

32x16 and 32x32 RGB LED Matrix
Created by Phillip Burgess

https://learn.adafruit.com/32x16-32x32-rgb-led-matrix

Last updated on 2021-11-15 05:54:01 PM EST

©Adafruit Industries Page 1 of 41

3

3

5

8

11

12

14

14

18

20

21

22

23

24

24

25

28

28

29

29

29

30

30

31

34

36

38

38

40

41

41

41

Table of Contents

Overview

• COMPATIBLE HARDWARE

Power

Connections

• Connecting to Arduino

Connecting Using RGB Matrix Shield

• Metro M4 Usage

Connecting with Jumper Wires

• Connect Ground Wires

• Upper RGB Data

• Lower RGB Data

• Row Select Lines

• LAT Wire

• OE Wire

• CLK Wire

Connecting Using a Proto Shield

• Connect Ground Wires

• Upper RGB Data

• Lower RGB Data

• Row Select Lines

• LAT Wire

• OE Wire

• CLK Wire

Test Example Code

Library

How the Matrix Works

FAQ

• Wiring Issue Examples

• Ghosting Issue Examples

Downloads

• Files

• Schematic & Fabrication Print

©Adafruit Industries Page 2 of 41

Overview

This guide is for boards in the ARDUINO ecosystem. We have a different guide for

Raspberry Pi (https://adafru.it/kdh). Arduino Uno is limited to 32x16 pixels, single-

buffered.

Bring a little bit of Times Square into your home with our RGB LED matrix panels.

These panels are normally used to make video walls — here in New York we see them

on the sides of buses and on bus stops — to display animations or short video clips.

We thought they looked really cool so we picked up a few boxes from the factory.

One has 512 bright RGB LEDs arranged in a 16x32 grid on the front, the other has

1024 LEDs in a 32x32 grid. On the back is a PCB with IDC connectors (one set for

input, one for output: in theory you can chain these together) and 12 16-bit latches that

allow you to drive the display with a 1:8 (16x32) or 1:16 (32x32) scan rate.

COMPATIBLE HARDWARE

The following boards are plug-and-play ready with the RGB Matrix Shield and

software mentioned in this guide:

Adafruit Metro M0

Arduino Zero

Arduino Uno (or compatible ATmega328P boards) — limited to 32x16 matrix, no

double-buffering (needed for flicker-free animation)

•

•

•

©Adafruit Industries Page 3 of 41

https://learn.adafruit.com/adafruit-rgb-matrix-plus-real-time-clock-hat-for-raspberry-pi
https://learn.adafruit.com/adafruit-rgb-matrix-plus-real-time-clock-hat-for-raspberry-pi

The following are supported by the software, but require additional wiring or jumpers

to use the RGB Matrix Shield:

Arduino Mega (or compatible ATmega2560 boards)

Adafruit Metro M4

The following are NOT supported by the software or shield:

Arduino Leonardo (or compatible ATmega32U4 boards)

Netduino and other Arduino-alikes not mentioned in above lists (but other

libraries or shields might exist elsewhere)

Teensy (but see the SmartLED Shields and software for Teensy 3.X and 4.X,

which provide excellent performance)

Raspberry Pi (but there are different Bonnets (https://adafru.it/AJp) and HATs (ht

tps://adafru.it/kdh) for this)

These panels require 12 or 13 digital pins (6 bit data, 6 or 7 bit control) and a good 5V

power supply, at least a couple amps per panel. We suggest our 2A (or larger)

regulated 5V adapters and either a terminal block DC jack, or solder a jack from our

DC extension cord. Please read the rest of our tutorial for more details!

Keep in mind that these displays are normally designed to be driven by FPGAs or

other high speed processors; they do not have built in PWM control of any kind.

Instead, you're supposed to redraw the screen over and over to 'manually' PWM the

whole thing. On a 16 MHz Arduino, we managed to squeeze 12-bit color (4096 colors)

•

•

•

•

•

•

©Adafruit Industries Page 4 of 41

https://learn.adafruit.com/adafruit-rgb-matrix-bonnet-for-raspberry-pi
https://learn.adafruit.com/adafruit-rgb-matrix-plus-real-time-clock-hat-for-raspberry-pi

but this display would really shine if driven by an FPGA, CPLD, Propeller, XMOS or

other high speed multi-processor controller.

Of course, we wouldn't leave you with a datasheet and a "good luck!" We have a full

wiring diagrams and working Arduino library code with examples from drawing pixels,

lines, rectangles, circles and text. You'll get your color blasting within the hour! On

most Arduino-compatible boards, you'll need 12 digital pins, and about 800 bytes of

RAM to hold the 12-bit color image (double that for the 32x32 matrix, double again for

smooth double-buffered animation).

Power

Although LEDs are very efficient light sources, get enough of them in one place and

the current really adds up.

