

VC0882 Data Book

VC0882 Data Book

Revision 0.92

Notes1: The information is subject to change without notice. Before using this document, please confirm that this is the latest version.

Notes2: Not all products and/or types are available in every country. Please check with a Vimicro sales representative availability and additional information.

Important Notice

Vimicro Corporation and its subsidiaries reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Vimicro's terms and conditions of sale supplied at the time of order acknowledgment.

Vimicro does not warrant or represent that any license, either express or implied, is granted under any Vimicro patent right, copyright, mask work right, or other Vimicro intellectual property right relating to any combination, machine, or process in which Vimicro products or services are used. Information published by Vimicro regarding third-party products or services does not constitute a license from Vimicro to use such products or service or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Vimicro under the patents or other intellectual property of Vimicro.

Reproduction of information in Vimicro data books or data sheets is permissible only if preproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Vimicro is not responsible or liable for such altered documentation.

Resale of Vimicro products or services with statements different from or beyond the parameters stated by Vimicro for that product or service voids all express and any implied warranties for the associated Vimicro product or service and is an unfair and deceptive business practice. Vimicro is not responsible or liable for any such statements.

Revision Table								
Date	Rev.	Author	Content of revision	Approval				
2011-1-20	0.10		Original version	IC team				
2011-4-01	0.21		Modify version	Yanghui				
2011-5-01	0.90		Release Version					

CONTENTS

1	OVER	VIEW	8
2	FEATU	JRE DESCRIPTION	10
	2.1 \$	System Block Diagram	10
		lighlight Feature	
		CPU Subsystem	
		/lemory Subsystem/ideo Subsystem	
		Storage Subsystem	
		Peripheral Subsystem	
		Power Management	
	2.9 F	PAD and PAD Control	22
3	PIN DI	ESCRIPTION AND PACKAGE INFO	24
	3.1 E	Ball Map	24
		Pin description	
	3.3 F	Package Information	52
_			67
4	CPU S	UBSYSTEM	J/
4		CORTEX-A8 Features	
4	4.1 (4.2 (CORTEX-A8 Features Clock and Reset	57 59
4	4.1 (4.2 (4.3	CORTEX-A8 Features Clock and Reset nterrupt controller	57 59 60
4	4.1 (4.2 (4.3 4.4]	CORTEX-A8 Features Clock and Reset nterrupt controller īmer	57 59 60 61
•	4.1 () 4.2 () 4.3 4.4 4.5 E	CORTEX-A8 Features Clock and Reset nterrupt controller Timer EFUSE	57 59 60 61 62
4 5	4.1 () 4.2 () 4.3 4.4 4.5 E	CORTEX-A8 Features Clock and Reset nterrupt controller Timer EFUSE	57 59 60 61
•	4.1 (4.2 (4.3 4.4 4.5 MEMC	CORTEX-A8 Features Clock and Reset nterrupt controller Timer EFUSE	57 59 60 61 62 65
•	4.1 (4.2 (4.3 4.4 4.5 MEMC 5.1	CORTEX-A8 Features Clock and Reset nterrupt controller Timer FUSE	57 59 60 61 62 65
•	4.1 (4.2 (4.3 4.4 4.5 E MEMC 5.1 5.2 [5.3]	CORTEX-A8 Features Clock and Reset Interrupt controller Timer FUSE ORY SUBSYTEM	57 59 60 61 62 65 65 66 67
•	4.1 (4.2 (4.3 4.4 4.5 MEMC 5.1 5.2 5.3 5.4	CORTEX-A8 Features Clock and Reset Interrupt controller Timer FUSE ORY SUBSYTEM	57 59 60 61 62 65 65 66 67 68
•	4.1 (4.2 (4.3 4.4 4.5 MEMC 5.1 5.2 5.3 5.4	CORTEX-A8 Features Clock and Reset Interrupt controller Timer FUSE ORY SUBSYTEM	57 59 60 61 62 65 65 66 67 68
•	4.1 (4.2 (4.3 4.4 4.5 E MEMC 5.1 5.2 [5.3] 5.4 F 5.5 [CORTEX-A8 Features Clock and Reset Interrupt controller Timer FUSE ORY SUBSYTEM	57 59 60 61 62 65 65 66 67 68 68
5	4.1 (4.2 (4.3 4.4 4.5 MEMC 5.1 5.2 5.3 5.4 5.5 VIDEC 6.1 \	CORTEX-A8 Features Clock and Reset	57 59 60 61 62 65 65 66 67 68 68 68 71 71

	6.2 6.3 6.4 6.5 6.6 6.7 6.8	Encoding Features Pre-processing features	73 74 75 75 75 77 82 83 83 84 86 87 88
	ט.ט	GPU General Features	•
		Full-featured 3D Graphics Pipeline	
		Full-featured 2D Graphic Pipeline	
7	ST	ORAGE SUBSYSTEM	95
1			55
	7.1	USB OTG	
	7.2	USB HOST	
	7.3 7.4	SDIO Controller NAND Flash Controller	
	7.5	SPI (Serial Peripheral Interface)	
0			
8	PE	RIPHERAL SUBSYSTEM1	UΖ
	8.1	Audio Module 1	
	8.2	UART	
	8.3	IIC Module 1	
	8.4 8.5	PWM	
	8.6	Touch Panel Interface	
9	FU	ECTRICAL PARAMETERS AND TIMING1	na
5			55
	9.1	Absolute Maximum Ratings 1	
	9.2	Recommended Operating Conditions	
	9.3	DC Characteristics	
		Standard Digital IO	

MEMORY IO	114
USB Analog IO	
CIF Interface Timing	
SPI Interface Timing	117
SPI in Slave Mode	
SPI in Master Mode	
I2C Interface Timing	119
SDIO Interface Timing	121
NFC Interface Timing	123
AUD Interface Timing	126
D LCD Interface Timing	127
LCD Serial Interface	127
Data Output for DPI Panel	128
Interface Timing with DBI Panel	129
	USB Analog IO CIF Interface Timing SPI Interface Timing SPI in Slave Mode SPI in Master Mode I2C Interface Timing SDIO Interface Timing NFC Interface Timing AUD Interface Timing CLCD Interface Timing LCD Serial Interface Data Output for DPI Panel

VC0882 Data Book

Chapter 01

Overview

Vimicro Copyright© 1999-2011

Page 7 of 131

1 Overview

The Vimicro VC0882, is a high performance, low power, multimedia application and high integrated system-on-chip (SOC) targeted at Application Processor (AP) of Tablet PC and Smart Phone. It is implemented on TSMC 65nm low power process technology.

The embedded microprocessor in VC0882 is based on 1.3Ghz ARM Cortex-A8 with NEON coprocessor. Also it is integrated with the high performance video decoder up to 1080P with 30fps for H.264, H.263, RMVB, MPEG4, MPEG2,VC1 etc. And it can support H.264, MPEG4, H.263 video encoder up to 30fps for 720p.

VC0882 is embedded for 2D and 3D graphic acceleration processor (GPU) to support display and gaming. This GPU delivers the scalable ultra-threaded unified shader architecture up to 15MTriangle rate per second. Also it supports the industry standard API such as Open GL ES1.1 and 2.0, Open VG1.0

Camera interface supports multiple formats from parallel sensors, ccir656 interface and raw image data. Display engine can deal with overlay of 4 display layers plus background and HW cursors. The video subsystem also supports SDTV and HDTV with 10-bit 3-channel 250Mhz analog Video DAC output. 24 bits LCD interface is applied with most of post processing and 1920x1080 maximum display sizes for all of panels and HDMI Bridge. It also supports the face detection function through the cooperation of hardware and software.

VC0882 can support most of high-level operation systems such as Android OS and Linux. And it integrates the state-of-the-art power management technologies for dynamic voltage control with multi power domains.

Integrated DDR controller can be compatible to external LPDDR, DDR2 and DDR3 with the data rates up to 667Mb/s. It supports 6 high performance and low power PLLs for flexible clock switch. VC0882 includes 3 SDIO/MMC card interfaces and 8bits/16bits NAND Flash with ECC, 2 PWMs, 3 UART interfaces, 2 SPI controller interfaces. One USB OTG 2.0 and one USB Host 2.0 can implement the data transfer between SOC and PC. Also, VC0882 contains the embedded 10-bit SAR ADC with 4-wire touch panel interface and carries one high quality 24-bit stereo ADC and DAC for audio processing. It can support the EFUSE function to program electrical fuse IP.

VC0882 Data Book

Chapter 02

Feature Description

2 Feature Description

2.1 System Block Diagram

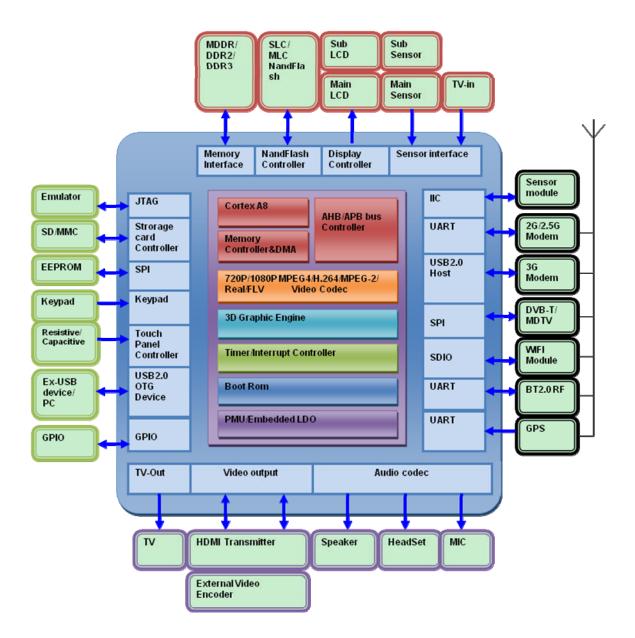


Figure 2-1 System Diagram of 445BGA

2.2 Highlight Feature

- Embedded up to 1.3Ghz ARM CORTEX-A8 CPU with v7-A instruction set
- Embedded up to 720p H.264, MPEG-4, H-263 video encoder with 30fps
- Embedded up to 1080p H.264, SVC, MPEG-4, MPEG-2, MPEG-1, H.263, VC-1, JPEG, RV, VP6 and DivX video decoder with 30fps
- Embedded with graphic 3D engine for compliant with the OpenGL ES 2.0; OpenGL ES1.1; OpenVG 1.1
- Embedded with Data rates of up to 667 Mb/s (333 MHz) for LPDDR, DDR2 and DDR3
- Embedded 6 PLLs for flexible clock switch
- Support parallel cameral sensor interface with max 4Kx4K resolution
- Support LCD interface for DBI, DPI and HDMI bridge
- Support NTSC and PAL SDTV and YPbPr analog signals output on 480i /480p /576i /576p /720p /1080i /1080p systems
- Embedded 8 bit/16 bit NAND Flash controller with up to 48 bits ECC
- Supports 4 SDIO devices
- One USB host and one USB OTG compliant with USB2.0 specification
- Contains a high-quality 24-bit audio stereo ADC and a high-quality 24-bit stereo DAC
- Support Touch Panel Interface with10-bit SAR ADC: DNL $\pm\,1$ LSB, INL $\pm\,2$ LSB
- Embedded with multi-power domains and smart DVFS scheme
- Power consumption value: 108mW for audio playing, 183mW for screen display, 630mW for 1080P player and 800uW for sleep mode

2.3 CPU Subsystem

- Embedded ARM CORTEX-A8
- Full implementation of the ARM architecture v7-A instruction set
- 64-bit high-speed Advanced Microprocessor Bus
- Programmable CPU frequency up to 1.3Ghz for typical case
- memory interface supporting multiple outstanding transactions
- A pipeline for executing ARM integer instructions
- A NEON pipeline for executing Advanced SIMD and VFP instruction sets
- Dynamic branch prediction with branch target address cache, global history buffer, and 8-entry return stack
- Memory Management Unit (MMU) and separate instruction and data Translation

- Look-aside Buffers (TLBs) of 32 entries each
- Level 1 32KB instruction cache and 32KB data caches
- Level 2 128KB cache
- Level 2 cache with parity and Error Correction Code (ECC) configuration option
- Embedded Trace Macrocell (ETM) support for non-invasive debug
- Static and dynamic power management including Intelligent Energy Management (IEM)
- ARMv7 debug with watch point and breakpoint registers and a 32-bit Advanced
- Peripheral Bus (APB) slave interface to a CoreSight debug system.
- Interrupt Controller
- Hierarchical interrupt scheme which process 1st level interrupts in Interrupt Controller while handling 2nd level interrupt in the associated sub-modules
- Support both FIQ and IRQ
- Support up to 32 interrupts
- Using interrupt source based MASK scheme and source pending registers to avoid losing interrupts
- Programmable interrupt prioritization

Timers

- 3 general purpose timers, 4 dual timers and 1 watchdog timer
- Programmable timer period and timer operation mode
- Individual interrupt for each timer
- Unique 24MHz clock for all timer
- CLOCK & RST
- Supports 1 oscillator (or crystal): 26 MHz XCLK
- Embeds 6 high performance, low power PLLs
- Includes configurable clock dividers to produce desired clock frequencies
- Implements clock gating technology to save power
- Inserts clock multiplexers to enhance flexibility
- Seamlessly dynamic clock switching between XCLK and all 6 PLLs
- Integrates pmu hardware reset, watchdog reset, global software reset and each module's individual software reset
- Inserts clock multiplexers to enhance flexibility
- EFUSE
- Support to manage the electrical fuse IP by APB bus in normal mode or by

PAD on ATE test mode

- Embedded power switch
- Support to program to 1 bit at a time according to the configured address
- Software can read 1-8 bytes at a time according to configured address and configured read byte length
- Provide power down and standby mode
- Asynchronous signal interface

2.4 Memory Subsystem

- DDR controller
- Compatible with JEDEC standard LPDDR, DDR2, DDR3
- Data rates of up to 667 Mb/s (333 MHz)
- Compatible with the AMBA 3 AXI protocol
- Compatible with the AMBA 3 APB protocol
- Supported AXI burst type: incremental and wrap
- Register programmable timing parameters support DDR2/DDR3/LPDDR1 components from DRAM various vendors
- Support LPDDR1/DDR2 read/write command interrupt access
- Advanced features such ODT, ZQ Calibration and *additive latency*
- Support for two CSs (chip select) with shared clock pins, command pins, address pins and data pins
- Support for DDR device density ranging from 64Mbit to 2Gbit
- Support 16bit/32bit LPDDR1/DDR2/DDR3 device
- Supports autonomous DDR power down entry and exit based on programmable idle periods
- Support for self refresh entry on software command and automatic exit on DRAM access command arrival
- Automated Read DQS recognition and Automated Dynamic DQS Drift Compensation
- Built-in DQS Gate Training
- Support DDR3 DLL-off Mode
- Support LPDDR1 Deep Power Down Mode
- DMA Controller
- Compliance to the AMBA 3.0 Specification---AXI protocol for integration into SoC implementation.
- One DMA channel which can support unidirectional transfer for software request
- Support memory-to-memory transfers

- Support Software link list descriptor-based DMA transfers
- Support programming max burst length
- SRAM Controller
- Embedded 32Kbyte SRAM in chip
- Supports 14 bit address and 16 bit data
- Acts as single-port SRAM for test program and as dual-port SRAM
- ROM Controller
- Embedded with 64Kbyte ROM
- Supports with 14 bit address and 64 bit data
- For system boot only

2.5 Video Subsystem

- Camera Interface
- Support master type sensor module and 8-bit parallel data output from sensor
- Support two camera sensors (only one works at the same time)
- Support max sensor resolution: 4096x4096 and 100Mhz max pixel clock
- Support max output image size (to memory): 4096x4096
- Support parallel interface for SYNC mode or ITU-R BT656 mode
- Support YCbCr422-format data/RAW image data/JPEG compressed data/RGB data (Bypass post-processing for RAW data/JPEG data/RGB data)
- Support two post-processing paths for capture and display
- Support up-scaling and down-scaling for capture path/preview path
- Capture path support slice mode and frame mode
- Support auto-focus
- Special Effect
 - o Mono color
 - o Sepia
 - o Special color
 - o Negative
 - o Four blocks
 - o Grid color
- Display Engine

