7) are placed in a high impedance state when: the device is deselected (Chip Enable 1 ( $\overline{CE}_1$ ) HIGH or Chip Enable 2 ( $\overline{CE}_2$ ) LOW), outputs are disabled ( $\overline{OE}$  HIGH), or a write operation is in progress ( $\overline{Chip}$  Enable 1 ( $\overline{CE}_1$ ) LOW and Chip Enable 2 ( $\overline{CE}_2$ ) HIGH and  $\overline{WE}$  LOW).

Write to the device by taking Chip Enable 1  $(\overline{CE}_1)$  LOW and Chip Enable 2  $(CE_2)$  HIGH and the Write Enable (WE) input LOW. Data on the eight I/O pins  $(I/O_0 \text{ through } I/O_7)$  is then written into the location specified on the address pins  $(A_0 \text{ through } A_{20})$ .


Read from the <u>device</u> by taking Chip Enable 1 ( $\overline{\text{CE}}_1$ ) and Output Enable ( $\overline{\text{OE}}$ ) L<u>OW</u> and Chip Enable 2 ( $\overline{\text{CE}}_2$ ) HIGH while forcing Write Enable ( $\overline{\text{WE}}$ ) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input and output pins (I/O $_0$  through I/O $_7$ ) are placed in a high impedance state when the device is deselected ( $\overline{CE}_1$  HIGH or  $\overline{CE}_2$  LOW), the outputs are disabled ( $\overline{OE}$  HIGH), or a write operation is in progress ( $\overline{CE}_1$  LOW and  $\overline{CE}_2$  HIGH and  $\overline{WE}$  LOW). See the Truth Table on page 12 for a complete description of read and write modes.

For a complete list of related documentation, click here.



## **Logic Block Diagram**





### **Contents**

| Pin Configuration              | 4  |
|--------------------------------|----|
| Product Portfolio              |    |
| Maximum Ratings                | 5  |
| Operating Range                |    |
| DC Electrical Characteristics  |    |
| Capacitance                    |    |
| Thermal Resistance             |    |
| AC Test Loads and Waveforms    | 6  |
| Data Retention Characteristics |    |
| Data Retention Waveform        |    |
| Switching Characteristics      |    |
| Switching Waveforms            |    |
| Truth Table                    | 12 |

| Ordering information                    | 13 |
|-----------------------------------------|----|
| Ordering Code Definitions               | 13 |
| Package Diagram                         | 14 |
| Acronyms                                | 15 |
| Document Conventions                    | 15 |
| Units of Measure                        | 15 |
| Document History Page                   | 16 |
| Sales, Solutions, and Legal Information | 19 |
| Worldwide Sales and Design Support      | 19 |
| Products                                | 19 |
| PSoC® Solutions                         | 19 |
| Cypress Developer Community             | 19 |
| Technical Support                       | 19 |



### **Pin Configuration**

Figure 1. 48-ball FBGA pinout (Top View)<sup>[1]</sup>



### **Product Portfolio**

|               |                           |                           |       |                                               |                           |     | Power Di                  | ssipation                              |                           |     |
|---------------|---------------------------|---------------------------|-------|-----------------------------------------------|---------------------------|-----|---------------------------|----------------------------------------|---------------------------|-----|
| Product       | V <sub>CC</sub> Range (V) |                           | Speed | Operating I <sub>CC</sub> (mA) <sup>[3]</sup> |                           |     | Standby L. (A)            |                                        |                           |     |
| Product       |                           |                           |       | (ns)                                          | f = 1 MHz                 |     | :<br>max                  | Standby I <sub>SB2</sub> (μ <b>A</b> ) |                           |     |
|               | Min                       | <b>Typ</b> <sup>[2]</sup> | Max   |                                               | <b>Typ</b> <sup>[2]</sup> | Max | <b>Typ</b> <sup>[2]</sup> | Max                                    | <b>Typ</b> <sup>[2]</sup> | Max |
| CY62168EV30LL | 2.2                       | 3.0                       | 3.6   | 45                                            | 7                         | 9   | 29                        | 35                                     | 1.5                       | 12  |

- NC pins are not connected on the die.
   Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ)</sub>, T<sub>A</sub> = 25 °C.
   Refer to PIN#183401 for details of changes.