A single 32x16 or 32x32 RGB matrix, running full tilt (all pixels set white), can require

nearly 4 Amps of current! Double that figure for a 64x32 matrix.

On average though, displaying typical graphics and animation, these panels will use

less…a 2A supply is usually sufficient for a single 32x16 or 32x32 panel, or 4A for a

64x32 panel. There’s no harm in using a larger power supply rated for more Amps

(e.g. a 10A supply), but never use one with a higher Voltage (use 5V, period)!

On these panels, the power connection is separate from the data connection. Let’s

begin by connecting a 5V supply…

The library works with a LIMITED NUMBER of boards. Please see the

COMPATIBLE HARDWARE lists above.

©Adafruit Industries Page 5 of 41

Our parts suppliers occasionally make revisions to designs. As a result, the

connections have changed over time. We'll walk through the different wiring

combinations here…pick the explanation that matches the panel(s) you received.

Two different types of power connectors have made an appearance:

On the left is a screw post power connector (with adjacent pads for soldering wires

directly). On the right, a Molex-style header. Some panels will have two headers…the

power cable included with these panels has connectors for both headers.

With the posts-and-pads connector, you can either screw down the spades from the

power cable, or another approach is to cut a 2.1mm jack from this extension cord (htt

p://adafru.it/327) and solder it to the pads on the panel back. This way you can plug

the 5V from a wall adapter (http://adafru.it/276) right in (the one we have in the shop

is suggested). Simply cut the other half of the cable off, and strip the wiring so you

can solder the red wire to +5 and the black wire to ground.

©Adafruit Industries Page 6 of 41

https://www.adafruit.com/products/327
https://www.adafruit.com/products/276
https://www.adafruit.com/products/276

Solder both pins correctly to the power port. Make sure you get this right because

there is no protection diode!

If your panel has the Molex-style header, just plug in the included power cable,

observing the correct polarity.

If your power cable came with spades at the opposite end of this power cable, they

can be screwed into a 2.1mm terminal block adapter. Works nicely! Don't allow the

exposed connectors to contact metal though…you should probably cover this with

heat-shrink tube or electrical tape.

©Adafruit Industries Page 7 of 41

Connections

These panels are normally designed for chaining (linking end-to-end into larger

displays)…the output of one panel connects to the input of the next, down the line.

With the limited RAM in an Arduino, chaining is seldom practical. Still, it’s necessary to

distinguish the input and output connections on the panel…it won’t respond if we’re

connected to the wrong socket.

You may receive power cables with different endings, e.g. round instead of

spade ends, or maybe with another Molex connector. Just strip the cables and

wire directly to the power plug

©Adafruit Industries Page 8 of 41

Flip the matrix over so you’re looking at the back, holding it with the two

sockets situated at the left and right edges (not top and bottom).

On some panels, if you’re lucky, the sockets are labeled INPUT and OUTPUT

(sometimes IN and OUT or similar), so it’s obvious which is the input socket.

If INPUT is not labeled, look for one or more arrows pointing in the horizontal directio

n (ignore any vertical arrows, whether up or down). The horizontal arrows show the

direction data moves from INPUT to OUTPUT — then you know which connector is

which.

If no such labels are present, a last option is to examine the plastic shroud around the

connector pins. The key (notch) on the INPUT connector will face the outer edge of

the panel (not the center).

The arrangement of pins on the INPUT connector varies with matrix size and the

batch in which it was produced…

Although the panels support chaining, this is VERY impractical on Arduino-class

boards and our library DOES NOT SUPPORT it. A more powerful system like a

Raspberry Pi may be a better choice for chained panels!

©Adafruit Industries Page 9 of 41

A 32x16 panel uses this pin arrangement.

The labels might be slightly different, or

the pins might not be labeled at all…but

in either case, use this image for

reference.

Notice there are four ground

connections. To ensure reliable

performance, all four should be

connected to GND on the Arduino! A

solderless breadboard is handy for

making this split.

Here’s the layout for 32x32 and 64x32

panels. We’ll call this “Variant A.” Some

panels use different labels, but the

functions are identical.

The layout is very similar to the 32x16

panel, with pin “D” replacing one ground

connection.

This is the layout we’ll be referencing

most often.

If you have a 32x32 panel with no pin

labels at all, then use this layout.

©Adafruit Industries Page 10 of 41

https://learn.adafruit.com//assets/23767
https://learn.adafruit.com//assets/23767
https://learn.adafruit.com//assets/23768
https://learn.adafruit.com//assets/23768

“Variant B” for 32x32 and 64x32

panels. The wiring is identical to Variant

A above, only the labels are different.

Ground pins aren’t labeled, but still need

to be connected.

LAT (latch) is labeled STB (strobe) here.

R1/G1/B1/R2/G2/B2 are changed to R0/

G0/B0/R1/G1/B1…but again, no functional

difference, it’s just ink.