- Support 4 display layers plus background and HW cursor
- Support HW cursor with max resolution 64x64
- Using Pipeline architecture to implement overlay & alpha-blending operation
- Support up-scaling for overlay pixel data up to 1920x1080
- Support brightness/contrast/hue/saturation adjustment
- Support programmable gamma correction
- Support dithering for less than 24-bit color display
- Provide capture path to implement the function as "capture with frame"
- Max panel resolution: 1600x1200 for TV/1920x1080 for LCD panel and Max pixel rate up to 162MHz
- Support BT601 and BT609 color domain
- Programmable bits-per-pixel when output to LCDIF module: 16/18/24-bpp such as YUV422, RGB565, RGB666, RGB888, and etc.
- Support programmable multi-cycle output mode: 1/2/3/4 cycles per pixel
- Face Detection
- Includes the calculation of integral and LAB (Locally Assembled Binary) in hardware and some functions implemented by software
- Support maximum sizer image width is 320 pixels, height is 240 pixels, minimum sizer image width is 24 pixels, height is 24 pixels and no limitation for original image size
- About process 5~10 QVGA frames in a second
- Support detection of smile faces, but not wink faces and report the eyes position.
- Support the face in profile angle is -20 ~ 20 degrees, pitching angle is -30 ~ 30 degrees.
- Support detection of black skin faces, color eyes and white hair
- Video Encoder
- Supports H.264 baseline Levels 1-3.1, I-Slice and P-Slice CAVLC encoding, contained intra prediction, image size up to 1280x1024
- Supports MPEG-4 Levels 1-5, I-VOP and P-VOP, Max MV range +-16 pixels, image size up to 1280x1024
- Supports H.263 Profile 0 Level 10-70
- Supports JPEG baseline image size up to 4672x3504
- Supports cropping and rotation (90 or 270 degrees) functions
- Video Decoder

- Supports to decode H.264, SVC, MPEG-4, MPEG-2, MPEG-1, H.263, VC-1, JPEG, RV, VP6 and DivX profile and level for up to 1920x1080
- Supports most of post-processing, up-scaling, down-scaling, dithering, alpha-blending, color conversion, de-interlacing.
- Also supports contrast, brightness, saturation, cropping, digital zoom, picture in picture, image rotation etc.
- 3D Graphic Engine
- OpenGL ES 2.0 compliant, including extensions; OpenGL ES1.1; OpenVG 1.1
- IEEE 32-bit floating-point pipeline supports long shader instructions (maximum 256 instruction)
- Up to 256 threads per shader
- Up to 16 programmable Scalable Ultra-threaded, unified vertex and pixel shaders
- FSAA mechanisms: MSAA 4x, high quality FSAA 16x
- Vertex processing supported format: BYTE, UBYTE, SHORT, USHORT, INT, UINT, DEC, UDEC, FLOAT, FLOAT16, D3DCOLOR, FIXED16DOT16
- Up to 8 programmable elements per vertex
- Dependent texture operation with high-performance
- Alpha blending
- Support for 4 vertex shader and 8 pixel shader simultaneous textures
- 2D Graphic Engine
- Bit blit, stretch blit, pattern blit and fast clear
- Line drawing and Rectangle fill and clear
- Mono expansion for text rendering
- Anti-aliased font support
- ROP2, ROP3, ROP4
- Alpha blending
- 90/180/270 degree rotation and Vertical and Horizontal mirror
- Transparency by monochrome mask, chroma key or pattern mask
- High quality 9-tap filter for scaling
- 32K x 32K coordinate system
- Color space conversion between YUV and RGB for both BT709 and BT601
- Clipping window
- Color Index Input conversion Support
- Filter Blit
- Input Formats: (Only Filter Blit support YUV input)
 - A1R5G5B5
 - A4R4G4B4
 - A8R8G8B8

- X1R5G5B5
- X4R4G4B4
- X8R8G8B8
- RGB565
- NV12 (semi-planer YUV420)
- NV16 (semi-planer YUV422)
- YUY2(package YUV422)
- UYVY(package YUV422)
- YV12(planer YUV420)
- 8-bit color index
- 1-bit monochrome
- The output data Formats:
 - A1R5G5B5
 - A4R4G4B4
 - A8R8G8B8
 - X1R5G5B5
 - X4R4G4B4
 - X8R8G8B8
 - RGB565
- LCD Interface
- Supports Display Bus Interface (DBI) output mode, compliant to the MIPI Alliance Display Bus Interface protocol v2.0
- Supports accessing (including writing and reading) in through mode
- Supports dual LCD panels work at different time(DBI & DBI, DBI&DPI)
- Supports up to 24 bits per pixel (BPP)
- Display size programmable up to 1080p(1920*1080) with configured interlaced or progressed mode
- Supports Display Pixel Interface (DPI) output mode, compliant to the MIPI Alliance Display Pixel Interface protocol V2.0
- Display size programmable up to 1080p(1920 x1080) with configured interlaced or progressed mode;
- Support for 12 & 16&18BPP&24BPP modes for RGB parallel output format (RGB444, RGB565, RGB666, RGB888);
- Support programmable pixel clock and asynchronous reset signal ;
- Support flexible 3-wire and 4-wire serial interface(including write operation and read operation of panel registers)
- Support parallel dpi interface with up to 24 bits interface;
- Support CCIR656 interface (PAL mode and NTSC mode, 8 bit interface only);
- Support CCIR601 interface.
- Support UPS051&UPS052 interface (8 bit interface only).
- Support 24BPP modes for UPS051&UPS052 interface.

VC0882 Data Book

- Support 16BPP modes for CCIR656 and 24BPP modes for CCIR601.
- Programmable 24-bit/18-bit/16-bit/12-bit/8-bit digital output interface
- Supports various RGB format (RGB888, RGB565, RGB666, RGB555), YUV format (YUV444, YUV422) with 1X, 2X, 3X, 4X multiplexed output.
- Support Max pixel rate up to 150MHz in DPI mode
- TV Encoder
- Support NTSC-M/J/4.43 and PAL- /B/D/G/H/M/N/I/Nc SDTV Composite signal (480i/576i) output.
- Support YPbPr analog signals output on 480i /480p /576i /576p /720p /1080i /1080p systems
- Embedded with 10 bits Video DAC for analog signal output

2.6 Storage Subsystem

- NAND Flash Controller
- Compliant to open NAND Flash Interface (ONFI) 1.0 Specification
- Hardware BCH (Bose, Chaudhuri & Hocquenghem Type of code) encoder and decoder are included
- Error detection/correction capability of 4/8/16 bits per 512 bytes
- Error detection/correction capability of 24/32/40/48 bits per 1024 bytes
- 8-bit parallel architecture and calculation based on 1-bit length
- Support SLC, MLC and TLC NAND flash
- Support interlaced storage of ECC and user data
- Support Asynchronous Interface Bus Operation, Clock Frequency 50M for 8-bit interface and Clock Frequency 100M for 16-bit interface
- Support booting from NAND flash with built-in bootloader

SDIO Host

- Supports 3 SD IO devices
- Compatible with SD Memory Card Spec 2.0 and supports SDHC up to 32GB card
- Compatible with SDIO Card Spec 2.0
- Compatible with JESD84-A43 standard (MMC 4.3), up to 8-bit data bus
- Support for SD Memory, SDIO, SD Combo, miniSD, MMC, MMC plus, MMC RS and Trans-Flash cards
- Support dual voltage cards typically operating at 1.8V and 3.3V
- Support programmable protocol bus clock for different cards, up to 52MHz
- USB Host

- High-speed single-port USB host controller. Support one USB downstream port.
- Fully compliant with the USB 2.0 specification, Enhanced Host Controller Interface (EHCI) Specification, Revision 1.0, and the Open Host Controller Interface (OHCI) Specification Release 1.0a.
- Supports high-speed, 480-Mbps transfers using an EHCI Host Controller, as well as full and low speeds through one integrated OHCI Host Controllers.
- The supported peripherals are determined by OS software.
- Also supported: USB-HDD, USB-DVDRW, USB Mouse, USB Keyboard, USB Modem.
- USB OTG
- USB 2.0 high-speed dual-role controller:
- Operates either as the host/peripheral in point-to-point communications with another USB function or as a function controller for a USB peripheral
- Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification
- Supports point-to-point communications with one high-, full- or low-speed device

2.7 Peripheral Subsystem

- PWM
- Supports up to 2 channels
- The pulse ratio of the output waveform ranges from 0/256 to 255/256 The frequency of the output waveform ranges from 6KHz to 12MHz
- UART
- Support 3 UART controllers.
- Functional compatible with the 16550A
- Full-duplex operation.
- Fully programmable serial interface, Data bit: 7-bit or 8-bit, Parity bit: None, Even, Odd, or Stick check, Stop bit: 1-bit or 2-bit.
- Break condition detection and generation.
- Programmable integer and fractional divisor for baud rate generation.
- Programmable Baud rate computation method support up to 12Mbps baud rate.
- Loop-back mode for self test.
- Slow infrared asynchronous interface that conforms to the Infrared Data Association (IrDA) specification.
- Modem control functions with DSR, DCD, RI and DTR signals.

- SPI
- Support 2 SPI controllers;
- Provide master/slave modes selectable by control registers;
- Full duplex synchronous serial data transfer;
- The max transfer speed in master mode is 54MHz
- The max transfer speed in slave mode is 27MHz
- I2C
- Master mode only
- Compliant to Philips I2C-Bus Specification v2.1
- Supports for standard mode (up to 100Kbps) and fast mode (up top 400Kbps)
- Support 7-bit and 10-bit device addressing modes
- Max transfer length of each transaction is 65535 for read or write operation
- Arbitration lost detection and bus busy detection
- Touch Panel Interface
- Master mode only
- Embedded 10-bit SAR ADC: DNL \pm 1 LSB, INL \pm 2 LSB
- Support control function of resistive 4-wire touch panel
- Support pen down detect
- Support 4-channel analog input measurement
- multi-touch supported in Software including zoom in & out and rotation
- Audio Codec
- Master mode only
- Contains a high-quality 24-bit stereo ADC and a high-quality 24-bit stereo DAC
- Provides 6 mono differential line inputs with boost gain stage (0/4/8/12/16/20 dB), they can be used either for line in or microphone in application
- Provides 1 stereo single-end 16/32 Ohm headphone output
- Provides 2 mono differential line output that but can't be driven simultaneously
- Provides 1 mono differential BTL 16/32 Ohm receiver output
- Provides a stereo differential speaker output and one of them can also be configured to the mono differential BTL 8 ohm output
- Provides 2 microphone bias output
- Supports audio sampling rates (Fs) from 8KHz to 96KHz (88.2KHz not supported)
- Supports the Automatic Gain Control (AGC) function to better sound recording performances
- Provides 2 I2S/PCM Interfaces of master mode through VC0882 PADs, so as

to connect external devices of slave mode

- Includes two 32-bit stereo digital mixer (produce Y = A + B result)
- Supports 6 memory formats of audio raw data: Stereo-32bit, Stereo-16bit, Stereo-8bit, Mono-32bit, Mono-16bit, and Mono-8bit

2.8 Power Management

- Robust power on/off control and sequence
- AP Software is allowed to control variable voltage output of abundant power supply devices in PMIC via I2C interface.
- AP is partitioned into multi power domains to allow power off of inactive domains and down-scaling of supply voltage when the domain can work with low frequency.
- AP is divided into two Power domains: PMU (always-on domain) & PSO (shut-off domain). PMU power domain includes PMU logic and all digital IO domains. These digital IO should be powered on/off with PMU logic power at the same time, including DDR memory IO. PSO power domain is divided into four voltage domains to support individual power on/off control, down/up scaling of voltage level for each voltage domain depending on applications. These four voltage domains are ARM, GPU, Video Codec, Other Core. Each voltage domain has its own supply from PMIC with variable voltage output.

Power	POWER	NORMAL	IDLE	HALT	SLEEP
modes	OFF				
PMU	Off	On	On	On	On
domain					
PSO	Off	On	On	On	Off
domain			with ARM	With all	
			clock	module	
			gating	clock	
				gating	

- AP has the following power modes to support low power design.

- Static and dynamic clock gating to decrease dynamic power consumption in AP chip.
- Seamless clock switch to support low power mode in AP chip.
- DVFS(Dynamic Voltage & Frequency Scaling) Technology allows adaptive down/up scaling of clock frequency and voltage level inside one scenario or between scenarios to reduce further dynamic power and also leakage power consumption. Temperature & Process change can also be compensated for by

hardware.

2.9 PAD and PAD Control

- Support 1.7v ~ 3.6v normal digital I/O
- Support 2.4v ~ 3.6v normal analog I/O and 5v special analog I/O
- Support 1.4v ~ 1.9v high-speed MDDR/DDR2/DDR3 I/O
- 4mA/8mA/12mA/16mA drive strength of I/O
- Schmitt trigger input for special signals such as clock, reset
- 16bit strap pins for Software
- Up to 59 GPIO interrupt controllers and 8 Hardware interrupt controllers
- Multi IO power domain to support connecting to external devices with different voltage supply

VC0882 Data Book

Chapter 03

Pin Description And Package information

3.1 Ball Map

中星微 IMICRO

	1	2	3	4	5	6	7	8	9	10	11
	DDR_DQS	DDR_DQ		DDR_DQ	DDR_DQ	DDR_DQ	SPI0_MIS	SPI0_SC		KEYPAD	KEYPA
Α	_INV0	M1	DDR_DQ10	8	2	0	0	LK	KEYPAD1	0	D2
_	DDR_DQ	DDR_DQ		DDR_DQ	DDR_DQ	DDR_DQ	SPI0_MO	SPI0_SS	UART1_S	KEYPAD	KEYPA
В	M0	S 0	DDR_DQ13	15	5	7	SI	0N	DO	3	D6
~	DDR_DQS	DDR_DQ	AUD1_SD	UART0_S	UART1_	UART1_	UART1_	UART1_		KEYPAD	KEYPA
С	_INV1	S 1	O_DAC	DO	DCDN	DSRN	CTSN	SDI	KEYPAD4	7	D11
P	DDR_DQ1	DDR_DQ	AUD1_SDI	AUD1_W	UART0_	UART1_	UART1_	UART1_	VEVDAD5	KEYPAD	KEYPA
D	2	11	_ADC	S	SDI	RIN	DTRN	RTSN	KEYPAD5	9	D12
Б	DDR_DQ1	DDR_DQ	VDD_IO_D	VDD_IO_	AUD1_S	PWM0	PWM1	VSS	VSS	VSSA_PL	VSSA_P
E	4	9	DR	DDR	СК	PWM0	PWMI	V 3 3	V 33	L12_1	LL12_3
F		DDR_DQ	VDD_IO_D	VDD_IO_	VDD_CO			AUD0_S	AUD0_WS	AUD0_SD	AUD0_S
F	DDR_DQ4	6	DR	DDR	RE_PMU			DI_ADC	AUD0_wS	O_DAC	СК
G	DDR DQ1	DDR_DQ	VSS	VSS	DDR_VR						
G	DDK_DQ1	3	V 33	V 33	EF						
н	DDR_A3	DDR_A5	VSS	VSS	VSS	DDR_ZQ					
J	DDR_RST	DDR_A7	VSS	VSS	VSS	DDR_OD			VSS	VSS	VSS
J	Ν	DDR_A/	V 33	V 33	100	Т0			v 33	122	v 33
к	DDR A13	DDR_A9	VSS	VSS	VSS	DDR_BA			VSS	VSS	VSS
K	DDR_A15	DDR_A9	V 33	133	*35	0			v 35	133	133
L	DDR_A0	DDR_A2	VSS	VSS	VSS	DDR_CS			VSS	VSS	VSS
L	DDR_N0	DDR_R2	100	100	100	0N			100	100	100
м	DDR CLK	DDR_CL	VSS	VSS	VSS	DDR_CK			VSS	VSS	VSS
	DDR_CER	K_INV	155	100	155	E0			155		
$\sum_{i=1}^{n}$											
/											
	\mathbf{N}										

