Renesns

Features

- True Dual-Ported memory cells which allow simultaneous reads of the same memory location
- High-speed access
- Commercial:15ns(max.)
- Industrial:20ns(max.)
- Low-power operation
- IDT7007L

Active: 850 mW (typ.)
Standby: 1mW (typ.)

- IDT7007 easily expands data bus width to 16 bits or more using the Master/Slave select when cascading more than one device
- $M / \bar{S}=\mathrm{H}$ for $\overline{B U S Y}$ output flag on Master, $M / \bar{S}=L$ for $\overline{B U S Y}$ input on Slave
- Interrupt Flag
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- TTL-compatible, single 5V ($\pm 10 \%$) power supply
- Available in a 68-pin PLCC and a 80-pin TQFP
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available for selected speeds
- Green parts available, see ordering information

Functional Block Diagram

NOTES:

1. (MASTER): $\overline{B U S Y}$ is output; (SLAVE): $\overline{B U S Y}$ is input.
2. BUSY and INT outputs are non-tri-stated push-pull.

SEPTEMBER 2019

Renesas

7007L
High-Speed 32K x 8 Dual-Port Static RAM

Description

The IDT7007 is a high-speed $32 \mathrm{~K} \times 8$ Dual-Port Static RAM. The IDT7007 isdesignedto beusedasastand-alone256K-bitDual-PortRAM or as a combinationMASTER/SLAVE Dual-PortRAM for 16-bit-or-more word systems. Using the IDT MASTER/SLAVEDual-PortRAM approach in 16-bitor wider memory system applications results infull-speed, errorfree operation without the need for additional discrete logic.

This device provides two independent ports with separate control, address, and I/O pins that permitindependent, asynchronous access for
reads or writes to any location in memory. An automatic power down feature controlled by $\overline{\mathrm{CE}}$ permits the on-chip circuitry of each portto enter a very LOW standby power mode.

Fabricated using CMOS high-performance technology, these devices typically operate on only 850 mW of power.

The IDT7007 is packaged in a 68-pin PLCC and an 80-pin thin quad flatpackTQFP.

Pin Configurations ${ }^{(1,2,3)}$

NOTES:

1. All Vcc pins must be connected to power supply.
2. All GND pins must be connected to ground.
3. Package body is approximately .95 in $x .95$ in $x .17$ in.
4. This package code is used to reference the package diagram.

7007L
High-Speed 32K x 8 Dual-Port Static RAM

Pin Configurations ${ }^{(1,2,3)}$ (con't.)

NOTES:

1. All Vcc pins must be connected to power supply.
2. All GND pins must be connected to ground.
3. Package body is approximately $14 \mathrm{~mm} \times 14 \mathrm{~mm} \times 1.4 \mathrm{~mm}$.
4. This package code is used to reference the package diagram.

7007L
High-Speed 32K x 8 Dual-Port Static RAM

Pin Configurations ${ }^{(1,2,3)}$ (con't.)

NOTES:

1. All Vcc pins must be connected to power supply
2. All GND pins must be connected to ground.
3. Package body is approximately 1.8 in $\times 1.8$ in $\times .16$ in.
4. This package code is used to reference the package diagram.
5. This text does not indicate orientation of the actual part marking

Pin Names

Left Port	Right Port	Names
$\overline{\text { CEL }}$	$\overline{\mathrm{C}} \mathrm{E}$	Chip Enables
$\mathrm{R} / \bar{W} \mathrm{~L}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	Read/Write Enable
$\overline{\mathrm{OE}}$	$\overline{\mathrm{O}} \mathrm{R}$	Output Enable
Aol - A14L	Aor - A14R	Address
I/OoL - //O7L	I/OOR - //OTR	Data Input/Output
$\overline{\text { SEML }}$	$\overline{S E M R}$	Semaphore Enable
$\overline{\text { INTL }}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	Interrupt Flag
$\overline{\text { BUSYL }}$		Busy Flag
M/S		Master or Slave Select
Vcc		Power
GND		Ground

Truth Table I: Non-Contention Read/Write Control

Inputs $^{(1)}$				Outputs	
$\bar{C} \bar{E}$	R/W	$\overline{\mathrm{OE}}$	$\overline{\text { SEM }}$	I/Oo-7	
H	X	X	H	High-Z	Deselected: Power-Down
L	L	X	H	DATAIN	Write to Memory
L	H	L	H	DATAout	Read Memory
X	X	H	X	High-Z	Outputs Disabled

NOTE:
2940 tbl 02

1. $A 0 L-A 14 L \neq A 0 R-A 14 R$

Truth Table II: Semaphore Read/Write Control ${ }^{(1)}$

Inputs				Outputs	
$\overline{\mathrm{CE}}$	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\mathrm{OE}}$	$\overline{\mathrm{SEM}}$	$\mathrm{I} / \mathrm{O}_{0}-7$	
H	H	L	L	DATAOUT	Read Semaphore Flag Data Out (//Oo-//O7)
H	\uparrow	X	L	DATAIN	Write I/O0 into Semaphore Flag
L	X	X	L	-	Not Allowed

NOTE:

1. There are eight semaphore flags written to via I/Oo and read from all I/O's. These eight semaphores are addressed by A0 - A2.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	Commercial \& Industrial	Military	Unit
VTERM $^{(2)}$	lerminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +150	-65 to +150	${ }^{\circ} \mathrm{C}$
lout	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VTERM mustnotexceedVcc $+10 \%$ formorethan 25% of the cycletimeor10nsmaximum, and is limited to $\leq 20 \mathrm{~mA}$ for the period of V TERM $\geq \mathrm{Vcc}+10 \%$.

Capacitance ($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{Mhz}$)

Symbol	Parameter $^{(1)}$	Conditions $^{(2)}$	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	9	pF
Cout	Output Capacitance	Vout $=3 \mathrm{dV}$	10	pF

NOTES:

1. This parameter is determined by device characterization but is not production tested. TQFP package only.
2. 3 dV represents the interpolated capacitance when the input and output signals switch from 0 V to 3 V or from 3 V to OV .