### **Maximum Ratings**

| DC input voltage <sup>[4, 5]</sup> 0.3 V to V <sub>CC</sub> (max) + | 0.3 V  |
|---------------------------------------------------------------------|--------|
| Output current into outputs (LOW)                                   | 20 mA  |
| Static discharge voltage (MIL-STD-883, method 3015)> 2              | 2001 V |
| Latch-up current> 14                                                | 40 mA  |

### **Operating Range**

| Range      | Ambient Temperature (T <sub>A</sub> ) <sup>[6]</sup> | <b>V</b> cc <sup>[7]</sup> |
|------------|------------------------------------------------------|----------------------------|
| Industrial | –40 °C to +85 °C                                     | 2.2 V to 3.6 V             |

### **DC Electrical Characteristics**

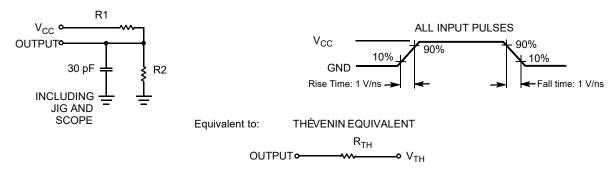
Over the operating range

| 5                                | B t                                           | T 0                                                                                   | Per                                                                          | C          | /62168EV30                | -45                   | 11!4 |
|----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|---------------------------|-----------------------|------|
| Parameter                        | Description                                   | lest Co                                                                               | Test Conditions                                                              |            | <b>Typ</b> <sup>[8]</sup> | Max                   | Unit |
| V <sub>OH</sub>                  | Output HIGH voltage                           | 2.2 ≤ V <sub>CC</sub> ≤ 2.7                                                           | $I_{OH} = -0.1 \text{ mA}$                                                   | 2.0        | _                         | _                     | V    |
|                                  |                                               | 2.7 ≤ V <sub>CC</sub> ≤ 3.6                                                           | $I_{OH} = -1.0 \text{ mA}$                                                   | 2.4        | _                         | _                     |      |
| V <sub>OL</sub>                  | Output LOW voltage                            | 2.2 ≤ V <sub>CC</sub> ≤ 2.7                                                           | I <sub>OL</sub> = 0.1 mA                                                     | -          | _                         | 0.4                   | V    |
|                                  |                                               | 2.7 ≤ V <sub>CC</sub> ≤ 3.6                                                           | I <sub>OH</sub> = 2.1 mA                                                     | _          | _                         | 0.4                   | V    |
| V <sub>IH</sub>                  | Input HIGH voltage                            | 2.2 ≤ V <sub>CC</sub> ≤ 2.7                                                           |                                                                              | 1.8        | _                         | V <sub>CC</sub> + 0.3 | V    |
|                                  |                                               | 2.7 ≤ V <sub>CC</sub> ≤ 3.6                                                           |                                                                              | 2.2        | _                         | V <sub>CC</sub> + 0.3 | V    |
| V <sub>IL</sub>                  | Input LOW voltage                             | 2.2 ≤ V <sub>CC</sub> ≤ 2.7                                                           |                                                                              | -0.3       | _                         | 0.6                   | V    |
|                                  |                                               | 2.7 ≤ V <sub>CC</sub> ≤ 3.6                                                           |                                                                              | -0.3       | _                         | 0.8                   | V    |
| I <sub>IX</sub>                  | Input leakage current                         | $GND \leq V_I \leq V_CC$                                                              |                                                                              | <b>–1</b>  | _                         | +1                    | μΑ   |
| I <sub>OZ</sub>                  | Output leakage current                        | $GND \le V_O \le V_{CC}$                                                              | Output disabled                                                              | <b>–</b> 1 | _                         | +1                    |      |
| I <sub>CC<sup>[9]</sup></sub>    | V <sub>CC</sub> operating supply current      | $f = f_{MAX} = 1/t_{RC}$                                                              | V <sub>CC</sub> = 3.6 V,                                                     | _          | 29                        | 35                    | mA   |
|                                  |                                               | f = 1 MHz                                                                             | I <sub>OUT</sub> = 0 mA,<br>CMOS level                                       | _          | 7                         | 9                     |      |
| I <sub>SB1</sub> <sup>[10]</sup> | Automatic CE power-down current – CMOS inputs |                                                                                       | $V_{1N} \le 0.2 V_{1}$                                                       | -          | 1.5                       | 12                    | μА   |
| I <sub>SB2</sub> <sup>[10]</sup> | Automatic CE power-down current – CMOS inputs | $\overline{CE}_1 \ge V_{CC} - 0.2$<br>$V_{IN} \ge V_{CC} - 0.2 V$<br>$V_{CC} = 3.6 V$ | V or $CE_2 \le 0.2 \text{ V}$ ,<br>or $V_{IN} \le 0.2 \text{ V}$ , $f = 0$ , | -          | 1.5                       | 12                    | μA   |