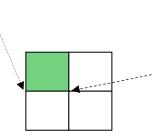
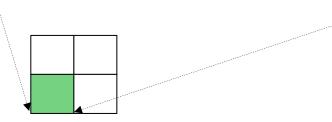
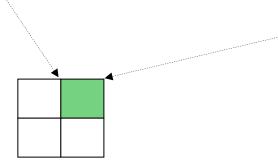



Figure 3-1 Pin Allocation of 445BGA (left-top)


N	DDR_A	DDR_A	VSS	VSS	VSS	DDR_RA			VSS	VSS	VSS
IN	1	12	v 33	v 33	133	SN			v 33	v 33	v 33
Р	DDR_A	DDR_A	VSS	VSS	VSS	DDR_CA			VSS	VSS	VSS
•	11	10	100	100	155	SN			100	100	100
R	DDR_A	DDR_B	VSS	VSS	VSS	DDR_WE			VSSA_AU	VSSA_A	VSSA_A
n –	4	A1		155	100	Ν			D_PA	UD_PA	UD
т	DDR_A	DDR_A	VDD_IO_	VDD_IO_	VSS	DDR_BA					
	8	6	DDR	DDR		2					
U	DDR_D	DDR_D	VDD_IO_	VDD_IO_	DDR_ODT1						
	Q23	Q21	DDR	DDR	_						
	DDR_D	DDR_D	VDD_CO	VDD_COR				AUDC_S	AUDC_SP	AUDC_	USBOTG
V	Q16	Q18	RE_GPU	E_GPU	DDR_CKE1			PKOUTL	KOUTL_	MICBIA	_RREFEX
	-	,	_	_				_P	N	S1	Т
	DDR_D	DDR_D	DDR_CS1			VSSA_A	VSSA_A	AUDC_S	AUDC_SP	VSSA_A	VSSA_A
W	Q27	Q29	Ν	DDR_A14	DDR_A15	UD	UD_PA	PKOUTL	KOUTL_	UD	UD
								_P	N		
Y	DDR_D	DDR_D	VDD_CO	VDDA_A	VDDA_AU	AUDC_LI	AUDC_L	AUDC_S PKOUTR	AUDC_H	AUDC_V	USBOTG
I	Q25	Q31	RE_PMU	UD_RCV	D_OPA	NER2_P	INER1_N	_N	SOUTR	CAP	_VBUS
						VDDA_A		AUDC_S			VDDA_U
AA	DDR_D	DDR_D	VDD_CO	VDDA_A	VDDA_AU	UD_VOU	AUDC_L	PKOUTR	AUDC_H	VDDA_	SBHOST3
	QS2	QM3	RE_PMU	UD_VIN	D_OPA	т	INER1_P	_P	SOUTL	AUD_HP	3
	DDR_D						AUDC_R		AUDC_LI		
AB	 QS_INV	DDR_D	DDR_DQ2	DDR_DQ3	DDR_DQ19	DDR_DQ	 CVOUT_	AUDC_LI	_ NEOUT1_	USBOTG	USBHOS
	2	QM2	8	0	-	22	Р	NEL1_P	Ν	_DPLUS	T_DPLUS
		DDR_D					AUDC_R		AUDC_LI	USBOTG	USBHOS
AC	DDR_D	QS_INV	DDR_DQ2	DDR_DQ2	DDR_DQ20	DDR_DQ	CVOUT_	AUDC_LI	NEOUT1_	_DMINU	T_DMIN
	QS3	3	4	6		17	Ν	NEL1_N	Р	S	US
	1	2	3	4	5	6	7	8	9	10	11

12	13	14	15	16	17	18	19	20	21	22	23	
KEYPA D8	I2C_SCK 0	X32K_O UT0	X32K_IN	XCLKO UT	XCLK IN	NF_CLE	NF_DAT A2	NF_DAT A8	NF_CE N2	NF_DAT A11	NF_WEN	A
KEYPA D10	KEYPA D13	I2C_SCK 1	X32K_O UT1	XCLK_O UT0	XCLK _OUT 1	NF_CEN1	NF_DAT A10	NF_DAT A1	NF_DA TA3	NF_REN	NF_WPN	в
KEYPA D14	I2C_SDA 0	PMIC_IR Q	JTG_TD O	JTG_TR STN	JTG_T CK	NF_CEN0	NF_CEN3	VDD_IO_ NF	NF_DA TA12	NF_DAT A13	NF_RB0	С
KEYPA D15	I2C_SDA 1	TEST	EN_VDD _CORE	JTG_TM S	JTG_T DI	NF_DAT A0	NF_DAT A4	NF_DAT A9	NF_AL E	NF_DAT A14	NF_DATA 6	D
VSSA_P LL12_4	VSSA_P LL12_2	VSSA_P LL12_5	VSSA_P LL12_6	VDD_IO _SYS	RSTN	VDDA_P LL12_1	VDDA_P LL12_3	VDDA_P LL12_4	NF_DA TA5	NF_DAT A7	NF_DATA 15	E
VDD_C ORE_AR M	VDD_C ORE_AR M	VDD_C ORE_AR M	VDD_C ORE_AR M	VDD_C ORE_AR M			VDDA_P LL12_5	VDDA_P LL12_6	VDDA_ PLL12_ 2	GPIO_J2 7	GPIO_J28	F
							GPIO_A4	GPIO_A2	GPIO_A 12	GPIO_J2 9	GPIO_J30	G
						VDD_CO RE_PMU	GPIO_A5	GPIO_A3	GPIO_A 1	GPIO_A 0	SD2_CLK	н
VDD_C ORE_AR M	VDD_C ORE_AR M	VDD_C ORE_AR M	VDD_C ORE_AR M			VSS	VSS	SD2_DA TA0	SD2_C MD	SD2_DA TA2	SD2_DAT A1	J
VSS	VSS	VSS	VSS			VSS	VSS	SD2_DA TA3	SD2_D ATA4	SD2_DA TA5	SD2_RST N	к
VSS	VSS	VSS	VSS			VSS	VSS	SD2_DET ECTN	VDD_I O_SD23	SD2_DA TA6	SD2_DAT A7	L
VSS	VSS	VSS	VSS			VDD_CO RE_VIDE O	VSS	VDD_IO_ LCD	VDD_I O_LCD	LCD_SD A	LCD_RDN	М

12	13	14	15	16	17	18	19	20	21	22	23	
VDAC_V REFOUT	VDDA_ VDAC	SD0_CL K	SD0_DE TECTN	SD0_DA TA3	SD1_C LK	TP_XINN	TP_YIN N	TP_BA T_VOL T	CS_DATA 4	CS_DATA 2	CS_PCLK	A
VDAC_C OMP	VDD_V DAC	SD0_CM D	SD0_DA TA0	SD0_DA TA2	SD1_D ETECT N	TP_XINP	TP_YINP	CS_DA TA1	CS_DATA 0	CS_DATA 3	CS_CLK	A
VDAC_V REFIN	VDAC_ OUTR	VDAC_R SET	SD1_DA TA0	SD1_DA TA2	SD1_D ATA3	TP_BAT_ ID	VDD_TP 33	VDD_I O_CS	CS_HSYN C	CS_DATA 7	CS_SCK	A A
USBHOST _RREFEX T	VDAC_ OUTG	VDAC_O UTB	SD0_DA TA1	SD1_DA TA1	SD1_C MD	TP_BAT_ TEMP	VDDA_T P33	CS_RS TN0	CS_PWD0	LCD_DA TA1	LCD_RST 0N	Y
VSSA_US B	VSSA_U SB	VSSA_V DAC	VSSA_V DAC	VDD_EF USE	VDD_I O_SD0 1	TP_KEYS CAN	VSSA_T P33	LCD_C SON	LCD_DA TA6	LCD_DA TA7	LCD_DA TA3	v
USBOTG_ ID	VDDA_ USBOTG 33	VDD_CO RE_COR E	VDD_CO RE_COR E	VDD_CO RE_COR E			VSS_TP3 3	LCD_D ATA0	LCD_DA TA17	LCD_DA TA15	LCD_DA TA11	v
							TP_VRE F	LCD_D ATA2	LCD_DA TA22	LCD_DA TA20	LCD_DA TA19	τ
						CS_DAT A6	CS_SDA	LCD_D ATA4	LCD_RS	LCD_DA TA8	LCD_DA TA9	г
VSSA_US B	VSSA_U SB	VSSA_V DAC	VSSA_V DAC			CS_DAT A5	VSS	LCD_D ATA5	LCD_DA TA10	LCD_WR N	LCD_PCL K	F
VSS	VSS	VSS	VSS			CS_VSY NC	VSS	LCD_D ATA12	LCD_DA TA14	LCD_DA TA16	LCD_SCK	P
VSS	VSS	VSS	VSS			VDD_CO RE_VIDE O	VSS	LCD_D ATA18	LCD_DA TA23	LCD_DA TA13	LCD_DA TA21	r

Figure 3-4 Pin Allocation of 445BGA (right-bottom)

3.2 Pin description

Pin Name	Pin No.	Pin Typ	Drive Strength	I/O Power	State After	Pin Description
		е	(mA)	Or	Reset	
				Range(v)	Release	
RSTN	E17	l,Sh	4	VDD_IO_SYS	I,RSTN	Reset Signal Input
XCLKIN	A17	I,Sh		VDD_IO_SYS	I,XCLKIN	External Crystal Input for System Clock
XCLKOUT	A16	0		VDD_IO_SYS	O,XCLKOUT	External Crystal Ouput for System Clock
X32K_IN	A15	B, Sh, PD	4	VDD_IO_SYS	I,XCLK_32K_IN	External 32.768K Clock Input, Share with GPIO_A26
X32K_OUT0	A14	B,P D	8	VDD_IO_SYS	I,GPIO_A22,PD	32.768K Clock Output 0, Share with GPIO_A22
X32K_OUT1	B15	B,P D	8	VDD_IO_SYS	I,GPIO_A23,PD	32.768K Clock Output 1, Share with GPIO_A23
XCLK_OUT0	B16	B,P D	8	VDD_IO_SYS	I,GPIO_A27,PD	System Clock Output 0, Share with GPIO_A27
XCLK_OUT1	B17	B,P D	8	VDD_IO_SYS	I,GPIO_A24,PD	System Clock Output 1,GPIO_A24
TEST	D14	I,PD	4	VDD_IO_SYS	I,TEST	Test Mode Enable
PMIC_IRQ	C14	B,P D	4	VDD_IO_SYS	I,GPIO_A28,PD	Interrupt Source and Wakeup Source from PMIC, Share with GPIO_A28
EN_VDD_CO RE	D15	B,P D	4	VDD_IO_SYS	O,EN_VDD_CO RE	Enable Power Supply To Digital Core, except Video Codec Core and 3D Core, Share with GPIO_A29
GPIO_A0	H22	B,P D	8	VDD_IO_SYS	I,GPIO_A0,PD	GPIO_A0, Share with NF_CEN8(NAND Chip Enable 8), Share with UMOUT0(ASIC debug)
GPIO_A1	H21	B,P D	8	VDD_IO_SYS	I,GPIO_A1,PD	GPIO_A1, Share with NF_CEN9(NAND Chip Enable 9), Share with UMOUT1(ASIC debug)
GPIO_A2	G20	B,P D	8	VDD_IO_SYS	I,GPIO_A2,PD	GPIO_A2, Share with NF_CEN10(NAND Chip Enable 10), Share with UMOUT2(ASIC debug)
GPIO_A3	H20	B,P D	8	VDD_IO_SYS	I,GPIO_A3,PD	GPIO_A3, Share with NF_CEN11(NAND Chip Enable 11), Share with UMOUT3(ASIC debug)
GPIO_A4	G19	B,P U	8	VDD_IO_SYS	I,GPIO_A4,PU	GPIO_A4, Share with NF_CEN12(NAND Chip Enable 12), Share with UMOUT4(ASIC debug)
GPIO_A5	H19	B,P U	8	VDD_IO_SYS	I,GPIO_A5,PU	GPIO_A5, Share with NF_CEN13(NAND Chip Enable 13), Share with UMOUT5(ASIC debug)
GPIO_A12	G21	B,P U	8	VDD_IO_SYS	I,GPIO_A12,PU	GPIO_A12, Share with SPI0_SS1N(SPI0 Slave Select 1, only in SPI0 Master Mode), UMOUT12(ASIC debug)

Table 3-1 Signal Description of 445BGA

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength (mA)	Power Or	After Reset	
		e	(IIIA)	Range(v)	Release	
	C17	B,				
JTG_TCK		PU,	4	VDD_IO_SYS	I,JTG_TCK,PU	JTAG Test Clock, Share with GPIO_A17
		Sh				
JTG_TMS	D16	B, PU	4	VDD_IO_SYS	I,JTG_TMS,PU	JTAG Test Mode Select, Share with GPIO_A18
	C16	В,			I,JTG_TRSTN,P	
JTG_TRSTN		PD,	4	VDD_IO_SYS	D	JTAG Test Reset, Share with GPIO_A19
	D17	Sh B,				
JTG_TDI		ь, PU	4	VDD_IO_SYS	I,JTG_TDI,PU	JTAG Test Data Input, Share with GPIO_A20
	C15					
JTG_TDO		B, PU	4	VDD_IO_SYS	B,JTG_TDO	JTAG Test Data Output, Share with GPIO_A21
PWM0	E6	B,P D	4	VDD_IO_SYS	I,GPIO_C0,PD	PWM0 output, Share with GPIO_C0
	E7	B,P				
PWM1		D, I	4	VDD_IO_SYS	I,GPIO_C1,PD	PWM1 output, Share with GPIO_C1
	A13	В,				
I2C_SCK0		PU	8	VDD_IO_SYS	I,GPIO_C16,PU	I2C0 Serial Clock, Share with GPIO_C16
	C13	B,				
I2C_SDA0	013	в, PU	8	VDD_IO_SYS	I,GPIO_C17,PU	I2C0 Serial Data, Share with GPIO_C17
	B14	B,				
I2C_SCK1		PU	8	VDD_IO_SYS	I,GPIO_C18,PU	I2C1 Serial Clock, Share with GPIO_C18
	D13	В,	_			
I2C_SDA1		PU	8	VDD_IO_SYS	I,GPIO_C19,PU	I2C1 Serial Data, Share with GPIO_C19
	C4	В,				
UART0_SDO		PU	4	VDD_IO_SYS	I,GPIO_C2,PU	UART0 Serial Data Output, Share with GPIO_C2
	D5	В,				
UART0_SDI		PU	4	VDD_IO_SYS	I,GPIO_C3,PU	UART0 Serial Data Input, Share with GPIO_C3
UART1_DSR	C6	В,	4			UART1 Data Set Ready, Share with UART3_SDO(UART3
Ν		PU	4	VDD_IO_SYS	I,GPIO_C4,PU	Serial Data Output), Share with GPIO_C4
UART1_DCD	C5	В,	4	VDD_IO_SYS	I,GPIO_C5,PU	UART1 Data Carrier Detect, Share with UART3_SDI(UART3
Ν		PU		0_010_010	1,0110_03,50	Serial Data Input), Share with GPIO_C5
UART1_RIN	D6	В,	4	VDD_IO_SYS	I,GPIO_C6,PU	UART1 Ring Indicator, Share with UART3_CTSN(UART3
2		PU			,	Clear to Send), Share with GPIO_C6