Maximum Operating Temperature and Supply Voltage ${ }^{(1)}$

Grade	Ambient Temperature	GND	Vcc
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0 V	$5.0 \mathrm{~V} \pm 10 \%$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$5.0 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$5.0 \mathrm{~V} \pm 10 \%$

NOTES:

1. This is the parameter TA. This is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VcC	Supply Voltage	4.5	5.0	5.5	V
GND	Ground	0	0	0	V
VIH	Input High Voltage	2.2	-	$6.0^{(2)}$	V
VIL	Input Low Voltage	$-0.5^{(1)}$	-	0.8	V

NOTES:

1. $\mathrm{VIL} \geq-1.5 \mathrm{~V}$ for pulse width less than 10 ns .
2. Vterm must not exceed Vcc $+10 \%$.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (Vcc=5.0V $\pm 10 \%$)

Symbol	Parameter	Test Conditions	7007S		7007L		Unit		
			Min.	Max.	Min.	Max.			
\|	니		Input Leakage Current ${ }^{(1)}$	$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{VIN}=0 \mathrm{~V}$ to Vcc	-	10	-	5	$\mu \mathrm{A}$
\|	LO		Output Leakage Current	$\overline{\mathrm{CE}}=\mathrm{V} \mathrm{IH}$, Vout $=0 \mathrm{~V}$ to Vcc	-	10	-	5	$\mu \mathrm{A}$
Vol	Output Low Voltage	$\mathrm{loL}=4 \mathrm{~mA}$	-	0.4	-	0.4	V		
Vor	Output High Voltage	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	2.4	-	V		

NOTE:

1. At $\mathrm{Vcc} \leq 2.0 \mathrm{~V}$, input leakages are undefined.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ${ }^{(1)}$ ($\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Condition	Version		$\begin{gathered} \text { 7007X15 } \\ \text { Com'l Only } \end{gathered}$		$\begin{aligned} & \text { 7007X20 } \\ & \text { Com'l \& Ind } \end{aligned}$		7007X25 Com'l, Ind \& Military		Unit
					Typ. ${ }^{(2)}$	Max.	Typ. ${ }^{(2)}$	Max.	Typ. ${ }^{(2)}$	Max.	
ICC	Dynamic Operating Current (Both Ports Active)	$\begin{aligned} & \overline{\mathrm{CE}}=\text { VIL, Outputs Disabled } \\ & \overline{S E M}=V / H \\ & f=f M A X X^{(3)} \end{aligned}$	COM'L	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$	$\begin{aligned} & 325 \\ & 285 \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & 315 \\ & 275 \end{aligned}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 305 \\ & 265 \end{aligned}$	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	$\overline{180}$	$\overline{315}$	$\begin{aligned} & 170 \\ & 170 \end{aligned}$	$\begin{aligned} & 345 \\ & 305 \end{aligned}$	
ISB1	Standby Current (Both Ports - TTL Level Inputs)	$\begin{aligned} & \overline{C E L}=\bar{C} \bar{E}_{R}=V \mathbb{H} \\ & \overline{S E M R}=\overline{S E M L}=V \mathbb{H} \\ & f=\text { fMAX }^{(3)} \end{aligned}$	COM'L	S	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 85 \\ & 60 \end{aligned}$	30 30	85 60	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 85 \\ & 60 \end{aligned}$	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	$\overline{30}$	$\overline{80}$	25 25	100 80	
ISB2	Standby Current (One Port - TTL Level Inputs)	$\bar{C} \overline{E D}^{\prime \prime} A^{\prime \prime}=\mathrm{VIL}$ and $\overline{\mathrm{C}} \bar{E}^{\prime \prime} \mathrm{B}^{\prime \prime}=\mathrm{VH}^{(5)}$ Active Port Outputs Disabled, $f=f m a x^{(3)}$$\overline{\operatorname{SEMR}}=\overline{\mathrm{SEML}}=\mathrm{V} \mathrm{H}$	COM'L	S	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & 220 \\ & 190 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 210 \\ & 180 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 200 \\ & 170 \end{aligned}$	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	$\overline{115}$	210	$\begin{aligned} & 105 \\ & 105 \end{aligned}$	$\begin{aligned} & 230 \\ & 200 \end{aligned}$	
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports $\overline{C E}$ and$\begin{aligned} & \overline{C E R} \geq V C C-0.2 \mathrm{~V} \\ & \mathrm{VIN} \geq \mathrm{VCC}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{VN}<0.2 \mathrm{~V}, \mathrm{f}=0^{(4)} \\ & \mathrm{SEMR}=\mathrm{SEML} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	COM'L	S	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	15 5	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	15 5	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	$\overline{0.2}$	$\overline{10}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	30 10	
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)		COM'L	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	$\begin{aligned} & 190 \\ & 160 \end{aligned}$	$\begin{aligned} & 110 \\ & 110 \end{aligned}$	$\begin{aligned} & 185 \\ & 160 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 175 \\ & 160 \end{aligned}$	mA
			 IND	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	-	-	$\overline{110}$	$\overline{185}$	100	200 175	

NOTES:

1. ' X ' in part numbers indicates power rating (S or L)
2. $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}$, and are not production tested. $\operatorname{ICCDC}=120 \mathrm{~mA}$ (Typ.)
3. At $f=f m a x$, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of $1 /$ tre, and using "AC Test Conditions" of input levels of GND to 3 V .
4. $f=0$ means no address or control lines change.
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

7007L
High-Speed 32K x 8 Dual-Port Static RAM
Industrial and Commercial Temperature Ranges
DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range ${ }^{(1)}$ (con't.) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$)