- 4.  $V_{IL}(min) = -2.0 \text{ V}$  for pulse durations less than 20 ns.
- 5.  $V_{IH}(max) = V_{CC} + 0.75 \text{ V}$  for pulse durations less than 20 ns.
- 6. T<sub>A</sub> is the "Instant-On" case temperature.
- 7. Full device AC operation assumes a 100  $\mu$ s ramp time from 0 to  $V_{CC}(min)$  and 200  $\mu$ s wait time after  $V_{CC}$  stabilization.
- 8. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at  $V_{CC} = V_{CC}(typ)$ ,  $T_A = 25$  °C.
- 9. Refer to PIN#183401 for details of changes.
- 10. Chip enables  $(\overline{\text{CE}}_1 \text{ and CE}_2)$  must be at CMOS level to meet the  $I_{SB1} / I_{SB2} / I_{CCDR}$  spec. Other inputs can be left floating.



### Capacitance


| Parameter <sup>[11, 12]</sup> | Description        | Test Conditions                                                     | Max | Unit |
|-------------------------------|--------------------|---------------------------------------------------------------------|-----|------|
| C <sub>IN</sub>               | Input capacitance  | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$ | 10  | pF   |
| C <sub>OUT</sub>              | Output capacitance |                                                                     | 10  | pF   |

### **Thermal Resistance**

| Parameter <sup>[11, 12]</sup> | Description                           | Test Conditions                                                         | 48-ball FBGA | Unit |
|-------------------------------|---------------------------------------|-------------------------------------------------------------------------|--------------|------|
| $\Theta_{JA}$                 |                                       | Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board | 31.5         | °C/W |
| Θ <sub>JC</sub>               | Thermal resistance (junction to case) |                                                                         | 15.75        | °C/W |

### **AC Test Loads and Waveforms**

Figure 2. AC Test Loads and Waveforms



| Parameters      | 2.5 V (2.2 V to 2.7 V) | 3.0 V (2.7 V to 3.6 V) | Unit |
|-----------------|------------------------|------------------------|------|
| R1              | 16600                  | 1103                   | Ω    |
| R2              | 15400                  | 1554                   | Ω    |
| R <sub>TH</sub> | 8000                   | 645                    | Ω    |
| V <sub>TH</sub> | 1.2                    | 1.75                   | V    |

 <sup>11.</sup> Tested initially and after any design or process changes that may affect these parameters.
 12. Refer to PIN#183401 for details of changes.



### **Data Retention Characteristics**

Over the Operating Range

| Parameter                         | Description                          | Conditions                                                                                                                                                                                                                         | Min | Typ <sup>[13]</sup> | Max | Unit |
|-----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------|-----|------|
| $V_{DR}$                          | V <sub>CC</sub> for data retention   |                                                                                                                                                                                                                                    | 1.5 | -                   | 3.6 | V    |
| I <sub>CCDR</sub> <sup>[14]</sup> | Data retention current               | $\begin{aligned} & \frac{V_{CC}}{CE_1} = 1.5 \text{ V} \\ & \frac{V_{CC}}{CE_1} \ge V_{CC} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V} \\ & \frac{V_{IN}}{2} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V} \end{aligned}$ | _   | _                   | 10  | μA   |
| t <sub>CDR</sub> <sup>[15]</sup>  | Chip deselect to data retention time |                                                                                                                                                                                                                                    | 0   | _                   | _   | ns   |
| t <sub>R</sub> <sup>[16]</sup>    | Operation recovery time              |                                                                                                                                                                                                                                    | 45  | _                   | _   | ns   |

### **Data Retention Waveform**

Figure 3. Data Retention Waveform



<sup>13.</sup> Typical values  $\underline{\text{are}}$  included for reference only and are not guaranteed or tested. Typical values are measured at  $V_{CC} = V_{CC}(\text{typ})$ ,  $T_A = 25 \,^{\circ}\text{C}$ .