Our earliest 32x32 panels had a two-

socket design, let’s call it “Variant C.” All

the same pin functions are present but

the layout is very different.

R/G/B on the upper socket correspond to

R1/G1/B1 in Variant A. R/G/B on the

lower socket correspond to R2/G2/B2.

All the other signals (A/B/C/D/CLK/LAT/

OE) need to be connected to both

sockets — e.g. one pin on the Arduino

drives both CLK pins, and so forth.

Connecting to Arduino

There are two or three methods for connecting a matrix to an Arduino:

Jumper wires inserted between Arduino headers and a ribbon cable — this

works well for testing and prototyping, but is not durable.

The Adafruit RGB Matrix Shield makes connecting these panels to an Arduino as

easy as can be, and is best for permanent installations.

1.

2.

©Adafruit Industries Page 11 of 41

https://learn.adafruit.com//assets/23769
https://learn.adafruit.com//assets/23769
https://learn.adafruit.com//assets/23770
https://learn.adafruit.com//assets/23770

One could build a proto shield to replicate the pinout of option #2. But given the

Matrix Shield’s low cost, this might not be worth the effort nowadays.

These panels are normally run by very fast processors or FPGAs, not a 16 MHz

Arduino. To achieve reasonable performance in this limited environment, our software

is optimized by tying specific signals to specific Arduino pins. A few control lines can

be reconfigured, but others are very specific…you can’t wire the whole thing willy-

nilly. The next pages demonstrate compatible wiring…one using the RGB Matrix

Shield, the using jumper wires.

Connecting Using RGB Matrix Shield

This is the preferred method for pairing these matrices with an Arduino-sized board,

as it’s quick and trouble-free.

The Adafruit RGB Matrix Shield works with the Arduino Uno and Zero, and the Adafru

it Metro M0…and with one or more jumper wires can work with the Metro M4 (and

potentially other boards with this form factor, if a compatible Arduino library is

available).

The shield does not directly work with the Arduino Mega — additional jumper wires

are needed to pins off the shield — see the “Jumper Wires” page for pinouts, or

consider making your own Mega proto shield for that board.

3.

©Adafruit Industries Page 12 of 41

The shield arrives unpopulated and you’ll

need to do a little soldering to get it

going.

Header pins are installed from the

underside and soldered on top. Three

components — a button, power terminal

and 16-pin header — insert from the top

and are soldered underneath.

The 16-pin (8x2) header must be installed in the correct orientation! The polarity notch

is indicated on the silkscreen, or you can see in the photos above that the notch faces

the digital I/O pins. If you install this backwards the matrix will not work!

Power to the LED matrix can be connected to the shield’s screw terminals — red wire

to +5Vout, black wire to GND — and the whole circuit is then powered from the

Arduino’s DC jack or a USB cable at a safe and regulated 5 Volts.

©Adafruit Industries Page 13 of 41

https://learn.adafruit.com//assets/55701
https://learn.adafruit.com//assets/55701
https://learn.adafruit.com//assets/55702
https://learn.adafruit.com//assets/55702

Metro M4 Usage

The shield requires a small modification

to work with the Adafruit Metro M4:

Use a small file or hobby knife to

cut the PCB trace between the two

pads indicated here.

Solder a wire from the adjacent

“CLK” pin to the “Analog In 4” pin.

A corresponding change is required in one’s code — look for the “CLK” pin definition

in any of the matrix examples…

#define CLK 8

And change the “8” to “A4”:

#define CLK A4

Connecting with Jumper Wires

Ribbon cables and their corresponding headers are sometimes a topological puzzle.

Here’s a trick to help keep track…

If you hold the ribbon cable flat — no folds — and with both connectors facing you,

keys pointed the same direction — now there is a 1:1 correlation between the pins.

The top-right pin on one plug links to the top-right on the other plug, and so

forth. This holds true even if the cable has a doubled-over strain relief. As long as the

•

•

If you have a Metro M4 Airlift - make sure you select the right board in the Tools

dropdown. Many folks select Metro M4 by accident (or vice versa)

WE DO NOT GUARANTEE SUCCESS IF USING JUMPER WIRES TO THESE

PANELS. PLEASE USE A FEATHER/SHIELD/HAT SO WIRING IS DONE FOR YOU!

We offer NO support when hand-wiring, ITS TOO HARD TO DEBUG!

©Adafruit Industries Page 14 of 41

https://learn.adafruit.com//assets/55703
https://learn.adafruit.com//assets/55703

keys point the same way and the plugs face the same way, pins are in the same

positions at both ends.

Plugged into a socket on the LED matrix, one header now faces away from you. If you

double the cable back on itself (not a twist, but a fold)…to access a specific pin on the

socket, the left and right columns are now mirrored (rows are in the same order — the

red stripe provides a point of reference). You’re looking “up” into the plug rather than

“down” into the socket.