Symbol	Parameter	Test Condition	Version		7007X35 Com'I, Ind \& Military		7007X55 Com'l, Ind \& Military		Unit
					Typ. ${ }^{(2)}$	Max.	Typ. ${ }^{(2)}$	Max.	
ICC	Dynamic Operating Current (Both Ports Active)	$\begin{aligned} & \overline{\mathrm{C} E}=\text { VIL, Outputs Disabled } \\ & \overline{S E M}=V / H \\ & \mathrm{f}=\mathrm{fMAX}{ }^{(3)} \end{aligned}$	COM'L	S	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 295 \\ & 255 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 270 \\ & 230 \end{aligned}$	mA
			$\begin{array}{\|l\|} \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \end{aligned}$	$\begin{aligned} & 335 \\ & 295 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & 310 \\ & 270 \end{aligned}$	
ISB1	Standby Current (Both Ports - TLL Level Inputs)	$\begin{aligned} & {\bar{C} E_{L}=\bar{C}_{R}=V \mathbb{H}}^{\overline{S E M R}=\overline{S E M L}=V \mathbb{H}} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{f} A X^{(3)}} \end{aligned}$	COM'L	S	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 85 \\ & 60 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 85 \\ & 60 \end{aligned}$	mA
			$\begin{aligned} & \text { MIL \& } \\ & \text { IND } \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 100 \\ 80 \end{gathered}$	$\begin{aligned} & 13 \\ & 13 \end{aligned}$	$\begin{aligned} & 100 \\ & 80 \end{aligned}$	
ISB2	Standby Current (One Port - TLL Level Inputs)	Active Port Outputs Disabled, $\mathrm{f}=\mathrm{fm} \mathrm{XX}^{(3)}$$\overline{\mathrm{SEMR}}=\overline{\mathrm{SEML}}=\mathrm{V} \mathbb{H}$	COM'L	S	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 185 \\ & 155 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	165 135	mA
			$\begin{array}{\|l\|l} \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 215 \\ & 185 \end{aligned}$	$\begin{aligned} & 85 \\ & 85 \end{aligned}$	$\begin{aligned} & 195 \\ & 165 \end{aligned}$	
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	$\begin{aligned} & \text { Both Ports } \overline{C E L} \text { and } \\ & \overline{C E R} \geq V C C-0.2 \mathrm{~V} \\ & \mathrm{VIN} \geq \mathrm{VCC}-0.2 \mathrm{~V} \text { or } \\ & \left.\mathrm{VIN}<0.2 \mathrm{~V}, \mathrm{f}=0^{4}\right) \\ & \mathrm{SEMR}=\overline{\mathrm{SEML}} \geq \mathrm{VCC}-0.2 \mathrm{~V} \end{aligned}$	COM'L	S	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{gathered} 15 \\ 5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	15 5	mA
			$\begin{array}{\|l\|} \mathrm{MIL} \\ \text { IND } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.2 \end{aligned}$	30 10	
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)		COM'L	S	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 160 \\ & 135 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 135 \\ & 110 \end{aligned}$	mA
			$\begin{array}{\|l\|} \hline \text { MIL \& } \\ \text { IND } \end{array}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 90 \\ & 90 \end{aligned}$	$\begin{aligned} & 190 \\ & 165 \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 165 \\ & 140 \end{aligned}$	

NOTES:

1. ' X ' in part numbers indicates power rating (S or L)
2. $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{TA}=+25^{\circ} \mathrm{C}$, and are not production tested. $\mathrm{ICCDC}=120 \mathrm{~mA}$ (Typ.)
3. At $\mathrm{f}=\mathrm{fmax}$, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of $1 /$ trc, and using "AC Test Conditions" of input levels of GND to 3V.
4. $f=0$ means no address or control lines change.
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

7007L
High-Speed 32K x 8 Dual-Port Static RAM

AC Test Conditions

AC TeSt COnditiOnS

Input Pulse Levels	GND to 3.0 V
Input Rise/Fall Times	$5 \mathrm{~ns} \mathrm{Max}$.
Input Timing Reference Levels	1.5 V
Output Reference Levels	1.5 V
Output Load	Figures 1 and 2
2940 bll 11	

Figure 1. AC Output Test Load

2940 drw 06

Figure 2. Output Test Load (for tız, thz, twz, tow) * Including scope and jig.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ${ }^{(4)}$

		$\begin{gathered} \text { 7007X15 } \\ \text { Com'I Only } \end{gathered}$		$\begin{aligned} & \text { 7007X20 } \\ & \text { Com'l \& Ind } \end{aligned}$		7007X25 Com'l, Ind \& Military		Unit
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
tre	Read Cycle Time	15	-	20	-	25	-	ns
taA	Address Access Time	-	15	-	20	-	25	ns
tace	Chip Enable Access Time ${ }^{(3)}$	-	15	-	20	-	25	ns
taoe	Output Enable Access Time	-	10	-	12	-	13	ns
tor	Output Hold from Address Change	3	-	3	-	3	-	ns
tız	Output Low-Z Time ${ }^{(1,2)}$	3	-	3	-	3	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	10	-	12	-	15	ns
tpu	Chip Enable to Power Up Time ${ }^{(2)}$	0	-	0	-	0	-	ns
tPD	Chip Disable to Power Down Time ${ }^{(2)}$	-	15	-	20	-	25	ns
tsop	Semaphore Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10	-	10	-	12	-	ns
tsaA	Semaphore Address Access Time	-	15	-	20	-	25	ns

		7007X35 Com'I, Ind \& Military		7007X55 Com'l, Ind \& Military		Unit
Symbol	Parameter	Min.	Max.	Min.	Max.	
READ CYCLE						
trC	Read Cycle Time	35	-	55	-	ns
tAA	Address Access Time	-	35	-	55	ns
tace	Chip Enable Access Time ${ }^{(3)}$	-	35	-	55	ns
taoe	Output Enable Access Time	-	20	-	30	ns
tor	Output Hold from Address Change	3	-	3	-	ns
t.z	Output Low-Z Time ${ }^{(1,2)}$	3	-	3	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	15	-	25	ns
tpu	Chip Enable to Power Up Time ${ }^{(2)}$	0	-	0	-	ns
tPD	Chip Disable to Power Down Time ${ }^{(2)}$	-	35	-	50	ns
tsop	Semaphore Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{SEM}})$	15	-	15	-	ns
tsas	Semaphore Address Access Time	-	35	-	55	ns

NOTES:
2940 tbl 12 b

1. Transition is measured OmV from Low- or High-impedance voltage with Output Test Load (Figure 2).
2. This parameter is guaranteed by device characterization, but is not production tested.
3. To access RAM, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{SEM}}=\mathrm{V}_{\mathrm{I}}$. To access semaphore, $\mathrm{CE}=\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{SEM}=\mathrm{VIL}$.
4. ' X ' in part numbers indicates power rating (S or L).

7007L
High-Speed 32K x 8 Dual-Port Static RAM
Waveform of Read Cycles ${ }^{(5)}$

NOTES:

1. Timing depends on which signal is asserted last, $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}$.
2. Timing depends on which signal is de-asserted first $\overline{\mathrm{CE}}$ or $\overline{\mathrm{O}}$.
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.
5. $\overline{\mathrm{SEM}}=\mathrm{V} \mathbf{I H}$.