<sup>14.</sup> Chip enables (CE<sub>1</sub> and CE<sub>2</sub>) must be at CMOS level to meet the I<sub>SB1</sub> / I<sub>SB2</sub> / I<sub>CCDR</sub> spec. Other inputs can be left floating.

<sup>15.</sup> Tested initially and after any design or process changes that may affect these parameters.

<sup>16.</sup> Full Device AC operation requires linear  $V_{CC}$  ramp from  $V_{DR}$  to  $V_{CC}(min) \ge 100~\mu s$  or stable at  $V_{CC}(min) \ge 100~\mu s$ .



### **Switching Characteristics**

Over the Operating Range

| Parameter <sup>[17]</sup>      | Description                                                               | 45       | ns  |      |
|--------------------------------|---------------------------------------------------------------------------|----------|-----|------|
| Parameter                      | Description                                                               | Min      | Max | Unit |
| Read Cycle                     |                                                                           | 1        |     |      |
| t <sub>RC</sub>                | Read cycle time                                                           | 45       | _   | ns   |
| t <sub>AA</sub>                | Address to data valid                                                     | -        | 45  | ns   |
| t <sub>OHA</sub>               | Data hold from address change                                             | 10       | -   | ns   |
| t <sub>ACE</sub>               | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to data valid                | -        | 45  | ns   |
| t <sub>DOE</sub>               | OE LOW to data valid                                                      | -        | 22  | ns   |
| t <sub>LZOE</sub>              | OE LOW to low Z <sup>[18]</sup>                                           | 5        | -   | ns   |
| t <sub>HZOE</sub>              | OE HIGH to high Z <sup>[18, 19]</sup>                                     | -        | 18  | ns   |
| t <sub>LZCE</sub>              | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to low Z <sup>[18]</sup>     | 10       | -   | ns   |
| t <sub>HZCE</sub>              | CE <sub>1</sub> HIGH or CE <sub>2</sub> LOW to high Z <sup>[18, 19]</sup> | -        | 18  | ns   |
| t <sub>PU</sub>                | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to power-up                  | 0        | -   | ns   |
| t <sub>PD</sub>                | CE <sub>1</sub> HIGH or CE <sub>2</sub> LOW to power-down                 | -        | 45  | ns   |
| Write Cycle <sup>[20, 21</sup> | j                                                                         | <u>.</u> |     |      |
| t <sub>WC</sub>                | Write cycle time                                                          | 45       | _   | ns   |
| t <sub>SCE</sub>               | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to write end                 | 35       | -   | ns   |
| t <sub>AW</sub>                | Address setup to write end                                                | 35       | -   | ns   |
| t <sub>HA</sub>                | Address hold from write end                                               | 0        | _   | ns   |
| t <sub>SA</sub>                | Address setup to write start                                              | 0        | _   | ns   |
| t <sub>PWE</sub>               | WE pulse width                                                            | 35       | -   | ns   |
| t <sub>SD</sub>                | Data setup to write end                                                   | 25       | -   | ns   |
| t <sub>HD</sub>                | Data hold from write end                                                  | 0        | -   | ns   |
| t <sub>HZWE</sub>              | WE LOW to high Z <sup>[18, 19]</sup>                                      | -        | 18  | ns   |
| t <sub>LZWE</sub>              | WE HIGH to low Z <sup>[18]</sup>                                          | 10       | _   | ns   |

<sup>17.</sup> Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V<sub>CC(typ)</sub>/2, input pulse levels of 0 to V<sub>CC(typ)</sub>, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> as shown in Figure 2 on page 6.

<sup>18.</sup> At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE}$ ,  $t_{HZOE}$  is less than  $t_{LZOE}$ , and  $t_{HZWE}$  is less than  $t_{LZWE}$  for any given device.