For example, R1 (the top-left pin on the INPUT socket) appears at the top-right of the

exposed plug. You can jam a wire jumper in that hole to a corresponding pin on the

Arduino…

©Adafruit Industries Page 15 of 41

So! From the prior page, refer to the

socket that’s correct for your matrix type.

The labels may be a little different (or

none at all), but most are pretty close to

what’s shown here.

Then swap the columns to find the

correct position for a given signal.

Either end of the ribbon cable can be plugged into the matrix INPUT socket. Notice

below, the “key” faces the same way regardless.

With the free end of the ribbon toward the center of the matrix, the Arduino can be

hidden behind it.

With the free end of the ribbon off the side, it’s easier to see both the front of the

matrix and the Arduino simultaneously, for making additional connections or for

troubleshooting.

Using color-coded wires helps a lot! If you don’t have colored wires, that’s okay, just

pay close attention where everything goes. Our goal is a fully-populated plug like this:

©Adafruit Industries Page 16 of 41

https://learn.adafruit.com//assets/23825
https://learn.adafruit.com//assets/23825
https://learn.adafruit.com//assets/23826
https://learn.adafruit.com//assets/23826

So! Let’s proceed with the wiring, in groups…

©Adafruit Industries Page 17 of 41

Connect Ground Wires

32x32 and 64x32 matrices require three

ground connections. 32x16 matrices have

four.

Current Arduino Uno form-factor boards

have three ground pins (the third is next

to pin 13). If you need additional ground

connections — for a 32x16 matrix, or if

using an older Arduino board with only 2

ground pins — a solderless breadboard is

handy for linking all these pins.

Arduino Mega boards have five ground

pins. Same three as the Arduino Uno,

plus two more next to pins 52 & 53.

©Adafruit Industries Page 18 of 41

https://learn.adafruit.com//assets/23824
https://learn.adafruit.com//assets/23824
https://learn.adafruit.com//assets/23844
https://learn.adafruit.com//assets/23844
https://learn.adafruit.com//assets/23847
https://learn.adafruit.com//assets/23847

©Adafruit Industries Page 19 of 41

https://learn.adafruit.com//assets/23848
https://learn.adafruit.com//assets/23848

Upper RGB Data

Pins R1, G1 and B1 (labeled R0, B0 and G0

on some matrices) deliver data to the top

half of the display.

On the Arduino Uno and Adafruit Metro

(328, M0 or M4) boards, connect these to

digital pins 2, 3 and 4.

On Arduino Mega, connect to pins 24, 25

and 26.

©Adafruit Industries Page 20 of 41

https://learn.adafruit.com//assets/23857
https://learn.adafruit.com//assets/23857
https://learn.adafruit.com//assets/23858
https://learn.adafruit.com//assets/23858
https://learn.adafruit.com//assets/23859
https://learn.adafruit.com//assets/23859

Lower RGB Data

Pins R2, G2 and B2 (labeled R1, G1 and B1

on some matrices) deliver data to the

bottom half of the display. These connect

to the next three Arduino pins…

On Arduino Uno and Adafruit Metros,

that’s pins 5, 6 and 7.

On Arduino Mega, pins 27, 28 and 29.

©Adafruit Industries Page 21 of 41

https://learn.adafruit.com//assets/23846
https://learn.adafruit.com//assets/23846
https://learn.adafruit.com//assets/23851
https://learn.adafruit.com//assets/23851
https://learn.adafruit.com//assets/23852
https://learn.adafruit.com//assets/23852

Row Select Lines

Pins A, B, C and D select which two

rows of the display are currently lit.

(32x16 matrices don’t have a “D” pin —

it’s connected to ground instead.)

These connect to pins A0, A1, A2 and (if

D pin present) A3. This is the same for all

boards.

©Adafruit Industries Page 22 of 41

https://learn.adafruit.com//assets/23876
https://learn.adafruit.com//assets/23876
https://learn.adafruit.com//assets/23912
https://learn.adafruit.com//assets/23912

LAT Wire

The LAT signal connects to Arduino pin

10.

This is the same for all boards.

The LAT (latch) signal marks the end of a

row of data.

©Adafruit Industries Page 23 of 41

https://learn.adafruit.com//assets/23913
https://learn.adafruit.com//assets/23913
https://learn.adafruit.com//assets/56384
https://learn.adafruit.com//assets/56384

OE Wire

OE connects to Arduino pin 9. This is the

same for all boards.

OE (output enable) switches the LEDs off

when transitioning from one row to the

next.

CLK Wire

Last one!

©Adafruit Industries Page 24 of 41

https://learn.adafruit.com//assets/23918
https://learn.adafruit.com//assets/23918
https://learn.adafruit.com//assets/56385
https://learn.adafruit.com//assets/56385

CLK connects to…

Pin 8 on Arduino Uno, Adafruit

Metro 328 or Metro M0.