Timing of Power-Up Power-Down

7007L
High-Speed 32K x 8 Dual-Port Static RAM

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage ${ }^{(5)}$

Symbol	Parameter	$\begin{aligned} & \text { 7007X15 } \\ & \text { Com'l Only } \end{aligned}$		$\begin{aligned} & \text { 7007X20 } \\ & \text { Com'I \& Ind } \end{aligned}$		7007X25 Com'I, Ind \& Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
WRITE CYCLE								
twc	Write Cycle Time	15	-	20	-	25	-	ns
tew	Chip Enable to End-of-Write ${ }^{(3)}$	12	-	15	-	20	-	ns
taw	Address Valid to End-of-Write	12	-	15	-	20	-	ns
tAS	Address Set-up Time ${ }^{(3)}$	0	-	0	-	0	-	ns
twp	Write Pulse Width	12	-	15	-	20	-	ns
twR	Write Recovery Time	0	-	0	-	0	-	ns
tDW	Data Valid to End-of-Write	10	-	15	-	15	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	10	-	12	-	15	ns
tDH	Data Hold Time ${ }^{(4)}$	0	-	0	-	0	-	ns
twz	Write Enable to Output in High-Z ${ }^{(1,2)}$	-	10	-	12	-	15	ns
tow	Output Active from End-of-Write ${ }^{(1,2,4)}$	0	-	0	-	0	-	nS
tSWRD	$\overline{\text { SEM }}$ Flag Write to Read Time	5	-	5	-	5	-	nS
tSPS	SEM Flag Contention Window	5	-	5	-	5	-	ns

2940 tbl 13a

Symbol	Parameter	7007X35 Com'l, Ind \& Military		7007X55 Com'l, Ind \& Military		Unit
		Min.	Max.	Min.	Max.	

WRITE CYCLE

twc	Write Cycle Time	35	-	55	-	ns
tew	Chip Enable to End-of-Write ${ }^{(3)}$	30	-	45	-	ns
taw	Address Valid to End-of-Write	30	-	45	-	ns
tAS	Address Set-up Time ${ }^{(3)}$	0	-	0	-	ns
twp	Write Pulse Width	25	-	40	-	ns
twR	Write Recovery Time	0	-	0	-	ns
tbw	Data Valid to End-of-Write	15	-	30	-	ns
thz	Output High-Z Time ${ }^{(1,2)}$	-	12	-	25	ns
tDH	Data Hold Time ${ }^{(4)}$	0	-	0	-	ns
twz	Write Enable to Output in High-Z ${ }^{(1,2)}$	-	12	-	25	ns
tow	Output Active from End-of-Write ${ }^{(1,2,4)}$	0	-	0	-	ns
tswRD	$\overline{\text { SEM }}$ Flag Write to Read Time	5	-	5	-	ns
tsPS	$\overline{\text { SEM }}$ Flag Contention Window	5	-	5	-	ns

NOTES:

1. Transition is measured OmV from Low- or High-impedance voltage with Output Test Load (Figure 2).
2. This parameter is guaranteed by device characterization, but is not production tested.

3. The specification for toh must be met by the device supplying write data to the RAM under all operating conditions. Although tor and tow values will vary over voltage and temperature, the actual tor will always be smaller than the actual tow.
4. 'X' in part numbers indicates power rating (S or L).

7007L
High-Speed 32K x 8 Dual-Port Static RAM
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing ${ }^{(1,5,8)}$

Timing Waveform of Write Cycle No. 2, $\overline{\mathbf{C E}}$ Controlled Timing ${ }^{(1,5)}$

NOTES:

1. R \bar{W} or $\overline{C E}$ must be HIGH during all address transitions.
2. A write occurs during the overlap (tEw or twP) of a LOW $\overline{C E}$ and a LOW R/W for memory array writing cycle.
3. twR is measured from the earlier of $\overline{C E}$ or $R \bar{W}$ (or $\overline{S E M}$ or $R \bar{W}$) going HIGH to the end of write cycle.
4. During this period, the I / O pins are in the output state and input signals must not be applied.
5. If the $\overline{\mathrm{CE}}$ or $\overline{\text { SEM }}$ LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
6. Timing depends on which enable signal is asserted last, $\overline{\mathrm{CE}}$ or $\mathrm{R} / \overline{\mathrm{W}}$.
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured OmV from steady state with the Output Test Load (Figure 2).
8. If $\overline{O E}$ is LOW during R / \bar{W} controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If $\overline{\mathrm{OE}}$ is HIGH during an $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
9. To access RAM, $\overline{C E}=V$ IL and $\overline{S E M}=V I H$. To access semaphore, $\overline{C E}=V I H$ and $\overline{S E M}=V_{V L L}$. tew must be met for either condition.

7007L
High-Speed 32K x 8 Dual-Port Static RAM
Timing Waveform of Semaphore Read after Write Timing, Either Side ${ }^{(1)}$

NOTE:

1. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{I}}$ for the duration of the above timing (both write and read cycle).

Timing Waveform of Semaphore Write Contention ${ }^{(1,3,4)}$

NOTES:

1. $\mathrm{DOR}^{\prime}=\mathrm{DOL}=\mathrm{VIL}, \overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CE}} \mathrm{L}=\mathrm{V}_{\mathrm{IH}}$.
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".

3. If tsPs is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.

7007L
High-Speed 32K x 8 Dual-Port Static RAM

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range ${ }^{(6)}$

Symbol	Parameter	$\begin{aligned} & \text { 7007X15 } \\ & \text { Com'l Only } \end{aligned}$		$\begin{aligned} & \text { 7007X20 } \\ & \text { Com'I \& Ind } \end{aligned}$		7007X25 Com'l, Ind \& Military		Unit
		Min.	Max.	Min.	Max.	Min.	Max	
$\overline{\text { BUSY }}$ TIMING (M/ $\bar{S}=\mathrm{VIH})$								
tBAA	$\overline{\mathrm{B} U S Y}$ Access Time from Address Match	-	15	-	20	-	20	ns
tBDA	$\overline{\text { BUSY }}$ Disable Time from Address Not Matched	-	15	-	20	-	20	ns
tBAC	$\overline{\mathrm{B}} \overline{\text { US }}$ Access Time from Chip Enable Low	-	15	-	20	-	20	ns
tBDC	$\overline{\mathrm{B} U S Y}$ Access Time from Chip Enable High	-	15	-	17	-	17	ns
tAPS	Arbitration Priority Set-up Time ${ }^{(2)}$	5	-	5	-	5	-	ns
tBDD	$\overline{\text { BUSY }}$ Disable to Valid Data ${ }^{(3)}$	-	18	-	30	-	30	ns
twh	Write Hold After $\overline{\mathrm{B} U S Y}{ }^{(5)}$	12	-	15	-	17	-	ns
$\overline{\text { BUSY }}$ TIMING (M/ $\overline{\mathrm{S}}=\mathrm{VIL})$								
twB	$\overline{\text { BUSY }}$ Input to Write ${ }^{(4)}$	0	-	0	-	0	-	ns
twh	Write Hold After $\overline{\mathrm{B} U S Y}{ }^{(5)}$	12	-	15	-	17	-	ns
PORT-TO-PORT DELAY TIMING								
twDD	Write Pulse to Data Delay ${ }^{(1)}$	-	30	-	45	-	50	ns
tDD	Write Data Valid to Read Data Delay ${ }^{(1)}$	-	25	-	30	-	35	ns