<sup>19.</sup>  $t_{\text{HZOE}}$ ,  $t_{\text{HZCE}}$ , and  $t_{\text{HZWE}}$  transitions are measured when the outputs enter a high impedance state.

<sup>20.</sup> The internal write time of the memory is defined by the overlap of WE, CE<sub>1</sub> = V<sub>IL</sub>, and CE<sub>2</sub> = V<sub>IH</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.

<sup>21.</sup> The minimum write cycle pulse width for Write Cycle No. 3 (WE Controlled,  $\overline{\text{OE}}$  LOW) should be equal to sum of  $t_{\text{ND}}$  and  $t_{\text{HZWE}}$ .



### **Switching Waveforms**

Figure 4. Read Cycle No. 1 (Address Transition Controlled)  $^{[22,\,23]}$ 

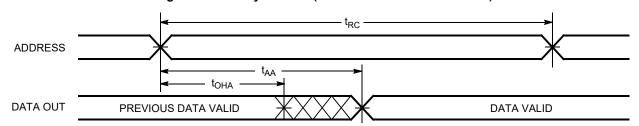
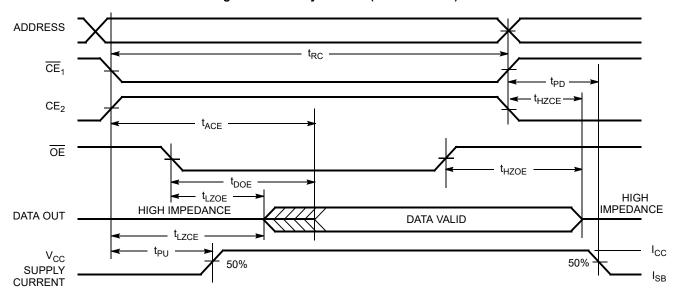




Figure 5. Read Cycle No. 2 ( $\overline{\text{OE}}$  Controlled)[23, 24]



<sup>22.</sup> The device is continuously selected.  $\overline{OE}$ ,  $\overline{CE}_1 = V_{IL}$ , and  $CE_2 = V_{IH}$ .

<sup>23.</sup>  $\overline{\text{WE}}$  is HIGH for read cycle.

<sup>24.</sup> Address valid before or similar to  $\overline{\text{CE}}_1$  transition LOW and  $\text{CE}_2$  transition HIGH.



### Switching Waveforms (continued)

Figure 6. Write Cycle No. 1 (WE Controlled)<sup>[25, 26, 27]</sup>

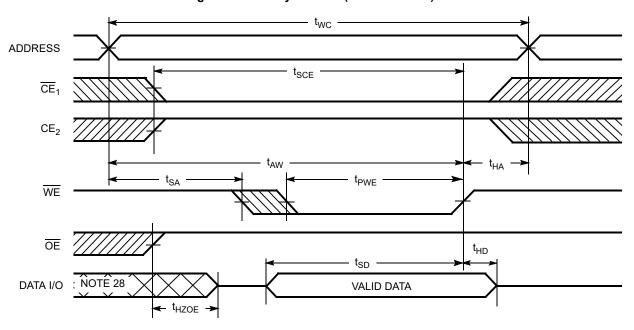
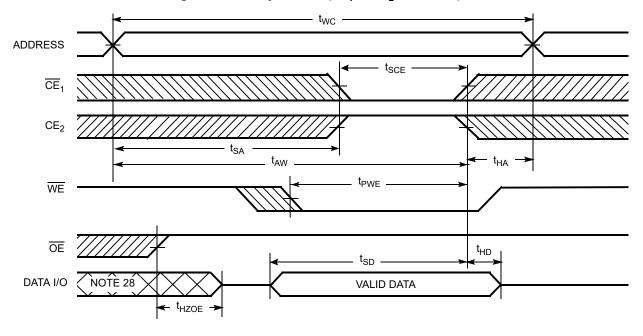
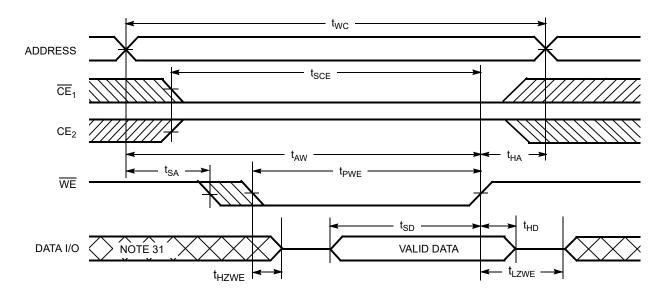