Pin 11 on Arduino Mega.

Pin A4 on Adafruit Metro M4 (not

shown, but you get the idea).

The CLK (clock) signal marks the arrival

of each bit of data.

That’s it. You can skip ahead to the “Test Example Code” page now.

Connecting Using a Proto Shield

As mentioned on the “Jumper” page: if you hold a ribbon cable flat — no folds — and

with both connectors facing you, keys pointed the same direction — there’s is a 1:1

correlation between the pins. The top-right pin on one plug links to the top-right on

the other plug, and so forth. This holds true even if the cable has a doubled-over

•

•

•

©Adafruit Industries Page 25 of 41

https://learn.adafruit.com//assets/23915
https://learn.adafruit.com//assets/23915
https://learn.adafruit.com//assets/56386
https://learn.adafruit.com//assets/56386
https://learn.adafruit.com//assets/56387
https://learn.adafruit.com//assets/56387

strain relief. As long as the keys point the same way and the plugs face the same way,

pins are in the same positions at both ends.

Either end of the ribbon cable can be plugged into the matrix INPUT socket.

The free end of the ribbon can point toward the center of the matrix, or hang off the

side…the pinout is still the same. Notice below the direction of the “key” doesn’t

change.

A dual-row header gets installed on the proto shield, similar to the connector on the

matrix. Just like the ribbon cable lying flat, as long as these two headers are aligned t

he same way, they’ll match pin-for-pin; unlike the jumper wire method from the prior

page, mirroring doesn’t happen.

Wires are then soldered from the header to specific Arduino pins on the proto shield.

Try to keep wire lengths reasonably short to avoid signal interference.

©Adafruit Industries Page 26 of 41

Using color-coded wires helps a lot! If you don’t have colored wires, that’s okay, just

pay close attention where everything goes. Our goal is a proto shield something

like this:

It’s not necessary to install all the buttons and lights on the proto shield if you don’t

want — just the basic header pins are sufficient.

For Arduino form-factor boards, using an Adafruit proto shield (https://adafru.it/eUM): i

f using a shrouded socket (like on the back of the matrix — with the notch so a ribbon

cable only fits one way) you’ll need to place this near the “Reset” end of the shield.

The plastic shroud obscures a lot of pins. Others’ proto shields may be laid out

different…look around for a good location before committing to solder.

For Arduino Mega with our corresponding proto shield (http://adafru.it/192): a

shrouded socket fits best near the middle of the shield.

Otherwise, you can use a plain 2x8-pin male header, or two 1x8 sections installed

side-by-side (as in the photo above). Since there’s no alignment key with this setup,

you might want to indicate it with some tape or a permanent marker.

©Adafruit Industries Page 27 of 41

https://www.adafruit.com/product/2077
https://www.adafruit.com/product/2077
https://www.adafruit.com/products/192

Depending on the make and model of

proto shield, some pins are designed to

connect in short rows. Others don’t. For

the latter, strip a little extra insulation and

bend the wire to wrap around the leg of

the socket from behind, then solder.

Connect Ground Wires

32x32 and 64x32 matrices require

three ground connections. 32x16

matrices have four.

Most proto shields have tons of

grounding points, so you shouldn’t have

trouble finding places to connect these.

Upper RGB Data

Pins R1, G1 and B1 (labeled R0, B0 and G0

on some matrices) deliver data to the top

half of the display.

On the Arduino Uno and Adafruit Metro

(328, M0 or M4) boards, connect these to

digital pins 2, 3 and 4.

On Arduino Mega, connect to pins 24, 25

and 26.

©Adafruit Industries Page 28 of 41

https://learn.adafruit.com//assets/23940
https://learn.adafruit.com//assets/23940
https://learn.adafruit.com//assets/23942
https://learn.adafruit.com//assets/23942
https://learn.adafruit.com//assets/23943
https://learn.adafruit.com//assets/23943

Lower RGB Data

Pins R2, G2 and B2 (labeled R1, G1 and B1

on some matrices) deliver data to the

bottom half of the display. These connect

to the next three Arduino pins…

On Arduino Uno and Adafruit Metros,

that’s pins 5, 6 and 7.

On Arduino Mega, pins 27, 28 and 29.

Row Select Lines

Pins A, B, C and D select which two

rows of the display are currently lit.

(32x16 matrices don’t have a “D” pin —

it’s connected to ground instead.)

These connect to pins A0, A1, A2 and (if

D pin present) A3. This is the same for

both the Arduino Uno and Mega.

LAT Wire

For 32x32 and 64x32 matrices, LAT

connects to Arduino pin 10.

This is the same for all boards.

The LAT (latch) signal marks the end of a

row of data.