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
UART1_DTR N	D7	B, PD	4	VDD_IO_SYS	I,GPIO_C7,PD	UART1 Data Terminal Ready, Share with UART3_RTSN(UART3 Request to Send), Share with GPIO_C7
UART1_CTS N	C7	B, PU	4	VDD_IO_SYS	I,GPIO_C8,PU	UART1 Clear to Send, Share with GPIO_C8
UART1_RTSN	D8	B, PD	4	VDD_IO_SYS	I,GPIO_C9,PD	UART1 Request to Send, Share with GPIO_C9
UART1_SDO	В9	B, PU	4	VDD_IO_SYS	I,GPIO_C10,PU	UART1 Serial Data Output, Share with GPIO_C10
UART1_SDI	C8	B, PU	4	VDD_IO_SYS	I,GPIO_C11,PU	UART1 Serial Data Input, Share with GPIO_C11
SPI0_SCLK	A8	B, PU	12	VDD_IO_SYS	I,GPIO_C20,PU	SPI0 Serial Clock, Share with GPIO_C20
SPI0_SSON	B8	B, PU	8	VDD_IO_SYS	I,GPIO_C21,PU	SPI0 Slave Select 0, Share with GPIO_C21
SPI0_MOSI	B7	B, PU	8	VDD_IO_SYS	I,GPIO_C22,PU	SPI0 Master Out Slave In, Share with GPIO_C22
SPI0_MISO	A7	B, PU	8	VDD_IO_SYS	I,GPIO_C23,PU	SPI0 Master In Slave Out, Share with GPIO_C23
KEYPAD0	A10	B,P U	4	VDD_IO_SYS	I,GPIO_D0,PU	Keypad 0, Share with TRACE_DATA0(Trace data0 for ARM debug), Share with UMOUT16(ASIC debug), Share with GPIO_D0
KEYPAD1	A9	B,P U	4	VDD_IO_SYS	I,GPIO_D1,PU	Keypad 1, Share with TRACE_DATA1(Trace data1 for ARM debug), Share with UMOUT17(ASIC debug), Share with GPIO_D1
KEYPAD2	A11	B,P U	4	VDD_IO_SYS	I,GPIO_D2,PU	Keypad 2, Share with TRACE_DATA2(Trace data2 for ARM debug), Share with UMOUT18(ASIC debug), Share with GPIO_D2
KEYPAD3	B10	B,P U	4	VDD_IO_SYS	I,GPIO_D3,PU	Keypad 3, Share with TRACE_DATA3(Trace data3 for ARM debug), Share with UMOUT19(ASIC debug), Share with GPIO_D3
KEYPAD4	C9	B,P U	4	VDD_IO_SYS	I,GPIO_D4,PU	Keypad 4, Share with TRACE_DATA4(Trace data4 for ARM debug), Share with UMOUT20(ASIC debug), Share with GPIO_D4

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or	State After Reset	Pin Description
			(Range(v)	Release	
KEYPAD5	D9	B,P U	4	VDD_IO_SYS	I,GPIO_D5,PU	Keypad 5, Share with TRACE_DATA5(Trace data5 for ARM debug), Share with UMOUT21(ASIC debug), Share with GPIO_D5
KEYPAD6	B11	B,P U	4	VDD_IO_SYS	I,GPIO_D6,PU	Keypad 6, Share with TRACE_DATA6(Trace data6 for ARM debug), Share with UMOUT22(ASIC debug), Share with GPIO_D6
KEYPAD7	C10	B,P U	4	VDD_IO_SYS	I,GPIO_D7,PU	Keypad 7, Share with TRACE_DATA7(Trace data7 for ARM debug), Share with UMOUT23(ASIC debug), Share with GPIO_D7
KEYPAD8	A12	B,P U	4	VDD_IO_SYS	I,GPIO_D8,PU	Keypad 8, Share with TRACE_DATA8(Trace data8 for ARM debug), Share with UMOUT24ASIC debug), Share with GPIO_D8
KEYPAD9	D10	B,P U	4	VDD_IO_SYS	I,GPIO_D9,PU	Keypad 9, Share with TRACE_DATA9(Trace data9 for ARM debug), Share with UMOUT25(ASIC debug), Share with GPIO_D9
KEYPAD10	B12	B,P U	4	VDD_IO_SYS	I,GPIO_D10,PU	Keypad 10, Share with TRACE_DATA10(Trace data10 for ARM debug), Share with UMOUT26(ASIC debug), Share with GPIO_D10
KEYPAD11	C11	B,P U	4	VDD_IO_SYS	I,GPIO_D11,PU	Keypad 11, Share with TRACE_DATA11(Trace data11 for ARM debug), Share with UMOUT27(ASIC debug), Share with GPIO_D11
KEYPAD12	D11	B,P U	4	VDD_IO_SYS	I,GPIO_D12,PU	Keypad 12, Share with TRACE_DATA12(Trace data12 for ARM debug), Share with UMOUT28(ASIC debug), Share with GPIO_D12
KEYPAD13	B13	B,P U	4	VDD_IO_SYS	I,GPIO_D13,PU	Keypad 13, Share with TRACE_DATA13(Trace data13 for ARM debug), Share with UMOUT29(ASIC debug), Share with GPIO_D13
KEYPAD14	C12	B,P U	4	VDD_IO_SYS	I,GPIO_D14,PU	Keypad 14, Share with TRACE_DATA14(Trace data14 for ARM debug), Share with UMOUT30(ASIC debug), Share with GPIO_D14
KEYPAD15	D12	B,P U	4	VDD_IO_SYS	I,GPIO_D15,PU	Keypad 15, Share with TRACE_DATA15(Trace data15 for ARM debug), Share with UMOUT31(ASIC debug), Share with GPIO_D15
AUD0_SCK	F11	B, PD	8	VDD_IO_SYS	I,GPIO_D17,PD	Audio0 Bit Clock, Share with GPIO_D17

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
AUD0_WS	F9	B, PD	4	VDD_IO_SYS	I,GPIO_D18,PD	Audio0 Word Select For Both ADC & DAC, Share with GPIO_D18
AUD0_SDI_A DC	F8	B, PD	4	VDD_IO_SYS	I,GPIO_D19,PD	Audio0 Serial Data Input From ADC, Share with GPIO_D19
AUD0_SDO_ DAC	F10	B, PD	4	VDD_IO_SYS	I,GPIO_D20,PD	Audio0 Serial Data Output to DAC, Share with GPIO_D20
AUD1_SCK	E5	B, PD	8	VDD_IO_SYS	I,GPIO_D22,PD	Audio1 Bit Clock, Share with GPIO_D22
AUD1_WS	D4	B, PD	4	VDD_IO_SYS	I,GPIO_D23,PD	Audio1 Word Select For Both ADC & DAC, Share with GPIO_D23
AUD1_SDI_A DC	D3	B, PD	4	VDD_IO_SYS	I,GPIO_D24,PD	Audio1 Serial Data Input From ADC, Share with GPIO_D24
AUD1_SDO_ DAC	C3	B, PD	4	VDD_IO_SYS	I,GPIO_D25,PD	Audio1 Serial Data Output to DAC, Share with GPIO_D25
CS_DATA0	AB21	B, PD	4	VDD_IO_CS	I,GPIO_H0,PD	Sensor Data 0, Share with GPIO_H0
CS_DATA1	AB20	B, PD	4	VDD_IO_CS	I,GPIO_H1,PD	Sensor Data 1, Share with GPIO_H1
CS_DATA2	AC22	B, PD	4	VDD_IO_CS	I,GPIO_H2,PD	Sensor Data 2, Share with GPIO_H2
CS_DATA3	AB22	B, PD	4	VDD_IO_CS	I,GPIO_H3,PD	Sensor Data 3, Share with GPIO_H3
CS_DATA4	AC21	B, PD	4	VDD_IO_CS	I,GPIO_H4,PD	Sensor Data 4, Share with GPIO_H4
CS_DATA5	R18	B, PD	4	VDD_IO_CS	I,GPIO_H5,PD	Sensor Data 5, Share with GPIO_H5
CS_DATA6	T18	B, PD	4	VDD_IO_CS	I,GPIO_H6,PD	Sensor Data 6, Share with GPIO_H6
CS_DATA7	AA22	B, PD	4	VDD_IO_CS	I,GPIO_H7,PD	Sensor Data 7, Share with GPIO_H7
CS_HSYNC	AA21	B, PD	4	VDD_IO_CS	I,GPIO_H8,PD	Sensor HSYNC Input, Share with GPIO_H8
CS_VSYNC	P18	B, PD	4	VDD_IO_CS	I,GPIO_H9,PD	Sensor VSYNC Input, Share with GPIO_H9

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
CS_PCLK	AC23	B, PD, Sh	4	VDD_IO_CS	I,GPIO_H10,PD	Sensor Pixel Clock, Share with GPIO_H10
CS_CLK	AB23	B, PD	16	VDD_IO_CS	I,GPIO_H11,PD	Sensor Master Clock, Share with GPIO_H11
CS_RSTN0	Y20	B, PU	4	VDD_IO_CS	I,GPIO_H12,PU	Sensor0 Reset, Share with GPIO_H12
CS_PWD0	Y21	B, PD	4	VDD_IO_CS	I,GPIO_H13,PD	Sensor0 Power Down, Share with GPIO_H13
CS_SCK	AA23	B, PU	4	VDD_IO_CS	I,GPIO_H18,PU	Sensor Interface I2C Serial Clock, Share with GPIO_H18
CS_SDA	T19	B, PU	4	VDD_IO_CS	I,GPIO_H19,PU	Sensor Interface I2C Serial Data, Share with GPIO_H19
LCD_DATA0	V20	B, PD	8	VDD_IO_LCD	I,GPIO_I0,PD	LCD Data 0, Share with GPIO_I0
LCD_DATA1	Y22	B, PD	8	VDD_IO_LCD	I,GPIO_I1,PD	LCD Data 1, Share with GPIO_I1
LCD_DATA2	U20	B, PD	8	VDD_IO_LCD	I,GPIO_I2,PD	LCD Data 2, Share with GPIO_I2
LCD_DATA3	W23	B, PD	8	VDD_IO_LCD	I,GPIO_I3,PD	LCD Data 3, Share with GPIO_I3
LCD_DATA4	T20	B, PD	8	VDD_IO_LCD	I,GPIO_I4,PD	LCD Data 4, Share with GPIO_I4
LCD_DATA5	R20	B, PD	8	VDD_IO_LCD	I,GPIO_I5,PD	LCD Data 5, Share with GPIO_I5
LCD_DATA6	W21	B, PD	8	VDD_IO_LCD	I,GPIO_I6,PD	LCD Data 6, Share with GPIO_I6
LCD_DATA7	W22	B, PD	8	VDD_IO_LCD	I,GPIO_I7,PD	LCD Data 7, Share with GPIO_I7
LCD_DATA8	T22	B, PD	8	VDD_IO_LCD	I,GPIO_I8,PD	LCD Data 8, Share with GPIO_I8
LCD_DATA9	T23	B, PD	8	VDD_IO_LCD	I,GPIO_I9,PD	LCD Data 9, Share with GPIO_I9
LCD_DATA10	R21	B, PD	8	VDD_IO_LCD	I,GPIO_I10,PD	LCD Data 10, Share with GPIO_I10
LCD_DATA11	V23	B, PD	8	VDD_IO_LCD	I,GPIO_I11,PD	LCD Data 11, Share with GPIO_I11

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
LCD_DATA12	P20	B, PD	8	VDD_IO_LCD	I,GPIO_I12,PD	LCD Data 12, Share with GPIO_I12
LCD_DATA13	N22	B, PD	8	VDD_IO_LCD	I,GPIO_I13,PD	LCD Data 13, Share with GPIO_I13
LCD_DATA14	P21	B, PD	8	VDD_IO_LCD	I,GPIO_I14,PD	LCD Data 14, Share with GPIO_I14
LCD_DATA15	V22	B, PD	8	VDD_IO_LCD	I,GPIO_I15,PD	LCD Data 15, Share with GPIO_I15
LCD_DATA16	P22	B, PD	8	VDD_IO_LCD	I,GPIO_I16,PD	LCD Data 16, Share with GPIO_I16
LCD_DATA17	V21	B, PD	8	VDD_IO_LCD	I,GPIO_I17,PD	LCD Data 17, Share with GPIO_I17
LCD_DATA18	N20	B, PD	8	VDD_IO_LCD	I,GPIO_I18,PD	LCD Data 18, Share with GPIO_I18
LCD_DATA19	U23	B, PD	8	VDD_IO_LCD	I,GPIO_I19,PD	LCD Data 19, Share with GPIO_I19
LCD_DATA20	U22	B, PD	8	VDD_IO_LCD	I,GPIO_I20,PD	LCD Data 20, Share with GPIO_I20
LCD_DATA21	N23	B, PD	8	VDD_IO_LCD	I,GPIO_I21,PD	LCD Data 21, Share with GPIO_I21
LCD_DATA22	U21	B, PD	8	VDD_IO_LCD	I,GPIO_I22,PD	LCD Data 22, Share with GPIO_I22
LCD_DATA23	N21	B, PD	8	VDD_IO_LCD	I,GPIO_I23,PD	LCD Data 23, Share with GPIO_I23
LCD_CS0N	W20	B, PU	8	VDD_IO_LCD	I,GPIO_I24,PU	LCD Select 0 for Main Panel (DBI), Share with LCD_CSX(LCD Serial Bus Chip Select(DPI)), Share with GPIO_I24
LCD_RS	T21	B, PD	8	VDD_IO_LCD	I,GPIO_I26,PD	LCD Register/Data Select (DBI), Share with LCD_DE(LCD Data Enable (DPI)), Share with GPIO_I26
LCD_WRN	R22	B, PU	8	VDD_IO_LCD	I,GPIO_I27,PU	LCD Write Strobe (DBI), Share with LCD_VSYNC(LCD Vertical Sync (DPI)), Share with VGA_VSYNC(VGA Vertical Sync), Share with GPIO_I27
LCD_RDN	M23	B, PU	8	VDD_IO_LCD	I,GPIO_I28,PU	LCD Read Strobe (DBI), Share with LCD_HSYNC(LCD Horizontal Sync (DPI)), Share with VGA_HSYNC(VGA Horizontal Sync), Share with GPIO_I28
LCD_RST0N	Y23	B, PD	4	VDD_IO_LCD	I,GPIO_I29,PD	LCD Panel Reset 0, Share with GPIO_I29

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
LCD_PCLK	R23	B, PD	16	VDD_IO_LCD	I,GPIO_I30,PD	LCD Pixel Clock (DPI), Share with GPIO_I30
LCD_SDA	M22	B, PU	4	VDD_IO_LCD	I,GPIO_I31,PU	LCD SPI Serial Bus Data Out (DPI), Share with GPIO_I31
LCD_SCK	P23	B, PU	4	VDD_IO_LCD	I,GPIO_H20,PU	LCD SPI Serial Bus Clock (DPI), Share with GPIO_H20
SD0_DATA0	AB15	B,P U	8	VDD_IO_SD0 1	I,GPIO_K0,PU	SDIO0 Card Data 0, Share with GPIO_K0
SD0_DATA1	Y15	B,P U	8	VDD_IO_SD0 1	I,GPIO_K1,PU	SDIO0 Card Data 1, Share with GPIO_K1
SD0_DATA2	AB16	B,P U	8	VDD_IO_SD0 1	I,GPIO_K2,PU	SDIO0 Card Data 2, Share with GPIO_K2
SD0_DATA3	AC16	B,P U	8	VDD_IO_SD0 1	I,GPIO_K3,PU	SDIO0 Card Data 3, Share with GPIO_K3
SD0_CLK	AC14	B, PD	16	VDD_IO_SD0 1	I,GPIO_K4,PD	SDIO0 Card Clock, Share with GPIO_K4
SD0_CMD	AB14	B, PU	8	VDD_IO_SD0 1	I,GPIO_K5,PU	SDIO0 Card Command/Response , Share with GPIO_K5
SD0_DETECT N	AC15	B, PU	4	VDD_IO_SD0 1	I,GPIO_K6,PU	SDIO0 Card Detect, Low Active, Share with GPIO_K6
SD1_DATA0	AA15	B,P U	8	VDD_IO_SD0 1	I,GPIO_K8,PU	SDIO1 Card Data, Share with SPI2_SCLK(SPI2 Serial Clock), Share with GPIO_K8
SD1_DATA1	Y16	B,P U	8	VDD_IO_SD0 1	I,GPIO_K9,PU	SDIO1 Card Data, Share with SPI2_SS0N(SP2 Slave Select 0), Share with GPIO_K9
SD1_DATA2	AA16	B,P U	8	VDD_IO_SD0 1	I,GPIO_K10,PU	SDIO1 Card Data, Share with SPI2_MOSI(SPI2 Master Out Slave In), Share with GPIO_K10
SD1_DATA3	AA17	B,P U	8	VDD_IO_SD0 1	I,GPIO_K11,PU	SDIO1 Card Data, Share with SPI2_MISO(SPI2 Master In Slave Out), Share with GPIO_K11
SD1_CLK	AC17	B, PD	16	VDD_IO_SD0 1	I,GPIO_K12,PD	SDIO1 Card Clock , Share with GPIO_K12
SD1_CMD	Y17	B, PU	8	VDD_IO_SD0 1	I,GPIO_K13,PU	SDIO1 Card Command / Response ,Share with GPIO_K13
SD1_DETECT N	AB17	B, PU	4	VDD_IO_SD0 1	I,GPIO_K14,PU	SDIO1 Card Detect, Low Active, Share with GPIO_K14
SD2_DATA0	J20	B,P U	8	VDD_IO_SD2 3	I,GPIO_K20,PU	SDIO2 Card Data 0, Share with GPIO_K20