Symbol	Parameter	7007X35 Com'l, Ind \& Military		7007X55 Com'l, Ind \& Military		Unit
		Min.	Max.	Min.	Max.	
$\overline{\text { BUSY }}$ TIMING (M/ $\bar{S}=\mathrm{VIH})$						
tBAA	$\overline{\overline{B U S Y}}$ Access Time from Address Match	-	20	-	45	ns
tBDA	$\overline{\text { BUSY }}$ Disable Time from Address Not Matched	-	20	-	40	ns
tBAC	$\overline{\text { BUSY }}$ Access Time from Chip Enable Low	-	20	-	40	ns
tBDC	$\overline{\text { BUSY }}$ Access Time from Chip Enable High	-	20	-	35	ns
tAPS	Arbitration Priority Set-up Time ${ }^{(2)}$	5	-	5	-	ns
tBDD	$\overline{\text { BUSY }}$ Disable to Valid Data ${ }^{(3)}$	-	35	-	40	ns
twh	Write Hold After $\overline{\mathrm{BUSY}}^{5}$)	25	-	25	-	ns
$\overline{\text { BUSY }}$ TIMING (M/ $\overline{\mathrm{S}}=\mathrm{VIL}$)						
twB	$\overline{\text { BUSY }}$ Input to Write ${ }^{(4)}$	0	-	0	-	ns
twh	Write Hold After $\left.\overline{\mathrm{BUSY}}{ }^{5}\right)$	25	-	25	-	ns
PORT-TO-PORT DELAY TIMING						
twDD	Write Pulse to Data Delay ${ }^{(1)}$	-	60	-	80	ns
tDDD	Write Data Valid to Read Data Delay ${ }^{(1)}$	-	45	-	65	ns

NOTES:

2940 tbl 14b

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and $\overline{B U S Y}(M / \bar{S}=V I H)$ ".
2. To ensure that the earlier of the two ports wins.
3. tBDD is a calculated parameter and is the greater of 0 , twDD - twp (actual) or tDDD - tDw (actual).
4. To ensure that the write cycle is inhibited on port " B " during contention on port " A ".
5. To ensure that a write cycle is completed on port "B" after contention on port "A".
6. ' X ' in part numbers indicates power rating (S or L).

7007L
High-Speed 32K x 8 Dual-Port Static RAM
Timing Waveform of Write with Port-to-Port Read and $\overline{B U S Y}^{(2,5)}$
(M/空 = Vıн) ${ }^{(4)}$

NOTES:

1. To ensure that the earlier of the two ports wins. taps is ignored for $M / \bar{S}=V_{I L}$ (SLAVE).
2. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{V}_{\mathrm{IL}}$
3. $\overline{\mathrm{OE}}=\mathrm{VIL}$ for the reading port.
4. If $M / \bar{S}=V I L$ (SLAVE), then $\overline{B U S Y}$ is an input ($\overline{B U S Y} " A "=V I H$ and $\overline{B U S Y} " B "=$ "don't care", for this example).
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

Timing Waveform of Write with $\overline{B U S Y}$ (M/ $\overline{\mathbf{S}}=$ VIL)

NOTES:

1. twh must be met for both $\overline{B U S Y}$ input (SLAVE) and output (MASTER).
2. $\overline{\mathrm{BUSY}}$ is asserted on port " B " blocking R/W"B", until $\overline{\mathrm{BUSY}}$ " B " goes HIGH.

7007L
High-Speed 32K x 8 Dual-Port Static RAM
Waveform of $\bar{B} \mathbf{B S Y}$ Arbitration Controlled by $\overline{\mathbf{C E}} \operatorname{Timing}^{(1)}$ (M/ $\overline{\mathbf{S}}=\mathrm{V}_{\text {IH }}$)

Waveform of $\overline{\text { BUSY }}$ Arbitration Cycle Controlled by Address Match Timing ${ }^{(1)}$ (M/S $=\mathbf{V}$ IH)

NOTES:

1. All timing is the same for left and right ports. Port " A " may be either the left or right port. Port " B " is the port opposite from port " A ".
2. If taps is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.

AC Electrical Characteristics Over the

 Operating Temperature and Supply Voltage Range ${ }^{(1,2)}$| | | $\begin{gathered} \text { 7007X15 } \\ \text { Com'l Only } \end{gathered}$ | | $\begin{gathered} \text { 7007X20 } \\ \text { Com'l \& Ind } \end{gathered}$ | | 7007X25 Com'l, Ind \& Military | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Unit |

INTERRUPT TIMING

tAS	Address Set-up Time	0	-	0	-	0	-
nwr	Write Recovery Time	0	-	0	-	0	-
tINs	Interrupt Set Time	-	15	-	20	-	20
tINR	Interrupt Reset Time	-	15	-	20	-	20

2940 tbl 15a

| | | 7007X35
 Com'l, Ind
 \& Military | | 7007X55
 Com'l, Ind
 \& Military | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Min. | Max. | Min. | Max. | Unit |

INTERRUPT TIMING

tAs	Address Set-up Time	0	-	0
twr	Write Recovery Time	-	ns	
tINS	Interrupt Set Time	0	-	0
tINR	Interrupt Reset Time	-	-	ns

NOTES:

2940 tbl 15b

1. ' X ' in part numbers indicates power rating (S or L).

7007L
High-Speed 32K x 8 Dual-Port Static RAM

Waveform of Interrupt Timing ${ }^{(1)}$

NOTES:

1. All timing is the same for left and right ports. Port " A " may be either the left or right port. Port " B " is the port opposite from port " A ".
2. See Interrupt Truth Table III.
3. Timing depends on which enable signal ($\overline{\mathrm{CE}}$ or $\mathrm{R} / \overline{\mathrm{W}})$ is asserted last.
4. Timing depends on which enable signal ($\overline{\mathrm{CE}}$ or $\mathrm{R} / \overline{\mathrm{W}}$) is de-asserted first.