©Adafruit Industries Page 29 of 41

https://learn.adafruit.com//assets/23944
https://learn.adafruit.com//assets/23944
https://learn.adafruit.com//assets/23945
https://learn.adafruit.com//assets/23945
https://learn.adafruit.com//assets/23946
https://learn.adafruit.com//assets/23946

OE Wire

OE connects to Arduino pin 9. This is the

same for all boards.

OE (output enable) switches the LEDs off

when transitioning from one row to the

next.

CLK Wire

Last one!

CLK connects to…

Pin 8 on Arduino Uno, Adafruit

Metro 328 or Metro M0.

Pin A4 on Adafruit Metro M4.

Pin 11 on Arduino Mega.

The CLK (clock) signal marks the arrival

of each bit of data.

Here’s that photo again of a completed shield. You can tell this is for a 32x16 matrix,

because there are four ground connections (one of the long vertical strips is a ground

bus — see the tiny jumpers there?).

The ribbon cable to the matrix would plug into this with the key facing left.

The colors and positions don’t quite match the examples above, but are close. G1 and

G2 are yellow wires. LAT is the purple wire and should go to pin 10 now (we changed

around some things in the Arduino library).

•

•

•

©Adafruit Industries Page 30 of 41

https://learn.adafruit.com//assets/23948
https://learn.adafruit.com//assets/23948
https://learn.adafruit.com//assets/23947
https://learn.adafruit.com//assets/23947

Test Example Code

We have example code ready to go for these displays. It does not work with every

board out there. See the “Compatible Hardware” lists on the opening page for

guidance.

Arduino Uno support is limited to the 32x16 matrix, and only “single-buffered” (i.e. no

smooth animation), despite any comments in the examples that might suggest

otherwise.

Over time, RAM required by the core Arduino code and the matrix-driving

graphics libraries has increased…a few bytes here and there as bugs are fixed

and features are added. Early on, 32x32 (or double-buffered 32x16) just barely

fit in the Arduino Uno’s RAM, with a few dozen bytes to spare for user code. This

is no longer the case. But you might still see references to this in older code.

Some libraries need to be downloaded and installed: first is the RGB Matrix Panel

library (https://adafru.it/aHj) (this contains the low-level code specific to this device),

then the Adafruit GFX Library (https://adafru.it/aJa) (which handles graphics

operations common to many displays we carry) and Adafruit BusIO (https://adafru.it/

GxD).

The library works with a LIMITED NUMBER of boards: Arduino Uno, Mega, Zero,

Adafruit Metro M0 and Metro M4. Other boards (such as the Arduino Leonardo)

ARE NOT SUPPORTED.

©Adafruit Industries Page 31 of 41

https://github.com/adafruit/RGB-matrix-Panel
https://github.com/adafruit/RGB-matrix-Panel
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit_BusIO

Both libraries can be found and installed

using the Arduino Library Manager

(Sketch→Include Library→Manage

Libraries…). Search for “gfx” and “rgb

matrix panel” and install the

corresponding Adafruit libraries.

Now you are ready to test! Open up the IDE and load File→Examples→RGBmatrixPan

el→testcolors_16x32 (for the 16x32 panel) or File→Examples→RGBmatrixPanel→color

wheel_32x32 (for the 32x32 panel). There’s also a testshapes_32x64 example for

boards with sufficient RAM.

If using an Arduino Mega 2560, in addition to wiring changes previously mentioned,

you'll need to make a small change to each of the example sketches. This line:

#define CLK 8 // MUST be on PORTB! (Use pin 11 on Mega)

Should be changed to:

#define CLK 11

(Any of digital pins 10-13 and 50-53 can be used for this function on the Mega, with

the corresponding wiring change. The examples all reference pin 11.)

If using an Adafruit Metro M4 (not M0 or 328), the CLK change would instead be:

#define CLK A4

©Adafruit Industries Page 32 of 41

https://learn.adafruit.com//assets/56430
https://learn.adafruit.com//assets/56430
https://learn.adafruit.com//assets/56431
https://learn.adafruit.com//assets/56431

After uploading, with the 16x32 panel you should see the following:

This is a test pattern that shows 512 colors (out of 4096) on the 512 pixels. Since

there's no really elegant way to show a 3-dimensional color space (R/G/B) in two

dimensions, there's just repeating grids of red/green with increasing blue. Anyways,

this shows you the range of colors you can achieve!

or, with the 32x32 panel:

Now that you've got it working here are a few things to look for:

The most useful line to look at is:

 matrix.drawPixel(x, y, matrix.Color333(r, g, b));

©Adafruit Industries Page 33 of 41

which is where we actually draw to the display. This code only draws one pixel at a

time. The x and y coordinates are the individual pixels of the display. (0,0) is in the top

left corner, (31, 15) is in the bottom right (remember that we start counting at 0 here!).