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
	J23	B,P	0	VDD_IO_SD2		
SD2_DATA1		U	8	3	I,GPIO_K21,PU	SDIO2 Card Data 1, Share with GPIO_K21
SD2_DATA2	J22	B,P	8	VDD_IO_SD2	I,GPIO_K22,PU	
SDZ_DATAZ		U	0	3	1,9F10_122,F0	SDIO2 Card Data 2, Share with GPIO_K22
SD2_DATA3	K20	B,P	8	VDD_IO_SD2	I,GPIO_K23,PU	SDIO2 Card Data 3, Share with GPIO_K23
		U	Ŭ	3	1,0110_120,10	
SD2_DATA4	K21	B,P	8	VDD_IO_SD2	I,GPIO_K24,PU	SDIO2 Card Data 4, Share with GPIO_K24
		U		3	·,···	
SD2_DATA5	K22	B,P	8	VDD_IO_SD2	I,GPIO_K25,PU	SDIO2 Card Data 5, Share with GPIO_K25
_		U		3	· _ ·	
SD2_DATA6	L22	B,P	8	VDD_IO_SD2	I,GPIO_K26,PU	SDIO2 Card Data 6, Share with GPIO_K26
		U		3		
SD2_DATA7	L23	B,P	8	VDD_IO_SD2	I,GPIO_K27,PU	SDIO2 Card Data 7, Share with GPIO_K27
		U		3		
SD2_CLK	H23	B,	16	VDD_IO_SD2 3	I,GPIO_K16,PD	SDIO2 Card Clock , Share with GPIO_K16
	J21	PD		-		
SD2_CMD	JZI	B, PU	8	VDD_IO_SD2 3	I,GPIO_K17,PU	SDIO2 Card Command/Response ,Share with GPIO_K17
	K23	B,P		VDD_IO_SD2	I,GPIO_K18,PU	SDIO2 Card Reset Signal, Share with GPIO_K18
SD2_RSTN	N K23	U	4	3		
SD2_DETECT	L20	B,		VDD IO SD2	I,GPIO_K19,PU	SDIO2 Card Detect, Share with GPIO_K19
N		PU	4			
	C18	B,				
NF_CEN0		PU	8	VDD_IO_NF	I,GPIO_J20,PU	NAND Chip Enable 0, Share with GPIO_J20
	B18	В,				
NF_CEN1		PU	8	VDD_IO_NF	I,GPIO_J21,PU	NAND Chip Enable 1, Share with GPIO_J21
	A21	В,	0			
NF_CEN2	2	PU	8	VDD_IO_NF I,GPIO_J22,PU NAND Chip Enable 2	NAND Chip Enable 2, Share with GPIO_J22	
NF_CEN3	C19	В,	8	VDD_IO_NF	I,GPIO_J23,PU	NAND Chip Enable 3, Share with GPIO_J23
		PU	0		1,0110_020,10	TAND Onp Enable 3, Share with OF 10_523
NF_CLE	A18	В,	8	VDD_IO_NF	I,GPIO_J16,PD	NAND Command Latch Enable, Share with GPIO_J16
		PD			.,	
	D21	В,	8			
NF_ALE	F	PD		VDD_IO_NF	I,GPIO_J17,PD	NAND Address Latch Enable, Share with GPIO_J17
	A23	1				NAND Write Enable, Share with GPIO_J18
NF_WEN		В,	12	VDD_IO_NF	I,GPIO_J18,PU	
		PU				
	I	1	I	I	l	1

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
NF_REN	B22	B, PU	12	VDD_IO_NF	I,GPIO_J19,PU	NAND Read Enable, Share with GPIO_J19
NF_DATA0	D18	B, PU	8	VDD_IO_NF	I,GPIO_J0,PU	NAND Data 0, Share with GPIO_J0
NF_DATA1	B20	B, PU	8	VDD_IO_NF	I,GPIO_J1,PU	NAND Data 1, Share with GPIO_J1
NF_DATA2	A19	B, PU	8	VDD_IO_NF	I,GPIO_J2,PU	NAND Data 2, Share with GPIO_J2
NF_DATA3	B21	B, PU	8	VDD_IO_NF	I,GPIO_J3,PU	NAND Data 3, Share with GPIO_J3
NF_DATA4	D19	B, PU	8	VDD_IO_NF	I,GPIO_J4,PU	NAND Data 4, Share with GPIO_J4
NF_DATA5	E21	B, PU	8	VDD_IO_NF	I,GPIO_J5,PU	NAND Data 5, Share with GPIO_J5
NF_DATA6	D23	B, PU	8	VDD_IO_NF	I,GPIO_J6,PU	NAND Data 6, Share with GPIO_J6
NF_DATA7	E22	B, PU	8	VDD_IO_NF	I,GPIO_J7,PU	NAND Data 7, Share with GPIO_J7
NF_DATA8	A20	B, PU	8	VDD_IO_NF	I,GPIO_J8,PU	NAND Data 8, Share with GPIO_J8
NF_DATA9	D20	B, PU	8	VDD_IO_NF	I,GPIO_J9,PU	NAND Data 9, Share with GPIO_J9
NF_DATA10	B19	B, PU	8	VDD_IO_NF	I,GPIO_J10,PU	NAND Data 10, Share with GPIO_J10
NF_DATA11	A22	B, PU	8	VDD_IO_NF	I,GPIO_J11,PU	NAND Data 11, Share with GPIO_J11
NF_DATA12	C21	B, PU	8	VDD_IO_NF	I,GPIO_J12,PU	NAND Data 12, Share with GPIO_J12
NF_DATA13	C22	B, PU	8	VDD_IO_NF	I,GPIO_J13,PU	NAND Data 13, Share with GPIO_J13
NF_DATA14	D22	B, PU	8	VDD_IO_NF	I,GPIO_J14,PU	NAND Data 14, Share with GPIO_J14
NF_DATA15	E23	B, PU	8	VDD_IO_NF	I,GPIO_J15,PU	NAND Data 15, Share with GPIO_J15
NF_WPN	B23	B, PD	8	VDD_IO_NF	I,GPIO_J24,PD	NAND Write Protect, Share with GPIO_J24

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		e	(mA)	Or Range(v)	Reset Release	
NF_RB0	C23	B, PU	4	VDD_IO_NF	I,GPIO_J25,PU	NAND Ready/Busy 0, Share with GPIO_J25
GPIO_J27	F22	B,P U	8	VDD_IO_NF	I,GPIO_J27,PU	GPIO_J27, Share with NF_CEN4(NAND Chip Enable 4)
GPIO_J28	F23	B,P U	8	VDD_IO_NF	I,GPIO_J28,PU	GPIO_J28, Share with NF_CEN5(NAND Chip Enable 5)
GPIO_J29	G22	B,P U	8	VDD_IO_NF	I,GPIO_J29,PU	GPIO_J29, Share with NF_CEN6(NAND Chip Enable 6)
GPIO_J30	G23	B,P U	8	VDD_IO_NF	I,GPIO_J30,PU	GPIO_J30, Share with NF_CEN7(NAND Chip Enable 7)
DDR_CS0N	L6	0		VDD_IO_DDR	O,DDR_CS0N	DDR SDRAM Chip Select 0
DDR_CS1N	W3	0		VDD_IO_DDR	O,DDR_CS1N	DDR SDRAM Chip Select 1
DDR_A0	L1	0		VDD_IO_DDR	O,DDR_A0	DDR SDRAM Memory Address 0
DDR_A1	N1	0		VDD_IO_DDR	O,DDR_A1	DDR SDRAM Memory Address 1
DDR_A2	L2	0		VDD_IO_DDR	O,DDR_A2	DDR SDRAM Memory Address 2
DDR_A3	H1	0		VDD_IO_DDR	O,DDR_A3	DDR SDRAM Memory Address 3
DDR_A4	R1	0		VDD_IO_DDR	O,DDR_A4	DDR SDRAM Memory Address 4
DDR_A5	H2	0		VDD_IO_DDR	O,DDR_A5	DDR SDRAM Memory Address 5
DDR_A6	Т2	0		VDD_IO_DDR	O,DDR_A6	DDR SDRAM Memory Address 6
DDR_A7	J2	0		VDD_IO_DDR	O,DDR_A7	DDR SDRAM Memory Address 7
DDR_A8	T1	0		VDD_IO_DDR	O,DDR_A8	DDR SDRAM Memory Address 8
DDR_A9	K2	0		VDD_IO_DDR	O,DDR_A9	DDR SDRAM Memory Address 9
DDR_A10	P2	0		VDD_IO_DDR	O,DDR_A10	DDR SDRAM Memory Address 10
DDR_A11	P1	0		VDD_IO_DDR	O,DDR_A11	DDR SDRAM Memory Address 11
DDR_A12	N2	0		VDD_IO_DDR	O,DDR_A12	DDR SDRAM Memory Address 12
DDR_A13	K1	0		VDD_IO_DDR	O,DDR_A13	DDR SDRAM Memory Address 13
DDR_A14	W4	0		VDD_IO_DDR	O,DDR_A14	DDR SDRAM Memory Address 14
DDR_A15	W5	0		VDD_IO_DDR	O,DDR_A15	DDR SDRAM Memory Address 15
DDR_CLK_IN V	M2	0		VDD_IO_DDR	O,DDR_CLK_IN V	DDR SDRAM Clock Inverse
DDR_CLK	M1	0		VDD_IO_DDR	O,DDR_CLK	DDR SDRAM Clock
DDR_CKE0	M6	0		VDD_IO_DDR	O,DDR_CKE0	DDR SDRAM Clock Enable 0
DDR_CKE1	V5	0		VDD_IO_DDR	O,DDR_CKE1	DDR SDRAM Clock Enable 1
DDR_CASN	P6	0		VDD_IO_DDR	O,DDR_CASN	DDR SDRAM Column Address Select
DDR_RASN	N6	0		VDD_IO_DDR	O,DDR_RASN	DDR SDRAM Row Address Select

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
DDR_WEN	R6	0		VDD_IO_DDR	O,DDR_WEN	DDR SDRAM Write Enable
DDR_DQM0	B1	0		VDD_IO_DDR	O,DDR_DQM0	DDR SDRAM Data Read/Write Mask, Byte 0
DDR_DQM1	A2	0		VDD_IO_DDR	O,DDR_DQM1	DDR SDRAM Data Read/Write Mask, Byte 1
DDR_DQM2	AB2	0		VDD_IO_DDR	O,DDR_DQM2	DDR SDRAM Data Read/Write Mask, Byte 2
DDR_DQM3	AA2	0		VDD_IO_DDR	O,DDR_DQM3	DDR SDRAM Data Read/Write Mask, Byte 3
DDR_BA0	K6	0		VDD_IO_DDR	O,DDR_BA0	DDR SDRAM Bank 0 Access
DDR_BA1	R2	0		VDD_IO_DDR	O,DDR_BA1	DDR SDRAM Bank 1 Access
DDR_BA2	T6	0		VDD_IO_DDR	O,DDR_BA2	DDR SDRAM Bank 2 Access
DDR_DQ0	A6	В		VDD_IO_DDR	B,DDR_DQ0	DDR SDRAM Data 0
DDR_DQ1	G1	В		VDD_IO_DDR	B,DDR_DQ1	DDR SDRAM Data 1
DDR_DQ2	A5	В		VDD_IO_DDR	B,DDR_DQ2	DDR SDRAM Data 2
DDR_DQ3	G2	В		VDD_IO_DDR	B,DDR_DQ3	DDR SDRAM Data 3
DDR_DQ4	F1	В		VDD_IO_DDR	B,DDR_DQ4	DDR SDRAM Data 4
DDR_DQ5	B5	В		VDD_IO_DDR	B,DDR_DQ5	DDR SDRAM Data 5
DDR_DQ6	F2	В		VDD_IO_DDR	B,DDR_DQ6	DDR SDRAM Data 6
DDR_DQ7	B6	В		VDD_IO_DDR	B,DDR_DQ7	DDR SDRAM Data 7
DDR_DQ8	A4	В		VDD_IO_DDR	B,DDR_DQ8	DDR SDRAM Data 8
DDR_DQ9	E2	В		VDD_IO_DDR	B,DDR_DQ9	DDR SDRAM Data 9
DDR_DQ10	A3	В		VDD_IO_DDR	B,DDR_DQ10	DDR SDRAM Data 10
DDR_DQ11	D2	В		VDD_IO_DDR	B,DDR_DQ11	DDR SDRAM Data 11
DDR_DQ12	D1	В		VDD_IO_DDR	B,DDR_DQ12	DDR SDRAM Data 12
DDR_DQ13	B3	В		VDD_IO_DDR	B,DDR_DQ13	DDR SDRAM Data 13
DDR_DQ14	E1	В		VDD_IO_DDR	B,DDR_DQ14	DDR SDRAM Data 14
DDR_DQ15	B4	В		VDD_IO_DDR	B,DDR_DQ15	DDR SDRAM Data 15
DDR_DQ16	V1	В		VDD_IO_DDR	B,DDR_DQ16	DDR SDRAM Data 16
DDR_DQ17	AC6	В		VDD_IO_DDR	B,DDR_DQ17	DDR SDRAM Data 17
DDR_DQ18	V2	В		VDD_IO_DDR	B,DDR_DQ18	DDR SDRAM Data 18
DDR_DQ19	AB5	В		VDD_IO_DDR	B,DDR_DQ19	DDR SDRAM Data 19
DDR_DQ20	AC5	В		VDD_IO_DDR	B,DDR_DQ20	DDR SDRAM Data 20
DDR_DQ21	U2	В		VDD_IO_DDR	B,DDR_DQ21	DDR SDRAM Data 21
DDR_DQ22	AB6	В		VDD_IO_DDR	B,DDR_DQ22	DDR SDRAM Data 22
DDR_DQ23	U1	В		VDD_IO_DDR	B,DDR_DQ23	DDR SDRAM Data 23
DDR_DQ24	AC3	В		VDD_IO_DDR	B,DDR_DQ24	DDR SDRAM Data 24
DDR_DQ25	Y1	В		VDD_IO_DDR	B,DDR_DQ25	DDR SDRAM Data 25
DDR_DQ26	AC4	В		VDD_IO_DDR	B,DDR_DQ26	DDR SDRAM Data 26
DDR_DQ27	W1	В		VDD_IO_DDR	B,DDR_DQ27	DDR SDRAM Data 27