Truth Table III - Interrupt Flag ${ }^{(1)}$

Left Port					Right Port					Function
$\mathrm{R} / \bar{W} \mathrm{~L}$	$\overline{\mathrm{C}} \mathrm{E}_{\mathrm{L}}$	$\overline{\mathrm{OE}}$	A14L-A0L	$\overline{\mathrm{INT}} \mathrm{L}$	R / \bar{W}_{R}	$\overline{\mathrm{C}} \overline{\mathrm{E}}_{\mathrm{R}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	A14R-A0R	$\overline{\mathrm{INT}}$	
L	L	X	7FFF	X	X	X	X	X	$L^{(2)}$	Set Right İNTR Flag
X	X	X	X	X	X	L	L	7FFF	$\mathrm{H}^{(3)}$	Reset Right INTR Flag
X	X	X	X	$L^{(3)}$	L	L	X	7FFE	X	Set Left $\overline{\mathrm{INT}} \mathrm{L}$ Flag
X	L	L	7FFE	$\mathrm{H}^{(2)}$	X	X	X	X	X	Reset Left İNTL Flag

NOTES:

1. Assumes $\overline{B U S Y} L=\overline{B U S Y}_{R}=V_{I H}$.
2. If $\overline{B U S Y} \mathrm{~L}=\mathrm{V}_{\mathrm{LL}}$, then no change.
3. If $\overline{B U S Y}_{R}=V_{I L}$, then no change.

Truth Table IV - Address BUSY Arbitration

Inputs			Outputs		Function
$\overline{\mathrm{C} E}$.	$\overline{\mathrm{C}} \overline{\mathrm{E}}_{\mathrm{R}}$	Aol-A14L Aor-A14R	$\overline{\operatorname{BUS} \bar{Y}^{(1)}}{ }^{(1)}$	$\overline{B U S Y}^{\text {r }}{ }^{(1)}$	
X	X	NO MATCH	H	H	Normal
H	X	MATCH	H	H	Normal
X	H	MATCH	H	H	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ${ }^{(3)}$

NOTES:

1. Pins $\overline{B U S Y} L$ and $\overline{B U S Y} R$ are both outputs when the part is configured as a master. Both are inputs when configured as a slave. $\overline{B U S Y}$ outputs on the IDT7007 are push-pull, not open drain outputs. On slaves the $\overline{B U S Y}$ input internally inhibits writes.
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either $\overline{B U S Y} L$ or $\overline{B U S Y}_{R}=L O W$ will result. $\overline{B U S Y}^{\prime}$ and $\overline{B U S Y}_{R}$ outputs can not be LOW simultaneously.
3. Writes to the left port are internally ignored when $\overline{B U S Y}$ L outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when $\overline{B U S Y}_{R}$ outputs are driving LOW regardless of actual logic level on the pin.

Truth Table V - Example of Semaphore Procurement Sequence ${ }^{(1,2,3)}$

Functions	Do - D7 Left	Do - D7 Right	
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	1	Semaphore free
Right Port Writes "1" to Semaphore	1	1	Left port has semaphore token
Left Port Writes "0" to Semaphore	1	1	Semaphore free
Left Port Writes "1" to Semaphore	1	1	1

NOTES:
2940 tbl 18

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7007.
2. There are eight semaphore flags written to via $I / O_{5}\left(I / O_{0}-I / O_{7}\right)$ and read from all I / O_{0}. These eight semaphores are addressed by $A_{0}-A_{2}$.
3. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{SEM}}=\mathrm{V}_{\mathrm{IL}}$ to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.

Functional Description

The IDT7007 provides two ports with separate control, address and I/O pins that permit independentaccess for reads or writes to any location inmemory. The IDT7007 has an automatic powerdown feature controlled by $\overline{\mathrm{CE}}$. The $\overline{\mathrm{CE}}$ controls on-chip power down circuitry that permits the respective portto go into a standby mode when not selected (信 HIGH). When a port is enabled, access to the entire memory array is permitted.

Interrupts

Ifthe userchooses the interrupt function, amemory location (mail box or message center) is assigned to each port. The left port interrupt flag (INTL) is asserted when the right port writes to memory location 7FFE (HEX), where a write is defined as $\overline{C E}=R / \bar{W}=$ VIL per the Truth Table. The left portclears the interrupt through access of addresslocation7FFE
when $\overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{OE}} \mathrm{R}=\mathrm{VIL}, \mathrm{R} / \overline{\mathrm{W}}$ is a "don't care". Likewise, the right port interruptflag ($\overline{N T}_{R}$) is asserted whenthe leftportwrites to memorylocation 7FFF (HEX) and to clear the interruptflag ($\overline{\mathrm{NT}} \mathrm{R})$, the right portmustread the memory location7FFF. Themessage(8bits)at7FFE or 7FFF is userdefined since itis an addressable SRAM location. Ifthe interruptfunction is notused, addresslocations 7FFE and 7FFF are not used as mail boxes, butaspartofthe randomaccessmemory. Referto Table III forthe interrupt operation.

Busy Logic

Busy Logic provides a hardware indicationthatboth ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is

7007L
High-Speed 32K x 8 Dual-Port Static RAM
"busy". The BUSY pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a $\overline{B U S Y}$ indication, the write signal is gated internally to prevent the write from proceeding.

The use of $\overline{\mathrm{BUSY}}$ logic is not required or desirable for all applications. In some cases it may be useful to logically OR the $\overline{B U S Y}$ outputs together and use any $\overline{B U S Y}$ indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of $\overline{B U S Y}$ logic is not desirable, the $\overline{B U S Y}$ logic can be disabled by placing the part in slave mode with the M / \bar{S} pin. Once in slave mode the $\overline{B U S Y}$ pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the $\overline{B U S Y}$ pins HIGH. If desired, unintended write operations can be prevented to a port by tying the $\overline{B U S Y}$ pin for that port LOW.

The $\overline{B U S Y}$ outputs on the IDT 7007 RAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the $\overline{B U S Y}$ indication for the resulting array requires the use of an external AND gate.

Width Expansion with Busy Logic

Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7007 RAMs.