To create a color, you will want to use the helper funciton Color333 which will take

three 3-bit numbers and combine them into a single packed integer. So for example,

the first argument, r can range from 0 to 7. Likewise for gand b. To make a pixel that is

pure red, r would be 7 and g, b would be 0. To make a white pixel, set all to 7. To make

a black (off) pixel, set the colors to 0. A similar function, Color444, accepts three 4-bit

numbers for up to 4096 colors.

Now we can open up the next example, which shows the rest of the library

capabilities.

Library

Next up, load the testshapes_16x32 or testshapes_32x32 example sketch, which will

test every drawing element available (again, you may need to edit the pin numbers for

the 32x32 panel).

The most simple thing you may want to do is draw a single pixel, we saw this

introduced above.

 // draw a pixel in solid white

 matrix.drawPixel(0, 0, matrix.Color333(7, 7, 7));

Next we will fill the screen with green by drawing a really large rectangle. The first

two arguments are the top left point, then the width in pixels, and the height in pixels,

finally the color

©Adafruit Industries Page 34 of 41

 // fix the screen with green

 matrix.fillRect(0, 0, 32, 16, matrix.Color333(0, 7, 0));

Next we will draw just the outline of a rectangle, in yellow

 // draw a box in yellow

 matrix.drawRect(0, 0, 32, 16, matrix.Color333(7, 7, 0));

Next you may want to draw lines. The drawLine procedure will draw a line in any color

you want, we used this to draw a big X

 // draw an 'X' in red

 matrix.drawLine(0, 0, 31, 15, matrix.Color333(7, 0, 0));

 matrix.drawLine(31, 0, 0, 15, matrix.Color333(7, 0, 0));

The next shapes we draw are circles. You can draw the outline of a circle with drawCi

rcle or fill a circle with fillCircle. The first two arguments are the center point, the third

argument is the radius in pixels, finally the color to use.

 // draw a blue circle

 matrix.drawCircle(7, 7, 7, matrix.Color333(0, 0, 7));

 // fill a violet circle

 matrix.fillCircle(23, 7, 7, matrix.Color333(7, 0, 7));

fillScreen allows you to fill the entire screen with a single color:

// fill the screen with 'black'

 matrix.fillScreen(matrix.Color333(0, 0, 0));

Finally, we draw the text that is shown up top as the demonstration image. We can

use the print function, which you'll be familiar with from Serial. You can use print to

print strings, numbers, variables, etc. However, we need to set up the printing before

just going off and doing it! First, we must set the cursor location with setCursor which

is where the top left pixel of the first character will go, this can be anywhere but note

that text characters are 8 pixels high by default. Next setTextSize lets you set the size

to 1 (8 pixel high) or 2 (16 pixel high for really big text!), you probably want just to stick

with 1 for now. Lastly we can set the color of the text with setTextColor. Once this is all

done, we can just useprint('1') to print the character "1".

 // draw some text!

 matrix.setCursor(1, 0); // start at top left, with one pixel of spacing

 matrix.setTextSize(1); // size 1 == 8 pixels high

 // print each letter with a rainbow color

 matrix.setTextColor(matrix.Color333(7,0,0));

 matrix.print('1');

 matrix.setTextColor(matrix.Color333(7,4,0));

 matrix.print('6');

©Adafruit Industries Page 35 of 41

 matrix.setTextColor(matrix.Color333(7,7,0));

 matrix.print('x');

 matrix.setTextColor(matrix.Color333(4,7,0));

 matrix.print('3');

 matrix.setTextColor(matrix.Color333(0,7,0));

 matrix.print('2');

 matrix.setCursor(1, 9); // next line

 matrix.setTextColor(matrix.Color333(0,7,7));

 matrix.print('*');

 matrix.setTextColor(matrix.Color333(0,4,7));

 matrix.print('R');

 matrix.setTextColor(matrix.Color333(0,0,7));

 matrix.print('G');

 matrix.setTextColor(matrix.Color333(4,0,7));

 matrix.print("B");

 matrix.setTextColor(matrix.Color333(7,0,4));

 matrix.print("*");

How the Matrix Works

There's no “official” documention out there on how these matrices work, and no

public datasheets or spec sheets so we are going to try to document how they work.

First thing to notice is that there are 512 RGB LEDs in a 16x32 matrix. Like pretty much

every matrix out there, you can't drive all 512 at once. One reason is that would

require a lot of current, another reason is that it would be really expensive to have so

many pins. Instead, the matrix is divided into 8 interleaved sections/strips. The first

section is the 1st 'line' and the 9th 'line' (32 x 2 RGB LEDs = 64 RGB LEDs), the second

is the 2nd and 10th line, etc until the last section which is the 8th and 16th line. You

might be asking, why are the lines paired this way? wouldnt it be nicer to have the

first section be the 1st and 2nd line, then 3rd and 4th, until the 15th and 16th? The

reason they do it this way is so that the lines are interleaved and look better when

refreshed, otherwise we'd see the stripes more clearly.