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		e	(mA)	Or	Reset	
				Range(v)	Release	
DDR_DQ28	AB3	В		VDD_IO_DDR	B,DDR_DQ28	DDR SDRAM Data 28
DDR_DQ29	W2	В		VDD_IO_DDR	B,DDR_DQ29	DDR SDRAM Data 29
DDR_DQ30	AB4	В		VDD_IO_DDR	B,DDR_DQ30	DDR SDRAM Data 30
DDR_DQ31	Y2	В		VDD_IO_DDR	B,DDR_DQ31	DDR SDRAM Data 31
DDR_DQS0	B2	В		VDD_IO_DDR	B,DDR_DQS0	DDR SDRAM Data Strobe,Byte 0
DDR_DQS1	C2	В		VDD_IO_DDR	B,DDR_DQS1	DDR SDRAM Data Strobe,Byte 1
DDR_DQS2	AA1	В		VDD_IO_DDR	B,DDR_DQS2	DDR SDRAM Data Strobe,Byte 2
DDR_DQS3	AC1	В		VDD_IO_DDR	B,DDR_DQS3	DDR SDRAM Data Strobe,Byte 3
DDR_DQS_IN	A1	_			B,DDR_DQS_IN	
V0		В		VDD_IO_DDR	V0	DDR SDRAM Data Strobe Inverse,Byte 0
DDR_DQS_IN V1	C1	в		VDD_IO_DDR	B,DDR_DQS_IN V1	DDR SDRAM Data Strobe Inverse,Byte 1
DDR_DQS_IN V2	AB1	в		VDD_IO_DDR	B,DDR_DQS_IN V2	DDR SDRAM Data Strobe Inverse,Byte 2
DDR_DQS_IN V3	AC2	в		VDD_IO_DDR	B,DDR_DQS_IN V3	DDR SDRAM Data Strobe Inverse, Byte 3
DDR_RSTN	J1	0		VDD_IO_DDR	O,DDR_RSTN	DDR SDRAM Reset Signal, only for DDR3
DDR_ODT0	J6	0		VDD_IO_DDR	O,DDR_ODT0	DDR SDRAM On Die Termination 0
DDR_ODT1	U5	0		VDD_IO_DDR	O,DDR_ODT1	DDR SDRAM On Die Termination 1
DDR_ZQ	H6	Ι		VDD_IO_DDR	I, DDR_ZQ	DDR SDRAM ZQ
VDAC_RSET	AA14	AIO				VDAC External Resistor Connected to Analog Ground of VDAC Bias Circuit
VDAC_OUTR	AA13	AO				VDAC Channal R Output
VDAC_OUTG	Y13	AO				VDAC Channal G Output
VDAC_OUTB	Y14	AO				VDAC Channal B Output
VDAC_VREFI N	AA12	AI				VDAC Reference Voltage Input
VDAC_VREF OUT	AC12	AO				VDAC Reference Voltage Output
VDAC_COMP	AB12	AIO				VDAC Compensation Pin, Connecting External 0.1uF Capacitor to VDAC Analog Power
USBOTG_RR EFEXT	V11	AIO				USB OTG External Resistor For Current Reference
USBOTG_DP LUS	AB10	AIO				USB OTG D+ Port
USBOTG_DM INUS	AC10	AIO				USB OTG D- Port

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		e	(mA)	Or	Reset	
			(Range(v)	Release	
USBOTG_ID	V12	AIO				USB OTG ID
USBOTG_VB	Y11					
US		AIO				USB OTG VBUS
USBHOST_R	Y12	AIO				USB HOST External Resistor For Current Reference
REFEXT		7.10				
USBHOST_D PLUS	AB11	AIO				USB HOST D+ Port
USBHOST_D	AC11	AIO				USB HOST D- Port
MINUS		AIO				
AUDC_VCAP	Y10	AO				Internally Generated Common-Mode Voltage Output
AUDC_LINEL	AB8	AI				Left Differential Line 1 Positive Input
AUDC_LINEL	AC8					
1_N		AI				Left Differential Line 1 Negative Input
AUDC_LINER	AA7					Dickt Differential Line 4 Desitive Innut
1_P		AI				Right Differential Line 1 Positive Input
AUDC_LINER	Y7	AI				Right Differential Line 1 Negative Input
1_N						
AUDC_LINER 2_P	Y6	AI				Right Differential Line 2 Positive Input
AUDC_HSOU	AA9	AO				Left Stereo Single-End Headphone Output
AUDC HSOU	Y9					
TR		AO				Right Stereo Single-End Headphone Output
AUDC_RCVO	AB7	AO				Mono Differential Receiver Positive Output
UT_P		70				
AUDC_RCVO	AC7	AO				Mono Differential Receiver Negative Output
UT_N						
AUDC_SPKO	V8	AO				Left Stereo Differential Speaker Positive Output
UTL_P	14/7					
AUDC_SPKO	W8	AO				Left Stereo Differential Speaker Positive Output
UTL_P	1/0					
AUDC_SPKO UTL_N	V9	AO				Left Stereo Differential Speaker Negative Output
	14/0					Loft Stores Differential Speaker Negative Output
AUDC_SPKO	W9	AO				Left Stereo Differential Speaker Negative Output
UTL_N		40				
			l			

Pin Name	Pin No.	Pin Typ	Drive Strength	I/O Power	State After	Pin Description
		е	(mA)	Or	Reset	
				Range(v)	Release	
AUDC_SPKO	AA8	AO				Right Stereo Differential Speaker Positive Output
UTR_P		AU				
AUDC_SPKO	Y8	AO				Right Stereo Differential Speaker Negative Output
UTR_N		7.0				
AUDC_LINEO	AC9	AO				Mono Differential Line 1 Positive Output
UT1_P						
AUDC_LINEO	AB9	AO				Mono Differential Line 1 Negative Output
UT1_N						
AUDC_MICBI AS1	V10	AO				Microphone Bias Voltage Output 1
TP_XINP	AB18	AIO				Touch Panel X Value of Positive End
TP_XINN	AC18	AIO				Touch Panel X Value of Negative End
TP_YINP	AB19	AIO				Touch Panel Y Value of Positive End
TP_YINN	AC19	AIO				Touch Panel Y Value of Negative End
TP_BAT_VOL T	AC20	AI		0 ~ 2.4v		Touch Panel Battery Voltage
TP_BAT_TEM P	Y18	AI		0 ~ 2.4v		Touch Panel Battery Temperature
TP_BAT_ID	AA18	AI		0 ~ 2.4v		Touch Panel Battery ID
TP_KEYSCA N	W18	AI		0 ~ 2.4v		Touch Panel Analog Key Scan In
TP_VREF	U19	AO				Touch Panel Reference Voltage Positive Output
VDDA_VDAC	AC13	PW R		2.25~2.75v or 3.0 ~ 3.6v		VDAC Analog Power for Channel R/G/B
VDD_VDAC	AB13	PW R		2.25~2.75v or 3.0 ~ 3.6v		VDAC Digital Power
VSSA_VDAC	R14	GN D		0V		VDAC Analog Ground for Channel R/G/B/Bias Circuit
VSSA_VDAC	R15	GN D		0V		VDAC Analog Ground for Channel R/G/B/Bias Circuit
VSSA_VDAC	W14	GN D		0V		VDAC Analog Ground for Channel R/G/B/Bias Circuit
VSSA_VDAC	W15	GN D		0V		VDAC Analog Ground for Channel R/G/B/Bias Circuit
VDDA_PLL12 _1	E18	PW R		1.0v ~1.5v		PLL Analog Power 1

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
VSSA_PLL12	E10	GN		0V		PLL Analog Ground 1
_1		D		00		
VDDA_PLL12	F21	PW		1.0v ~1.5v		PLL Analog Power 2
_2		R				
VSSA_PLL12	E13	GN		0V		PLL Analog Ground 2
_2		D				-
VDDA_PLL12	E19	PW		1.0v ~1.5v		PLL Analog Power 3
	E 44	R				
VSSA_PLL12	E11	GN D		0V		PLL Analog Ground 3
_3 VDDA_PLL12	E20	PW				
_4	L20	R		1.0v ~1.5v		PLL Analog Power 4
 VSSA_PLL12	E12	GN				
_4		D		0V		PLL Analog Ground 4
VDDA_PLL12	F19	PW		1.0v ~1.5v		
VDDA_PLL12 _5		R				PLL Analog Power 5
VSSA_PLL12	E14	GN		0V		PLL Analog Ground 5
_5 VDDA_PLL12	F20	D PW				
	F20	R		1.0v ~1.5v		PLL Analog Power 6
 VSSA_PLL12	E15	GN				
_6		D		0V		PLL Analog Ground 6
 VDDA_USBO	V13	PW				
TG33		R		3.0v ~ 3.6v		USB OTG PHY Analog Power 3.3v
VDDA_USBH	AA11	PW		0.0		
OST33		R		3.0v ~ 3.6v		USB PHY Analog Power 3.3v
	R12	GN		0V		USB PHY Analog Ground
VSSA_USB		D		UV		
VSSA_USB	R13	GN		0V		USB PHY Analog Ground
		D				
VSSA_USB	W12	GN		0V		USB PHY Analog Ground
		D				-
VSSA_USB	W13	GN D		٥V		USB PHY Analog Ground
VDDA_TP33	Y19	PW R		3.0v ~ 3.6v		Touch Panel SAR ADC Analog Power

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
1 III III III	No.	Тур	Strength	Power	After	
		e	(mA)	Or	Reset	
			(Range(v)	Release	
	W19	GN				
VSSA_TP33		D		0V		Touch Panel SAR ADC Analog Ground
	R11	PW		<u> </u>		AUD Ground for Receiver PA, Internal LDO, Headphone &
VSSA_AUD		R		0v		Linein IO
VSSA_AUD	W6	GN		0v		AUD Ground for Receiver PA, Internal LDO , Headphone &
VOOA_AOD		D				Linein IO
VDDA_AUD_	AA10	PW		2.25v ~ 2.75v		AUD 2.5 V Power Supply For Headphone
HP		R				
VSSA_AUD	W10	GN		0v		AUD Ground for Receiver PA ,Internal LDO , Headphone &
		D				Linein IO
VSSA_AUD_P	R9	GN		0v		AUD 3.3 V Ground For Speaker PA & Speaker PA IO
A		D				
VDDA_AUD_	Y5	PW		2.7v ~ 3.6v		AUD 3.3 V Power Supply For Speaker PA Macro & Speaker
	AA5	R PW				PA IO
VDDA_AUD_ OPA	AAS	R		2.7v ~ 3.6v		AUD 3.3 V Power Supply For Speaker PA Macro & Speaker PA IO
VSSA_AUD_P	R10	GN				
A		D		0v		AUD 3.3 V Ground For Speaker PA & Speaker PA IO
VSSA_AUD_P	W7	GN				
– – A		D		0v		AUD 3.3 V Ground For Speaker PA & Speaker PA IO
VDDA_AUD_	Y4	PW				
RCV		R		2.7v ~ 3.6v		AUD 3.3 V Power Supply For Receiver PA
	W11	GN				AUD Ground for Receiver PA ,Internal LDO , Headphone &
VSSA_AUD		D		0v		Linein IO
VDDA_AUD_	AA4	PW				
VDDA_A0D_ VIN		R		2.7v ~ 3.6v		AUD 3.3 V Power Supply Input
	A A G					
VDDA_AUD_ VOUT	AA6	AO		2.25v ~ 2.75v		AUD 2.5V internal LDO Output
VDD_CORE_	F12	PW				
ARM		R		1.0v ~1.5v		ARM Core Digital Power
VDD_CORE_	F13	PW				
ARM		R		1.0v ~1.5v		ARM Core Digital Power
VDD_CORE_	F14	PW		4.0 4 -		
ARM		R		1.0v ~1.5v		ARM Core Digital Power
	F15	PW				ARM Core Digital Power
VDD_CORE_ ARM		R		1.0v ~1.5v		

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
VDD_CORE_	F16	PW		1.0v ~1.5v		ADM Care Digital Dawar
ARM		R		1.00~1.50		ARM Core Digital Power
VDD_CORE_	J12	PW		1.0v ~1.5v		ADM Care Digital Dowor
ARM		R		1.00 ~1.50		ARM Core Digital Power
VDD_CORE_	J13	PW		1.0v ~1.5v		ARM Core Digital Power
ARM		R		1.00 1.00		
VDD_CORE_	J14	PW		1.0v ~1.5v		ARM Core Digital Power
ARM		R		1.00 1.00		
VDD_CORE_	J15	PW		1.0v ~1.5v		ARM Core Digital Power
ARM		R		1.00 1.00		
VDD_CORE_	M18	PW		1.0v ~1.5v		Video Core Power
VIDEO		R		1.07 1.07		
VDD_CORE_	N18	PW		1.0v ~1.5v		Video Core Power
VIDEO		R				
VDD_CORE_	V3	PW		1.0v ~1.5v		GPU Core Power
GPU		R				
	V4	PW		1.0v ~1.5v		GPU Core Power
GPU		R				
	V14	PW		1.0v ~1.5v		Shutdown Domain Core Digital Power except ARM, Video
CORE		R				Codec & GPU
	V15	PW		1.0v ~1.5v		Shutdown Domain Core Digital Power except ARM, Video
CORE		R				Codec & GPU
	V16	PW		1.0v ~1.5v		Shutdown Domain Core Digital Power except ARM, Video
CORE		R				Codec & GPU
	F5	PW		1.0v ~1.5v		PMU Domain Core Logic Digital Power and ALL DIGITAL I/O
PMU		R				Core Power
	H18	PW		1.0v ~1.5v		PMU Domain Core Logic Digital Power and ALL DIGITAL I/O
PMU		R				Core Power
	Y3	PW		1.0v ~1.5v		PMU Domain Core Logic Digital Power and ALL DIGITAL I/O
PMU		R				Core Power
VDD_CORE_	AA3	PW		1 0v ~1 5v		PMU Domain Core Logic Digital Power and ALL DIGITAL I/O
PMU		R		1.0v ~1.5v		Core Power
	E16	PW				
VDD_IO_SYS		R		2.6v ~ 3.0v		SYS I/O Digital Power
	M20					LCD I/O Digital Power
VDD_IO_LCD		PW		1.7v ~ 3.6v		
		R				

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
VDD_IO_LCD	M21	PW R		1.7v ~ 3.6v		LCD I/O Digital Power
VDD_IO_NF	C20	PW R		1.7v ~ 3.6v		NAND Flash I/O Digital Power
VDD_IO_SD0 1	W17	PW R		1.7v ~ 3.6v		SDIO 0/1 I/O Digital Power
VDD_IO_SD2 3	L21	PW R		1.7v ~ 3.6v		SDIO 2/3 I/O Digital Power
VDD_IO_CS	AA20	PW R		1.7v ~ 3.6v		Camera Sensor I/O Digital Power
VDD_IO_DDR	E3	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	E4	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	F3	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	F4	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	Т3	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	T4	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	U3	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
VDD_IO_DDR	U4	PW R		1.7v ~ 1.95v 1.425 ~ 1.575v		DDR PHY I/O Power
DDR_VREF	G5	PW R		0.5 * VDD_IO_DDR		DDR PHY SSTL Reference Power

Pin Name	Pin No.	Pin Typ e	Drive Strength (mA)	I/O Power Or Range(v)	State After Reset Release	Pin Description
VDD_EFUSE	W16	PW R		2.25 ~ 2.75v		On-chip Efuse Cell Power
VDD_TP33	AA19	PW R		3.0v ~ 3.6v		Touch Panel SAR ADC 3.3v Digital Power
VSS_TP33	V19	GN D		Ov		Touch Panel SAR ADC 3.3v Digital Ground
VSS	E8	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	E9	GN D		Οv		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	G3	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	G4	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	H3	GN D		Οv		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	H4	GN D		Οv		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	H5	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J3	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J4	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J5	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J9	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J10	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J11	GN D		0v		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J18	GN D		Οv		Digital IO & Pre-driver Ground and Digital Core Logic Ground
VSS	J19	GN D		Ov		Digital IO & Pre-driver Ground and Digital Core Logic Ground

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
2/00	К3	GN		0.1		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
200	K4	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
VSS	K5	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		0v		Ground
VSS	K9	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		0v		Ground
VSS	K10	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
v 55		D		0v		Ground
VSS	K11	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v55		D		UV		Ground
VSS	K12	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
v55		D		0v		Ground
VSS	K13	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v33		D		ŰV		Ground
VSS	K14	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v 3 3		D		ŰV		Ground
VSS	K15	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v33		D		ŰV		Ground
VSS	K18	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v 3 3		D		ŰV		Ground
VSS	K19	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v55		D		07		Ground
VSS	L3	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v55		D		07		Ground
VSS	L4	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
000		D		07		Ground
VSS	L5	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v55		D		07		Ground
VSS	L9	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v33		D		07		Ground
	L10	GN				Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v	0v	Ground
	L11	GN				Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
200	L12	GN		0.1		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
200	L13	GN		0.1		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
VSS	L14	GN		0.7		Digital IO & Pre-driver Ground and Digital Core Logic
V35		D		0v		Ground
VSS	L15	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
V35		D		0v		Ground
VSS	L18	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		0v		Ground
VSS	L19	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		0v		Ground
VSS	M3	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		0v		Ground
VSS	M4	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		ŰV		Ground
VSS	M5	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		ŰV		Ground
VSS	M9	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		ŰV		Ground
VSS	M10	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		ŰV		Ground
VSS	M11	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		07		Ground
VSS	M12	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V00		D		07		Ground
VSS	M13	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		07		Ground
VSS	M14	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V00		D		07		Ground
VSS	M15	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		ŰV		Ground
	M19	GN				Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
	N3	GN				Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
	N4	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
	N5	GN		<u>^</u>		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
N/00	N9	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
1/00	N10	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
N/00	N11	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
VCC	N12	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
VSS	N13	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
V55		D		0v		Ground
VCC	N14	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
VSS	N15	GN		0.4		Digital IO & Pre-driver Ground and Digital Core Logic
v33		D		0v		Ground
VSS	N19	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		ŰV		Ground
VSS	P3	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
v33		D		υv		Ground
VSS	P4	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
000		D		00		Ground
VSS	P5	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
000		D		00		Ground
VSS	P9	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
		D				Ground
VSS	P10	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
		D				Ground
VSS	P11	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
		D				Ground
	P12	GN				Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
	D 40					
Voo	P13	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground

Pin Name	Pin	Pin	Drive	I/O	State	Pin Description
	No.	Тур	Strength	Power	After	
		е	(mA)	Or	Reset	
				Range(v)	Release	
VSS	P14	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		UV		Ground
VSS	P15	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V35		D		UV		Ground
VSS	P19	GN		0v		Digital IO & Pre-driver Ground and Digital Core Logic
V33		D		UV		Ground
VCC	R3	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
2/00	R4	GN		0.		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
	R5	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
2/00	R19	GN		0.		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground
	T5	GN		0		Digital IO & Pre-driver Ground and Digital Core Logic
VSS		D		0v		Ground

VC0882 Data Book

3.3 Package Information

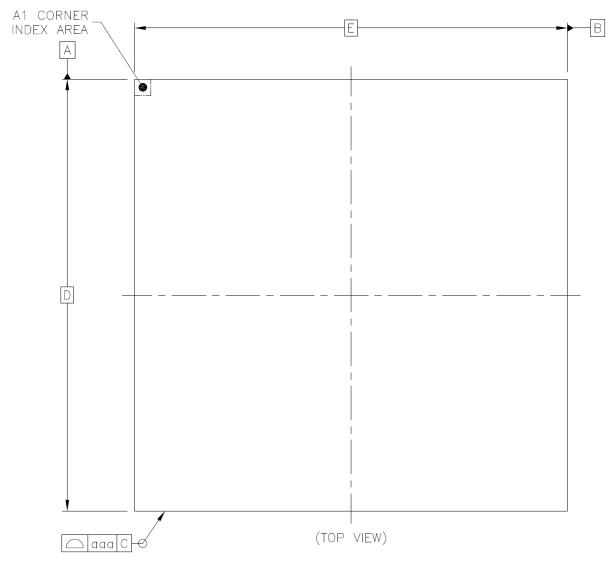


Figure3-5 Top View of 445BGA Package

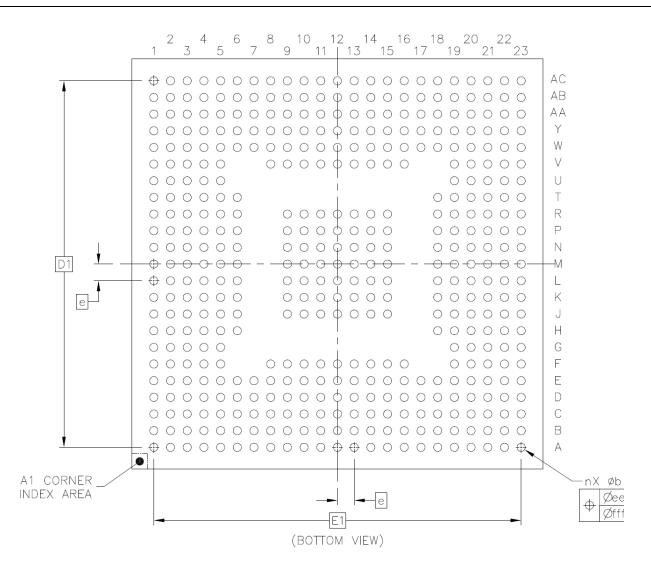


Figure 3-6 Bottom View of 445BGA Package

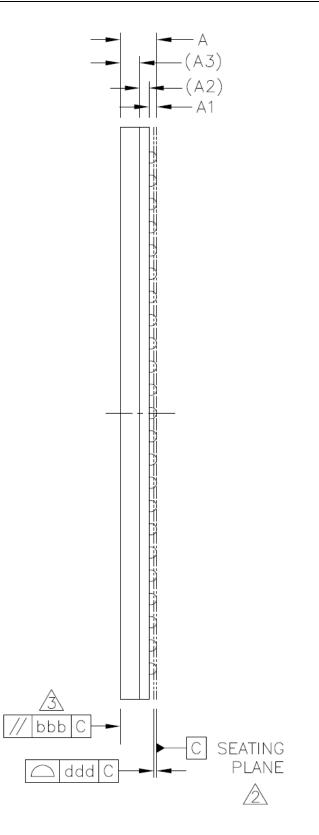


Figure 3-7 Side View of 445BGA Package

	SYMBOL	COMM	ON DIMENS	SIONS
		MIN.	NOR.	MAX.
TOTAL THICKNESS	А			1.1
STAND OFF	A1	0.16		0.26
SUBSTRATE THICKNESS	A2		0.26	REF
MOLD THICKNESS	A3		0.54	REF
BODY SIZE	D		16	BSC
BODT SIZE	E		16	BSC
BALL DIAMETER			0.3	
BALL OPENING			0.275	
BALL WIDTH	b	0.27		0.37
BALL PITCH	е		0.65	BSC
BALL COUNT	n		445	
EDGE BALL CENTER TO CENTER	D1		14.3	BSC
EDGE BALL CENTER TO CENTER	E1		14.3	BSC
BODY CENTER TO CONTACT BALL	SD			BSC
BODT CENTER TO CONTACT BALL	SE			BSC
PACKAGE EDGE TOLERANCE	aaa		0.1	
MOLD FLATNESS	bbb		0.1	
COPLANARITY	ddd		0.08	
BALL OFFSET (PACKAGE)	eee		0.15	
BALL OFFSET (BALL)	fff		0.08	

Table 3-2Parameters of 445BGA Package

NOTES:

- \bigtriangleup dimension 6 is measured at the maximum solder ball diameter, parallel to datum plane c.
- A DATUM C (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- A PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Chapter 04

CPU SubSystem

Vimicro Copyright© 1999-2011

Page 56 of 131

4 CPU SubSystem

4.1 CORTEX-A8 Features

The Cortex-A8 processor is a high-performance, low-power, cached application processor that provides full virtual memory capabilities. The features of the processor include:

- Full implementation of the ARM architecture v7-A instruction set
- 64-bit high-speed Advanced Microprocessor Bus
- Architecture (AMBA) with Advanced Extensible Interface (AXI) for main
- memory interface supporting multiple outstanding transactions
- A pipeline for executing ARM integer instructions
- A NEON pipeline for executing Advanced SIMD and VFP instruction sets
- Dynamic branch prediction with branch target address cache, global history buffer, and 8-entry return stack
- Memory Management Unit (MMU) and separate instruction and data Translation
- Look-aside Buffers (TLBs) of 32 entries each
- Level 1 instruction and data caches of 32KB
- Level 2 cache of 128KB
- Level 2 cache with parity and Error Correction Code (ECC) configuration option
- Embedded Trace Macrocell (ETM) support for non-invasive debug
- Static and dynamic power management including Intelligent Energy Management (IEM)
- ARMv7 debug with watchpoint and breakpoint registers and a 32-bit Advanced Peripheral Bus (APB) slave interface to a CoreSight debug system.

CoreSight Sub-system Features

CoreSight systems provide all the infrastructure you require to debug, monitor, and optimize the performance of a complete System on Chip (SoC) design.

- There are historically three main ways of debugging an ARM processor based SoC:
 - Conventional JTAG debug. This is invasive debug with the core halted using:
 - \diamond breakpoints and watchpoints to halt the core on specific activity
- Conventional monitor debug
 - This is invasive debug with the core running using a debug monitor that resides in memory.
- Trace

This is non-invasive debug with the core running at full speed using:

- ♦ collection of information on instruction execution and data transfers
- ♦ delivery off-chip in real-time
- ♦ tools to merge data with source code on a development workstation for later analysis.

The CoreSight addresses the requirement for a multi-core debug and trace solution with high bandwidth for whole systems beyond the core, including trace and monitor of the system bus.

The CoreSight provides:

- debug and trace visibility of whole systems
- cross triggering support between SoC subsystems
- higher data compression than previous solutions
- multi-source trace in a single stream
- standard Programmer's Models for standard tool support
- open interfaces for third party cores
- low pin count
- low silicon overhead.

This section describes some of the fundamental features of CoreSight Technology that enable you to address the issues and challenges of debugging complex SoCs. It contains the following sections:

• Debug access

You gain debug access in CoreSight systems through the Debug Access Port (DAP) that provides:

- ♦ debug control and access to all status registers
- The same mechanism provides fast access for downloading code at the start of the debug session. This is faster than the traditional JTAG mechanism that uses the ARM core to write data to memory.
- Cross Triggering

The Embedded Cross Trigger (ECT), comprising of the Cross Trigger Interface (CTI) and Cross Trigger Matrix (CTM), provides a standard interconnect mechanism to pass debug or profiling events around the SoC.

The ECT provides you with a standard mechanism to connect different signal types. A set of standard triggers for cores and Embedded Trace Macrocells (ETMs) are predefined and you

can add triggers for third party cores.

Trace

The CoreSight provides components that support a standard infrastructure for the capture and transmission of trace data, combination of multiple data streams by

funneling together, and then output of data to a trace port or storing in an on-chip buffer. The CoreSight enables:

- ♦ simultaneous trace of asynchronous cores, busses
- ♦ debug and trace of an AMBA 2 AHB bus
- ♦ output of trace data to:
 - a trace port that can run at an independent frequency
 - an embedded trace buffer for on-chip storage of trace RAM

support for third party cores to enable debug control and standardized Programmer's Model and infrastructure...

System APB is connected to debug APB bus via APB MUX to enable software running on CORTEX-A8 accessing ETM, CTI and DBG inside CORTEX-A8 and CoreSight Components in CSSYS. Note that Coprocessor read and write instruction can only access part of ETM, CTI and DBG registers in CORTEX-A8.

4.2 Clock and Reset

VC0882 CLKRST Module provides the following features:

- Supports 1 oscillator (or crystal): 12/13/24/26 MHz XCLK
- Embeds 6 high performance, low power TCI PLLs
 - ♦ Divided reference frequency range 146KHz - 1.3GHz
 - \diamond /1 output frequency range 240MHz - 1.3GHz 1-64
 - ♦ Reference divider values
 - ♦ Feedback divider values
 - Output divider values
 - ♦ /1 output multiples of div. reference
 - \diamond Output duty cycle (nom, tol)
 - ♦ Period jitter (P-P) (max)
 - ♦ Input-to-output jitter (P-P) (max) n/a (jitter numbers are worst-case estimates with supply and substrate noise levels below -- actual results will be better)

1-4096

1-4096

1, 2-8 (even only)

+/-2.5% output cycle

- \diamond Power dissipation (nom) 3mA @ 600MHz (/1 output)
- ♦ Reset pulse width (min)
- ♦ Reset /1 output frequency range
- ♦ Lock time (min allowed) (actual lock time will be much smaller)

5us 20MHz - 200MHz

500 div. reference cycles

50%,+/-5% (/1 output), +/-2% (others)

420ps

~0.11mm2

- \diamond Freq. overshoot (full-~/half-~) (max) 40%/50%
- ♦ Area (including isolation) (max)
- Number of PLL supply pkg. pins
 1 VDDA, 1 VSSA (preferred)
- ♦ Low freq. supply noise est. (P-P) (max) 10% VDDA
- ♦ Low freq. sub. noise est. (P-P) (max) 10% VDDA
- ♦ Reference input jitter (long-term, P-P) (max)2% div. reference cycle
- ♦ Reference H/L pulse width (min)
- ♦ Process technology TSMC CLN65LP 0.065µm
- ♦ Supply voltage (VDD, VDDA) (nom, tol) 1.2V, +/-10%
- ♦ Junction temperature (nom, min, max) 70C, -40C, 125C
- Includes configurable clock dividers to produce desired clock frequencies
- Implements clock gating technology to save power
- Inserts clock multiplexers to enhance flexibility
- Supports system clock switching between XCLK and all 6 PLLs
- Integrates pmu hardware reset, watchdog reset, global software reset and each module's individual software reset

4.3 Interrupt controller

VC0882 adopts two-level interrupt architecture. The second-level interrupt controllers (SLIC Sub-module) are embedded in each module. It collects the module's local interrupts, filters with its mask settings, and then if no mask settings generates a high-level interrupt report to the first-level interrupt controller (FLIC Module).

SLIC Sub-module provides the following features:

- Embedded in each module
- Collects this module's local interrupts, which are sent to SLIC Module in high level pulses of one module clock cycle.
- Holds 1'b1 at some bits in XXX_SRCPND Register, which indicates these kinds of local interrupts have happened, until software writes 1'b1 to clear these bits
- Filters XXX_SRCPND Register with XXX_INTMASK Register, which allows software to mask unconcerned local interrupts
- Provides XXX_SETMASK and XXX_UNMASK Registers, so as to support atom manipulation for XXX_INTMASK Register
- If any 1'b1 in XXX_SRCPND Register has not been masked, generates and holds a high-level interrupt report to FLIC Module

FLIC Module provides the following features:

- Supports up to 64 interrupt sources
- Supports both IRQ and FIQ to ARM

VC0882 Data Book

- Specifies the mode of each interrupt source by INTC_INTMODE Register, where none or only one interrupt source may be specified to FIQ Mode
- Separates the interrupt source of FIQ Mode from the others of IRQ Mode, which doesn't affect INTC_INTPND and INTC_INTOFFSET Registers
- Interrupt sources of both IRQ and FIQ Mode can be masked by INTC_INTMASK Register
- Provides INTC_SETMASK and INTC_UNMASK Registers, so as to support atom manipulation for INTC_INTMASK Register
- Performs priority arbitration for interrupt sources of IRQ Mode as follows:
 - ♦ First come first serve
 - If arrive simultaneously, grant the interrupt source having the highest priority, which is from 0(H) to 15(L) and configured in INTC_PRIORITY Registers
 - ♦ Furthermore, if multiple interrupt sources all have the same highest priority, grant the one having the minimum port number.
- Saves the result of priority arbitration in INTC_INTPND and INTC_INTOFFSET Registers, and the value of INTC_INTOFFSET register accords with INTC_INTPND register.
- Support software interrupt.
- If any 1'b1 in INTC_INTPND Register has not been masked, generates and holds a low-level interrupt report to ARM.

Generally speaking, ARM has 7 processor modes. Three of them are User Mode, IRQ Mode and FIQ Mode. ARM executes most tasks in User Mode. If the pin IRQn of ARM has been pulled down to low level, ARM enters IRQ Mode and usually this mode is used to process some common interrupts. If the pin FIQn of ARM has been pulled down to low level, ARM enters FIQ Mode. Since this mode has been optimized to have fast response speed, it is usually used to process some urgent interrupts.

4.4 Timer

VC0882 timer module supports 8 timers: 3 general-purpose timers, 4 dual timers and 1 watchdog timer. The timers operate from a unique 24MHz timer clock but with separate control signals for each timer, which give flexible controls.