Figure 7. Write Cycle No. 2 ( $\overline{\text{CE}}_1$  or  $\text{CE}_2$  Controlled) $^{[25,\ 26,\ 27]}$ 



<sup>25.</sup> The internal write time of the memory is defined by the overlap of WE, CE<sub>1</sub> = V<sub>IL</sub>, and CE<sub>2</sub> = V<sub>IH</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing should be referenced to the edge of the signal that terminates the write.

26. Data I/O is high impedance if OE = V<sub>IH</sub>.


<sup>27.</sup> If  $\overline{\text{CE}}_1$  goes HIGH and  $\text{CE}_2$  goes LOW simultaneously with  $\overline{\text{WE}} = \text{V}_{\text{IH}}$ , the output remains in a high impedance state.

<sup>28.</sup> During this period the I/Os are in output state. Do not apply input signals.



### Switching Waveforms (continued)

Figure 8. Write Cycle No. 3 (WE Controlled, OE LOW)[29, 30]



<sup>29.</sup> If  $\overline{\text{CE}}_1$  goes HIGH and  $\text{CE}_2$  goes LOW simultaneously with  $\overline{\text{WE}}$  =  $\text{V}_{\text{IH}}$ , the output remains in a high impedance state.

<sup>30.</sup> The minimum write cycle pulse width should be equal to sum of  $t_{SD}$  and  $t_{HZWE}$ .

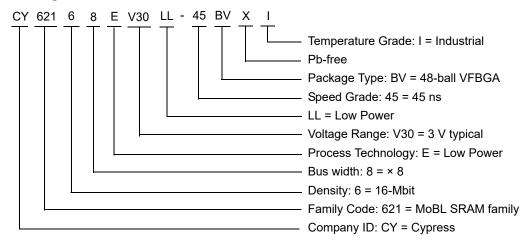
<sup>31.</sup> During this period the I/Os are in output state. Do not apply input signals.



### **Truth Table**

| CE <sub>1</sub>   | CE <sub>2</sub>   | WE | OE | I/O                                            | Mode                | Power                      |
|-------------------|-------------------|----|----|------------------------------------------------|---------------------|----------------------------|
| Н                 | X <sup>[32]</sup> | Х  | Х  | High Z                                         | Deselect/power-down | Standby (I <sub>SB</sub> ) |
| X <sup>[32]</sup> | L                 | Х  | Х  | High Z                                         | Deselect/power-down | Standby (I <sub>SB</sub> ) |
| L                 | Н                 | Н  | L  | Data out (I/O <sub>0</sub> –I/O <sub>7</sub> ) | Read                | Active (I <sub>CC</sub> )  |
| L                 | Н                 | Н  | Н  | High Z                                         | Output disabled     | Active (I <sub>CC</sub> )  |
| L                 | Н                 | L  | Х  | Data in (I/O <sub>0</sub> –I/O <sub>7</sub> )  | Write               | Active (I <sub>CC</sub> )  |

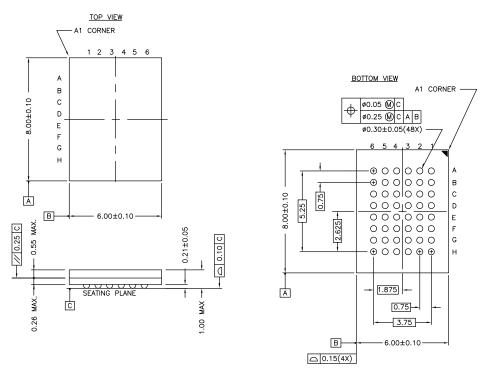
Note
32. The 'X' (Do not care) state for the chip enables in the truth table refers to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.