©Adafruit Industries Page 36 of 41

So, on the PCB is 12 LED driver chips. These are like 74HC595s but they have 16

outputs and they are constant current. 16 outputs * 12 chips = 192 LEDs that can be

controlled at once, and 64 * 3 (R G and B) = 192. So now the design comes together:

You have 192 outputs that can control one line at a time, with each of 192 R, G and B

LEDs either on or off. The controller (say an FPGA or microcontroller) selects which

section to currently draw (using A, B, and C address pins - 3 bits can have 8 values).

Once the address is set, the controller clocks out 192 bits of data (24 bytes) and

latches it. Then it increments the address and clocks out another 192 bits, etc until it

gets to address #7, then it sets the address back to #0

The only downside of this technique is that despite being very simple and fast, it has

no PWM control built in! The controller can only set the LEDs on or off. So what do

you do when you want full color? You actually need to draw the entire matrix over and

over again at very high speeds to PWM the matrix manually. For that reason, you need

to have a very fast controller (50 MHz is a minimum) if you want to do a lot of colors

and motion video and have it look good.

How quickly can we feed data to the matrix? Forum users Andrew Silverman and Ryan

Brown have been posting their progress (https://adafru.it/aO2) driving the 16x32

matrix with an FPGA, and the limit appears to be somewhere between 40 and 50

MHz. Ryan writes: “I haven't validated 100% pixel correctness, but 50 MHz seems to

work for me […] 67MHz definitely did not work.” He also provided this graph showing

current draw relative to clock frequency:

Image above by rhb.me (CC By-NC-SA)

“Notice that the LED panel current consumption decreases as clock frequency

©Adafruit Industries Page 37 of 41

http://forums.adafruit.com/viewtopic.php?f=47&t=26130&start=0

increases. This suggests that the LED ‘on time’ is decreasing. I’m guessing this is

caused by frequency-invariant delays in the LED driver shift registers.”

FAQ

I'm seeing weird pixel artifacts, ghosting, or other glitches.

This will probably be due to one of these:

Wiring

Power

Software

Bad display

Wiring problems are probably the biggest source of display issues. Especially if you

are attempting the "jumper wire" connection method. There have also been cases

of power supplies causing interference. This guide covers both proper wiring and

power.

If all of that seems OK and you are still seeing weird pixels, it may be due to how

the pixels are being driven in software. You can try some tweaks as covered in the

guide, but the issue may not entirely go away.

If you've tried to troubleshoot and still have issues, post in the forums and we can

take a look. Every now and then a display can just be bad.

Wiring Issue Examples

Wiring issues tend to look like this and are often fixable if you can find the wrong /

bad wire.

•

•

•

•

©Adafruit Industries Page 38 of 41

©Adafruit Industries Page 39 of 41

Ghosting Issue Examples

You see what you expect for the most part, but also some other artifacts. This can

happen even with proper wiring.

©Adafruit Industries Page 40 of 41

Downloads

Files

Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)

EagleCAD PCB Files in GitHub (https://adafru.it/BNu)

Schematic & Fabrication Print

•

•

©Adafruit Industries Page 41 of 41

https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-RGB-Matrix-Shield-PCB

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 2601 1484 2276 2278 3803 3826

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=2601
https://www.mouser.com/access/?pn=1484
https://www.mouser.com/access/?pn=2276
https://www.mouser.com/access/?pn=2278
https://www.mouser.com/access/?pn=3803
https://www.mouser.com/access/?pn=3826

	32x16 and 32x32 RGB LED Matrix
	Table of Contents
	Overview
	Power
	Connections
	Connecting Using RGB Matrix Shield
	Connecting with Jumper Wires
	Connecting Using a Proto Shield
	Test Example Code
	Library
	How the Matrix Works
	FAQ
	Downloads

	Overview
	COMPATIBLE HARDWARE
	Power
	Connections
	Connecting to Arduino
	Connecting Using RGB Matrix Shield
	Metro M4 Usage
	Connecting with Jumper Wires
	Connect Ground Wires
	Upper RGB Data
	Lower RGB Data
	Row Select Lines
	LAT Wire
	OE Wire
	CLK Wire
	Connecting Using a Proto Shield
	Connect Ground Wires
	Upper RGB Data
	Lower RGB Data
	Row Select Lines
	LAT Wire
	OE Wire
	CLK Wire
	Test Example Code
	Library
	How the Matrix Works
	FAQ
	I'm seeing weird pixel artifacts, ghosting, or other glitches.
	Wiring Issue Examples
	Ghosting Issue Examples

	Downloads
	Files
	Schematic & Fabrication Print