Master/Slave Arrays

When expanding an IDT7007RAM array in width while using $\overline{B U S Y}$ logic, one master partis used to decide which side of the RAMs array will receive a $\overline{B U S Y}$ indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the $\overline{B U S Y}$ signal as a write inhibitsignal. Thus onthe IDT7007RAM the $\overline{B U S Y}$ pinis an outputifthe partis used as a master ($(\bar{S} / \overline{\text { pin }}=\mathrm{H})$, and the $\overline{B U S Y}$ pin is an input if the part used as a slave $(M / \bar{S}$ pin $=\mathrm{L})$ as shown in Figure 3.

Iftwo or more masterpartswereusedwhen expanding in width, asplit decision could resultwith one master indicating $\overline{B U S Y}$ on one side of the array and another master indicating $\overline{B U S Y}$ on one other side of the array. This would inhibitthe write operations from one portfor part of a word and inhibitthe write operations from the other portforthe otherpartofthe word.

The $\overline{B U S Y}$ arbitration, on a master, is based on the chip enable and address signals only. Itignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enoughfor aBUSY flagto beoutputfrom the masterbeforethe actual write pulse canbeinitiated with the $R \bar{W}$ signal. Failureto observethis timing can
result in a glitched internal write inhibit signal and corrupted data in the slave.

Semaphores

TheIDT7007 is anextremelyfastDual-Port 16Kx8CMOSStatic RAM with an additional8addresslocationsdedicated to binary semaphoreflags. These flags allow either processor on the leftor rightside of the Dual-Port RAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port RAM or any other shared resource.

The Dual-Port RAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical infunctionto standard CMOS Static RAM and can be read from, orwrittento, atthe sametime withthe only possible conflictarising fromthe simultaneous writing of, or a simultaneous READ/WRITE of, a nonsemaphore location. Semaphores are protected againstsuch ambiguous situations and may be used by the system program to avoid any conflicts inthe non-semaphore portion ofthe Dual-PortRAM. These devices have an automatic power-down feature controlled by $\overline{\mathrm{CE}}$, the Dual-Port RAM enable, and $\overline{\mathrm{SEM}}$, the semaphore enable. The $\overline{\mathrm{CE}}$ and $\overline{\mathrm{SEM}}$ pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table I where $\overline{\mathrm{CE}}$ and $\overline{\mathrm{SEM}}$ are both HIGH.

Systems which can best use the IDT7007 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT7007 hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT7007 does notuse its semaphore flags to control any resourcesthrough hardware, thus allowing the system designertotal flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very highspeed systems.

How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent ofthe Dual-PortRAM. These latchescanbe usedto passaflag, or token, from one porttothe other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called"Token Passing Allocation."Inthis method, the state of asemaphore latch is used as atoken indicating that shared resource is inuse. Ifthe left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success insetting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. Ifitwas not successful in setting the latch, itdetermines thatthe right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request thatsemaphore'sstatusorremoveits requestforthatsemaphoretoperform anothertask and occasionally attemptagainto gain control ofthe token via the set and testsequence. Once the rightside has relinquished the token,
the leftside should succeed in gaining control.
The semaphoreflags are active LOW. A token is requested by writing azero into a semaphore latch and is released whenthe same side writes a one to that latch.

The eight semaphore flags reside within the IDT7007 in a separate memoryspacefromtheDual-PortRAM. This addressspaceisaccessed by placingaLOW inputonthe $\overline{S E M}$ pin (which acts as achip selectfor the semaphore flags) and using the other control pins (Address, $\overline{\mathrm{OE}}$, and R / \bar{W}) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pinsA0-A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only datapin Do is used. If a LOWlevel is written into an unused semaphore location, that flag will be setto azero on that side and a one on the other side (see Truth Table V). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be setto aoneforbothsides(unless asemaphore request from theother side is pending) and then can be written to by both sides. The factthatthe side whichis able to write azero intoasemaphore subsequently locks outwrites fromtheotherside iswhatmakessemaphoreflagsuseful ininterprocessor communications. (Athorough discussion on the use ofthis feature follows shortly.) A zero written into the same location from the other side will be stored inthe semaphore requestlatch for thatside until the semaphore is freed by the first side.

When asemaphoreflag is read, its value is spread into all data bits so that aflag that is a one reads as a one in all data bits and a flag containing azero reads as all zeros. The read value is latched into one side's output registerwhenthatside'ssemaphoreselect($\overline{\mathrm{SEM}}$) and outputenable $(\overline{\mathrm{OE}})$ signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in atestloop must cause either signal ($\overline{\mathrm{SEM}}$ or $\overline{\mathrm{OE}}$) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write azero into a semaphore location. Ifthe semaphore is already in use, the semaphore requestlatch will containazero, yetthe semaphoreflag will appear asone, a fact which the processor will verify by the subsequent read (see Truth TableV). As an example, assume a processor writes azero to the left port at a free semaphore location. On a subsequent read, the processor will verify thatithas written successfully to thatlocation and will assume control over the resource in question. Meanwhile, ifa processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that aone will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurredduring the gap between the read and write cycles.

Itisimportantto note that afailed semaphore requestmustbefollowed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore requestlatches feed into a semaphore flag. Whichever latch is first to present a zero to the semaphore flag will force its side ofthe semaphoreflag LOW and the other side HIGH. This condition will continue until a one is written to the same
semaphore requestlatch. Shouldtheotherside'ssemaphore requestlatch have been written to azero in the meantime, the semaphore flag will flip over to the other side as soon as a one is writtenintothe firstside's request latch. The second side's flag will now stay low until its semaphore request latchiswrittentoaone. Fromthisitiseasytounderstandthat, ifasemaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore requestlatch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. Ifsimultaneous requests aremade, the logic guaranteesthatonly one side receives the token. If one side is earlier than the other in making the request, the

Figure 4. IDT7007 Semaphore Logic
firstside to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. Aswith any powerful programming technique, ifsemaphores are misused or misinterpreted, a software error can easily happen.

Initialization ofthe semaphores is notautomatic and mustbe handled viathe initialization program at power-up. Since any semaphore request flag which contains azero mustbe resetto aone, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

Using Semaphores-Some Examples

Perhapsthe simplestapplication ofsemaphores istheir applicationas resourcemarkersfortheIDT7007'sDual-PortRAM. Say the32Kx8RAM was to be divided into two 16K x 8 blocks which were to be dedicated at any one time to servicing either the left or right port. Semaphore 0 could be used to indicate the side which would control the lower section of memory, and Semaphore 1 could be defined asthe indicator for the upper section of memory.