### **Ordering Information**

The below table lists the CY62168EV30 MoBL key package features and ordering codes. The table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at <a href="http://www.cypress.com">www.cypress.com</a> and refer to the product summary page at <a href="http://www.cypress.com/products">http://www.cypress.com/products</a>.

| Speed (ns) | Ordering Code        | Package Diagram | Package Type            | Operating Range |  |
|------------|----------------------|-----------------|-------------------------|-----------------|--|
| 45         | CY62168EV30LL-45BVXI | 51-85150        | 48-ball VFBGA (Pb-free) | Industrial      |  |


### **Ordering Code Definitions**





### **Package Diagram**

Figure 9. 48-ball VFBGA (6 × 8 × 1 mm) BV48/BZ48 Package Outline, 51-85150



NOTE:
PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 \*H



### **Acronyms**

Table 1. Acronyms Used in this Document

| Acronym                          | Description                             |  |  |
|----------------------------------|-----------------------------------------|--|--|
| CE                               | Chip Enable                             |  |  |
| CMOS                             | Complementary Metal Oxide Semiconductor |  |  |
| FBGA                             | Fine-Pitch Ball Grid Array              |  |  |
| I/O                              | Input/Output                            |  |  |
| ŌĒ                               | Output Enable                           |  |  |
| SRAM Static Random Access Memory |                                         |  |  |
| TSOP Thin Small Outline Package  |                                         |  |  |
| VFBGA                            | Very Fine-Pitch Ball Grid Array         |  |  |
| WE Write Enable                  |                                         |  |  |

### **Document Conventions**

### **Units of Measure**

Table 2. Units of Measure

| Symbol         | Unit of Measure |  |  |
|----------------|-----------------|--|--|
| °C             | degree Celsius  |  |  |
| MHz megahertz  |                 |  |  |
| μA microampere |                 |  |  |
| μS             | microsecond     |  |  |
| mA             | milliampere     |  |  |
| mm millimeter  |                 |  |  |
| ns nanosecond  |                 |  |  |
| Ω              | ohm             |  |  |
| %              | percent         |  |  |
| pF             | picofarad       |  |  |
| V              | volt            |  |  |
| W              | watt            |  |  |



# **Document History Page**

| Document Title: CY62168EV30 MoBL <sup>®</sup> , 16-Mbit (2M × 8) Static RAM<br>Document Number: 001-07721 |         |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rev.                                                                                                      | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| **                                                                                                        | 457686  | NXR                | 04/26/2006         | New data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| *A                                                                                                        | 464509  | NXR                | 05/26/2006         | Removed TSOP I package related information in all instances across the document. Updated Features: Added Note "For 48-pin TSOP I pin configuration and ordering information, please refer to CY62167EV30 Data sheet." and referred the same note in 48-pin TSOP I package. Updated DC Electrical Characteristics: Changed typical value of $I_{CC}$ parameter from 15 mA to 22 mA corresponding to Test Condition "f = $f_{max}$ ". Changed maximum value of $I_{CC}$ parameter from 40 mA to 25 mA corresponding to Test Condition "f = $f_{max}$ ". Changed typical value of $I_{CC}$ parameter from 2 mA to 2.2 mA corresponding to Test Condition "f = 1 MHz". Changed typical value of $I_{SB2}$ parameter from 1.3 $\mu$ A to 1.5 $\mu$ A. Updated Data Retention Characteristics: Changed maximum value of $I_{CCDR}$ parameter from 8.5 $\mu$ A to 8 $\mu$ A. Updated Ordering Information: Updated part numbers. Updated Package Diagram: Removed spec 51-85183 Rev. *A. |  |
| *B                                                                                                        | 1138883 | VKN                | 06/08/2007         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| *C                                                                                                        | 2934385 | VKN                | 06/03/2010         | Updated Functional Description: Corrected typo. Updated Operating Range: Updated Note 7 (Changed wait time after VCC stabilization from 100 μs to 200 μs). Updated Truth Table: Added Note 32 and referred the same note in "CE <sub>1</sub> " column and "CE <sub>2</sub> " column. Updated Package Diagram: spec 51-85150 – Changed revision from *D to *E. Updated to new template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |



### **Document History Page** (continued)

| ocument Title: CY62168EV30 MoBL <sup>®</sup> , 16-Mbit (2M × 8) Static RAM<br>ocument Number: 001-07721 |         |                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------|---------|-----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rev.                                                                                                    | ECN No. | Orig. of Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *D                                                                                                      | 3279426 | RAME            | 06/10/2011         | Updated Functional Description: Removed Note "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines." in page 1 and its reference Updated Package Diagram: spec 51-85150 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *E                                                                                                      | 4100078 | VINI            | 08/20/2013         | Updated Switching Characteristics: Added Note 17 and referred the same note in "Parameter" column. Updated Package Diagram: spec 51-85150 – Changed revision from *F to *H. Updated to new template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *F                                                                                                      | 4126351 | NILE            | 09/17/2013         | Updated Maximum Ratings:<br>Updated Note 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *G                                                                                                      | 4434949 | VINI            | 07/09/2014         | Updated Switching Characteristics: Added Note 21 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 30 and referred the same note in Figure 8. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *H                                                                                                      | 4576406 | VINI            | 01/16/2015         | Updated Functional Description: Added "For a complete list of related documentation, click here." at the end. Updated to new template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *                                                                                                       | 4841338 | VINI            | 07/20/2015         | Updated Maximum Ratings: Referred Notes 4, 5 in "Supply Voltage to Ground Potential". Updated Thermal Resistance: Replaced "two-layer" with "four-layer" in "Test Conditions" column. Changed value of $\Theta_{JA}$ parameter from 55 °C/W to 52.3 °C/W corresponding to 48-ball FBGA package. Changed value of $\Theta_{JC}$ parameter from 16 °C/W to 7.91 °C/W corresponding to 48-ball FBGA package. Completing Sunset Review.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *J                                                                                                      | 6284382 | NILE            | 08/17/2018         | Updated Maximum Ratings: Changed value of Latch-Up current from "> 200 mA" to "> 140 mA". Updated DC Electrical Characteristics: Changed typical value of $I_{CC}$ parameter from 25 mA to 29 mA corresponding to Test Condition "f = $f_{max}$ ". Changed maximum value of $I_{CC}$ parameter from 30 mA to 35 mA corresponding to Test Condition "f = $f_{max}$ ". Changed typical value of $I_{CC}$ parameter from 2.2 mA to 7 mA corresponding to Test Condition "f = 1 MHz". Changed maximum value of $I_{CC}$ parameter from 4 mA to 9 mA corresponding to Test Condition "f = 1 MHz". Updated Capacitance: Changed value of $I_{CC}$ parameter from 8 pF to 10 pF. Updated Thermal Resistance: Replaced "two-layer" with "four-layer" in "Test Conditions" column. Changed value of $\Theta_{JC}$ parameter from 52.3 °C/W to 31.50 °C/W corresponding to 48-ball FBGA package. Changed value of $\Theta_{JC}$ parameter from 7.91 °C/W to 15.75 °C/W corresponding to 48-ball FBGA package. |



# **Document History Page** (continued)

| Document Title: CY62168EV30 MoBL <sup>®</sup> , 16-Mbit (2M × 8) Static RAM<br>Document Number: 001-07721 |         |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Rev.                                                                                                      | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| *J (cont.)                                                                                                | 6284382 | NILE               | 08/17/2018         | Updated Switching Characteristics: Removed Note "In an earlier revision of this device, under a specific application condition, READ and WRITE operations were limited to switching of the chip enable signal as described in the Application Note AN66311. However, the issue has been fixed and in production now, and hence, this Application Note is no longer applicable. It is available for download on our website as it contains information on the date code of the parts, beyond which the fix has been in production." and its reference in "Parameter" column. Updated to new template. Completing Sunset Review. |  |
| *K                                                                                                        | 6294735 | NILE               | 08/29/2018         | Added Footnotes 3 and 12, referring to PIN# 183401 associated with the changes in Rev *J of this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |



### Sales, Solutions, and Legal Information

#### **Worldwide Sales and Design Support**

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### **Products**

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot cypress.com/memory Memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

### PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

#### **Cypress Developer Community**

Community | Projects | Video | Blogs | Training | Components

### **Technical Support**

cypress.com/support

© Cypress Semiconductor Corporation, 2006-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or ropramming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, unclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not li

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-07721 Rev. \*K Revised August 29, 2018 Page 19 of 19

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Cypress Semiconductor: CY62168EV30LL-45BVXI