Totake a resource, inthis example the lower 16K of Dual-Port RAM, the processor on the left port could write and then read a zero in to Semaphore 0. Ifthis task were successfully completed (azero was read back rather than a one), the left processor would assume control of the lower 16K. Meanwhile the right processor was attempting to gain control ofthe resource after the leftprocessor, itwould read back aonein response to the zero it had attempted to write into Semaphore 0 . At this point, the software could choose to try and gain control of the second 16K section

Renesas

7007L

High-Speed 32K x 8 Dual-Port Static RAM
by writing, then reading azero into Semaphore 1. Ifitsucceededingaining control, it would lock out the leftside.

Once the left side was finished with its task, it would write a one to Semaphore 0 and may then try to gain access to Semaphore 1. If Semaphore 1 was still occupied by the right side, the leftside could undo itssemaphore requestand performothertasks untilitwas able to write, then readazerointo Semaphore1. Ifthe rightprocessorperformsasimilartask with Semaphore 0, this protocol would allow the two processors to swap 16K blocks of Dual-Port RAM with each other.

The blocks do not have to be any particular size and can even be variable, depending upon the complexity of the software using the semaphoreflags. All eightsemaphores could be used to divide the DualPort RAM or other shared resources into eight parts. Semaphores can even be assigned differentmeanings on differentsides rather than being given a common meaning as was shown in the example above.

Semaphores are a useful form of arbitration in systems like disk interfaceswheretheCPU mustbelockedoutofasection of memory during
a transfer and the I/O device cannottolerate any waitstates. With the use of semaphores, oncethe two deviceshasdetermined whichmemory area was "off-limits" totheCPU, boththeCPU and the I/O devices could access their assigned portions of memory continuously without any waitstates.

Semaphoresare alsouseful in applicationswhere nomemory "WAIT" state is available on one orboth sides. Once asemaphorehandshakehas been performed, both processors can access their assigned RAM segments atfull speed.

Another application is in the area of complex data structures. In this case, block arbitration is very important. For this application one processor may be responsible for building and updating a datastructure. The other processor then reads and interprets that data structure. If the interpreting processor reads anincomplete datastructure, a majorerror condition may exist. Therefore, some sort of arbitration must be used between the two different processors. The building processor arbitrates fortheblock, locks itandthen is able to go in and update the data structure. When the update is completed, the data structure block is released. This allows the interpreting processor to comeback and read the complete datastructure, thereby guaranteeing a consistent datastructure.

Ordering Information

NOTES:

1. Contact your local sales office for industrial temp. range for other speeds, packages and powers.

LEAD FINISH (SnPb) parts are Obsolete. Product Discontinuation Notice - PDN\# SP-17-02
Note that information regarding recently obsoleted parts is included in this datasheet for customer convenience.

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
15	7007L15JG	PLG68	PLCC	C
	7007L15JG8	PLG68	PLCC	C
	7007L15PFG	PNG80	TQFP	C
	7007L20JGI	PLG68	PLCC	I
	7007L20JGI8	PLG68	PLCC	I
	7007L20PFGI	PNG80	TQFP	I

Datasheet Document History

01/05/99:	Pages 2, 3, 4	Initiateddatasheetdocumenthistory
		Converted to new format
		Cosmetic and typographical corrections
		Added additional notes to pin configurations
06/03/99:		Changed drawing format
03/24/00:		Added Industrial Temperature Ranges and removed related notes
		Replaced IDT logo
		Changed $\pm 200 \mathrm{mV}$ to 0 mV in notes
05/08/00:	Page 1	Added copyrightinfo
	Page 5	Fixed Absolute Maximum Ratings chart, corrected typos
	Page 9	Updateddrawings
	Page 12	Corrected waveform drawing
	Page 5	Increased storage temperature parameter
		Clarified Ta parameter
	Pages 6, 7	DCElectrical parameters-changed working from open to disabled
09/11/01:	Page 2-4	Added date revision for pin configurations
	Page 6	Removed standard power offering for Industrial temp for 20ns from DC Electrical Characteristics
01/31/06:	Page 1	Added green availability to features
	Page 21	Added green indicator to ordering information
10/21/08:	Page 21	Removed "IDT" from orderable part number
08/12/14:	Page 21	Added Tape and Reel to Ordering Information
	Page 2, 3, 4 \& 21	The package codes PN80-1, G68-1 \& J68-1 changed to PN80, G68 \& J68 respectively to match standard package codes
04/01/19:	Page 1	Updated Features by removing all speed grade offerings except the Commercial 15ns and Industrial 20ns and by removing all of the Military speed and temp range offerings
	Page 2	Removed "IDT's" from the fabrication reference in the Description text Additionally, updated the Description text by removing the ceramic 68-pin PGA package offering
	Page 2, 3 \& 21	The package codes J68 \& PN80 changed to PLG68 \& PNG80 respectively to match standard package codes
	Page 17 \& 18	Format updates to "Interrupts" heading and third paragraph in "How the Semaphore Flags Work"
	Page 21	Updated Ordering Information by removing all of the Military temp range offerings and removing the Industrial temp range except for the 20ns
		Additionally, removed the GU68 package offering from the ordering information
		ProductDiscontinuation Notice-PDN\#SP-17-02
		Last time buy expires June 15, 2018
09/04/19:	$\text { Page } 2 \text { \& } 3$	Rotated PLG68 PLCC and PNG80 TQFP pin configurations to accurately reflect pin 1 orientation
	Page 21	Added Orderable Part Informationtable

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Renesas Electronics:
7007L20PFGI 7007L15PF8 7007L20J8 7007L15JG8 7007S20PF8 7007L25J8 7007L55J8 7007L55PFI
7007L35J 7007L20PF8 7007L20JI8 7007L55J 7007S15PF 7007L35G 7007L15J 7007S15J 7007S35J 7007S35G 7007S55J 7007L20JI 7007L20PF 7007L55PFI8 7007S55J8 7007L20PFI8 7007S20G 7007S20J 7007S25G
7007S25J 7007L25PF 7007S35J8 7007L35PF8 7007L25PF8 7007S15J8 7007S35PF8 7007L35PF 7007L55PF 7007L20PFI 7007S55PF 7007S55JI 7007L15JG 7007L15PF 7007L35J8 7007S25PF8 7007L20G 7007L20J 7007L25J 7007L25G 7007S20PF 7007S25PF 7007L55PF8 7007S55PF8 7007S55JI8 7007S25J8 7007S15PF8 7007S20J8 7007L15J8 7007S35PF 7007L20JGI 7007L20JGI8