. The VC0882 timer module has the following features:

- 3 general-purpose timers, 4 dual timers and 1 watchdog timer
- Programmable timer period and timer operation mode
- Individual interrupt for each timer
- Unique 24MHz clock for all timers
- 3 operation modes for general-purpose timers:
 - > One-time operation (timer runs for one period then resets and stops)
 - > Periodical operation (timer interrupts and automatically resets every time it reaches

maximum value)

- Continuous operation (timer interrupts every time it reaches a specific value, then it continues to count)
- 3 operation modes for dual timers:
 - > One-time operation (timer runs for one period then resets and stops)
 - Periodic operation (timer interrupts and automatically resets every time it reaches maximum value)
 - Continuous operation (timer interrupts every time it reaches a specific value, then it continues to count)
- watchdog timer is able to used as a general-purpose timer
- Capability of each timer is shown below:

Capability	Timer0	Timer1	Timer2	Timer3	Timer4	Timer5	Timer6	Timer7
32-bit general-purpose timer		X	Х					Х
Dual 32-bit timer (chained)				X	Х	X	X	
64-bit general-purpose timer	X							
Watchdog timer								X

Table 4-1 Timer Capability list

Basically, timer module consists of a register sub-module, 3 general-purpose timers, 4 dual timers and a watchdog sub-module. The timer register sub-module, Timer_reg, is in charge of getting timer options through APB interface and sending the setup to the timers. The general-purpose timer sub-modules will work according to the setup from the register sub-module and generate interrupts to system interrupt controller. Watchdog sub-module is able to act as a watchdog timer for the system as well as a general-purpose timer. It is able to generate a warm reset after an interrupt without CPU clearance.

4.5 EFUSE

The EFUSE module is used to manage electrical fuse IP: program the electrical fuse IP, read programmed values after programming, read all values before programming (named "unload" process) and control this IP in power down or standby mode when it's inactive.

There are two kinds of ways for above processes(PROGRAM, READ, UNLOAD, POWER_DOWN and STANDBY):

- by APB bus in normal mode
- by PAD on ATE(automatic test equipment) in test mode

The EFUSE IP is organized as 128-bit by 8 one-time programmable electrical fuses with

VC0882 Data Book

random access interface. The EFUSE Module can manage this IP by APB bus in normal work or by PAD inputs in test mode. The electrical fuse is a type of non-volatile memory fabricated in standard COMS logic progress. The electrical fuse macro is widely used in chip ID, memory redundancy, security code, configuration setting, and feature selection, etc.

- There are two kinds of ways to manage the electrical fuse IP. This is selected by TEST pin:

 by APB bus in normal mode
 - ♦ by PAD on ATE in test mode
- Software can control the electrical IP into power down or standby mode if the IP is inactive (No PROGRAM, READ and UNLOAD).
- Software can program 1bit at a time according to configured address.
- Software can read 1~8bytes at a time according to configured address and configured read byte length.

The following describes features of EFUSE IP:

- Embedded power-switch
- Provide power-down and standby mode
- Fully compatible with standard CMOS logic process
- Asynchronous signal interface
- Macro requiring both standard-Vt and high-Vt GO1 (Core device) transistors
- Macro also requiring GO2 (I/O device) transistors
- Programming condition: VQPS: 2.5+/-10%, VDD: 1.2V+/-10% Temp: 125^oC~-40^oC Program time: 4us~6us and typical program time is 5us
- Read condition: VQPS:2.5V+/-10% or 0V VDD=1.2V+/-10% Temp: 125°C~-40°C
- Provided macro for ESD protection, MUST be used in-pair with this electrical fuse IP

VC0882 Data Book

Chapter 05

Memory SubSystem

Vimicro Copyright© 1999-2011

Page 64 of 131

5 Memory Subsytem

5.1 Interconnection

INTERCONNECT is based on ARM AMBA3 (Advanced Microcontroller Bus Architecture) AXI (Advanced eXtensible Interface) Bus Protocol and connects all the AXI Master Modules and AXI Slave Modules of this chip together. Its main tasks are (1) decoding memory addresses according to the predefined memory mapping table, (2) routing Read Address, Write Address and Write Data from AXI Masters to AXI Slaves, as well as routing Read Data and Write Response from AXI Slaves to AXI Masters, so as to realize the chip-level information interchange, (3) arbitrating if competition exists when routing information from multiple sources to a unique destination.

- > Be in compliance with ARM AMBA3 AXI Bus Protocol.
- Construct the INTERCONNECT with Synopsys DesignWare Fabric Components, such as DW_axi, DW_axi_x2x, and DW_axi_hmx.
- DW_axi is instantiated as MARB (Main ARBiter) and SARB (Sub ARBiter). MARB is used to do the top-level integration, while SARB is used to do the module-level or subsystem-level integration. MARB and SARB make up the backbone of this INTERCONNECT.
- Read Data Interleaving is supported.
- > Write Data Interleaving is fixed to a depth of 1.
- Exclusive Access and Locked Access are not used, so that ARLOCK[1:0] and AWLOCK[1:0] are fixed to 2'b00.
- Cache Options are not used, so that ARCACHE[3:0] and AWCACHE[3:0] are fixed to 4'b0000.
- Protection Options are not used, so that ARPROT[2:0] and AWPROT[2:0] are fixed to 3'b000.
- Low-Power Interface is not used.
- Read Address Channel and Write Address Channel implement a user-defined arbitration strategy, called Class Based Round Robin + Pulse Width Modulation Arbitration Strategy (CBRR+PWM for short).
- Read Data Channel and Write Response Channel implement the general Round Robin Arbitration Strategy.
- Write Data Channel involves no arbitration because Write Data Interleaving has been fixed to a depth of 1.
- Extend Read Address Channel and Write Address Channel with 2-bit sideband signals respectively, i.e. ARSIDEBAND[1:0] and AWSIDEBAND[1:0], which are then used by the CBRR+PWM Arbitration Strategy.
- > Place performance monitors for AXIBUS, ARBITER and DDRC.

5.2 DDR Controller

DDRC is mainly responsible for the following functions:

- As an AXI slave, receiving AXI transaction from AXI master (memory arbiter).
- The received AXI command may be split into two commands according to command split rule. Each AXI command need to be partitioned into one or multiple DDR bursts before it is queued.
- According to reorder rule, rescheduling the DDR commands for improving DDR efficiency.
- According to DDR protocol, write/read data to/from external DDR device.

The DDRC module supports the following features:

- Compatible with JEDEC standard LPDDR1, DDR2, DDR3
- Data rates up to 800 Mb/s (400 MHz) in 65LP
- Compatible with the AMBA 3 AXI protocol
- Compatible with the AMBA 3 APB protocol
- Supported AXI burst types: incremental and wrap
- AXI interface clock asynchronous to the DDRC core clock
- Support the following bus configurations:
 - ♦ AXI Data Bus width : Valid DDR Data Bus width = 2 : 1 (normal mode)
 - AXI Data Bus width : Valid DDR Data Bus width = 4 : 1 (half data path valid mode: for example, that AXI Data Bus width is 64 bits, DDR Data Bus width is 32, but only 16 bits of DDR Data Bus are valid ,other 16 bits are not used)
- Configurable AXI data bus widths of 64 bits
 - ♦ Corresponds to DDR data bus widths of 32 bits ,respectively
 - ♦ Corresponds to AXI burst size of 4,8,16 bytes, respectively
- Register programmable timing parameters support DDR2/DDR3/LPDDR1 comp- onents from various DRAM vendors
- Register programmable DDR burst length of 2,4 or 8
- Support LPDDR1/DDR2 read/write command interrupt access
- Advanced features such ODT, ZQ Calibration and *additive latency*
- Support for two CSs (chip select) with shared clock pins, command pins, address pins and data pins
- Support for DDR device density ranging from 64Mbit to 8Gbit
- Support 16 bit LPDDR1/DDR2/DDR3 device and 32bit LPDDR1 device
- Support 8 bit DDR2/DDR3 device
- Advanced command re-ordering and scheduling to maximize bus utilization
- Register programmable anti-starvation mechanisms according to SideBand Info- rmation
- Support single Refresh and Speculative Refresh
- Register programmable priority with up to four priorities according to SideBand Information
- Register programmable address mapping, including mapping based on row or mapping based on bank

VC0882 Data Book

- Supports autonomous DDR power down entry and exit based on programmable idle periods
- Support for self refresh entry on software command and automatic exit on DRAM access command arrival
- Automated Read DQS recognition with DDR PHY and Automated Dynamic DQS Drift Compensation
- Built-in DQS Gate Training with DDR PHY
- Support DDR3 DLL-off Mode
- Support LPDDR1 Deep Power Down Mode

5.3 Sram Controller

SRAMC module is the interface between AXI bus and SRAM. It works as an AXI slave as well as a SRAM controller. It receives AXI transactions from AXI bus and transforms them into SRAM control signals. When data come back from SRAM, SRAMC put them into AXI data channel according to AXI protocol.

- The core logic of SRAMC can work at a MAX clock frequency of 200MHz;
- "Rresp" and "Bresp" always be "OKEY", it means that AXI interconnect must check the correctness of the address;
- AXI interface and core logic are asynchronous;
- AXI data bus width is fixed as 64 bits;
- SRAM data bus width is fixed as 16 bits;
- SRAM adderss width is fixed as 14 bits;
- AMBA AXI protocol related features:
 - Supports "incrementing" and "wrapping" burst type;
 - Supports burst length 1 to 16;
 - Supports narrow transfer;
 - Supports unaligned data transfers;
 - Supports multiple transaction ID;
 - Transactions complete in the order they were received even if they have different transaction ID;
 - "fixed" burst type is not supported;
 - Locked transfer is not supported;
 - Exclusive access is not supported;
 - Write data interleaving is not supported;
 - Low power interface is not supported;
- SRAM side
 - Supports byte write enable;
 - Supports delayed read data using "rdata_valid" input signal;
 - > Can hold write command using "wen" signal;

> Can hold read command using "ren" signal;

5.4 Rom Controller

ROMC module is the interface between AXI bus and ROM. It works as an AXI slave as well as a ROM controller. It receives AXI transactions from AXI bus and transforms them into ROM control signals. When data come back from ROM, ROMC put them into AXI data channel according to AXI protocol.

- The core logic of ROMC can work at a MAX clock frequency of 200MHz;
- "Rresp" always be "OKEY";
- AXI interface and core logic are asynchronous;
- Data bus width is 64 bits;
- Rom address width is 13 bits;
- Data bus width of AXI and memory must be the same;
- AMBAAXI protocol related feature;
 - Accepts only read transactions;
 - Supports "incremental" and "wrap" transaction type;
 - Supports burst length 1 to 16;
 - Supports narrow transfer;
 - Supports unaligned data transfers;
 - Supports multiple transaction ID;
 - Transactions complete in the order they were received even if they have different transaction ID;
 - "fixed" burst type is not supported;
 - Locked transfer is not supported;
 - Exclusive access is not supported;
 - > Write data interleaving is not supported;
 - Low power interface is not supported;
- Supports only one ROM;

5.5 DMAC (Direct Memory Access Controller)

The VC0882 DMAC is a high-performance DMA controller. The DMAC is used to setup a direct transfer path between memories. The main advantage of DMA is that it can transfer the data without CPU intervention.

The DMAC supports one channel and only supports software request. You may begin to transfer memory data when the channel is idle. Software mode means ARM initiates the

transmission. DMAC will only give out the interrupt to ARM. Channel registers should be well configured before each transmission.

The VC0882 DMAC has the following features:

- Compliance to the AMBA 3.0 Specification---AXI protocol for integration into SoC implementation.
- One DMA channel which can support unidirectional transfer for software request.
- Memory-to-memory transfer. Supported memories are DDR SDRAM, internal SRAM, external dual port SRAM and external SRAM-like Devices such as Nor Flash or Ethernet Controller.
- Only support linear transfer.
- APB slave DMA programming interface. Software program the DMAC by writing to the DMA control registers over the APB slave interface.
- One AXI bus master for transferring data. Use these interfaces to transfer data when a DMA request goes active.
- Increment addressing for source and destination.
- Internal 32×64bits FIFO (one instance of a sync FIFO).
- Support programming max burst length.
- The source address and destination address for DMA request are byte aligned.
- Transfer length is byte-aligned.
- Transfer length is 8~16M bytes.
- Only little-endian support.
- Support LLI Mode. LLI address is 8byte-aligned (double word aligned) and may be stored in DDR SDRAM, internal SRAM, external dual port SRAM and external SRAM-like Devices such as Nor Flash.
- Indicate a transmission has completed by interrupt.
- Software can terminate transfer by configuring register, a terminate interrupt is used to indicate the termination completed.
- Indicate an error has occurred by an error interrupt. If error occurs, the transmission will not be stopped until all outstanding AXI transfer finished.

VC0882 Data Book

Chapter 06

Video SubSystem

Vimicro Copyright© 1999-2011

Page 70 of 131

6 Video SubSystem

6.1 Video Encoder

Supported standards and tools

The encoder supported standards, profiles and levels are presented in Table 6-1.

Table 6-1 encoder supported standards, profiles and levels

Standard	Profiles	Levels	Notes
H.264	Baseline Profile	Levels 1-3.1	Image size up to 1280x1024.
			B frame not supported.
MPEG-4	Simple Profile	Levels 0-5	Only simple profile tools are supported.
	Main Profile	Level 4	Image size up to 1280x1024.
H.263	Profile 0	Levels 10-70	Image size up to 1280x1024.
			Time code extensions not supported.
JPEG	Baseline		Image size up to 4672x3504.

The encoder supported H.264 video tools are shown in Table 6-2.

Table 6-2 encoder supported H.264 tools

Standard	Tools	Encoder support
H.264	Slices	I-Slice and P-Slice.
	Entropy encoding	CAVLC
	Basic	Constrained intra prediction.
		Maximum MV range +-16 pixels.
		MV accuracy 1/4 pixels.
		All block sizes from 4x4 to 16x16 supported.
		All intra modes supported.
	Number of reference frames	1
	Maximum number of slice groups	1

The encoder supported MPEG-4 video tools are shown in Table 6-3.

Table 6-3 encoder supported MPEG-4 tools

Standard	Tools	Encoder support
MPEG-4	Basic	I-VOP and P-VOP.
		Maximum MV range +-16 pixels.

VC0882 Data Book

	MV accuracy 1/2 pixels.
	1 or 4 MV per macro block.
	DC prediction.
Error resilience	Video packets.
	Data partitioning.
	Reversible VLC.
Number of reference frames	1
Quantization	Method 2
Number of visual objects	1
Short video header	Yes

The encoder supported H.263 video tools are shown in Table 6-4.

Table 6-4 encoder supported H.263 tools

Standard	Tools	Encoder support
H.263	Basic	I-VOP and P-VOP.
		Maximum MV range +-16 pixels.
		MV accuracy 1/2 pixels.
		1 MV per macro block.
	Error resilience	GOB
	Number of reference frames	1

Encoding Features

The features of the encoder for each supported standard are different. There are shown as followed.

Table 6-5 H.264 features

Standard	Feature	Encoder support
H.264	Input data format	YCbCr 4:2:0 planar or semi-planar.
		YCbCr and CbYCrY 4:2:2 interleaved.
	Output data format	H.264 byte or NAL unit stream.
	Supported image size	96x96 to 1280x1024.
		Step size 4 pixels.
	Maximum frame rate	25 fps at 720x576 for PAL.
		30 fps at 720x480 for NSTC.
		30 fps at 1280x720.
		Note.
		The encoder can support 1280x1024 just at 15 fps.
	Maximum bit rate	10 Mbps.

Notes

- 1) Internally encoder handles images only in 4:2:0 formats.
- Actual maximum frame rate will depend on the logic clock frequency and the system bus performance. The given figure 30 fps at 1280x720 requires logic clock frequency of 271 MHz. 15 fps at 1280x1024 requires logic clock frequency of 193 MHz.

Standard	Feature	Encoder support
MPEG-4	Input data format	YCbCr 4:2:0 planar or semi-planar.
H.263		YCbCr and CbYCrY 4:2:2 interleaved.
	Output data format	MPEG-4/H.263 elementary video stream.
	Supported image size	96x96 to 1280x1024.
		Step size 4 pixels.
	Maximum frame rate	25 fps at 720x576 for PAL.
		30 fps at 720x480 for NSTC.
		30 fps at 1280x720.
		Note.
		The encoder can support 1280x1024 just at 15 fps.
	Maximum bit rate	10 Mbps.

Table 6-6 MPEG-4/H.263 features

Notes

- 1) Internally encoder handles images only in 4:2:0 formats.
- Actual maximum frame rate will depend on the logic clock frequency and the system bus performance. The given figure 30 fps at 1280x720 requires logic clock frequency of 215 MHz. 15 fps at 1280x1024 requires logic clock frequency of 193 MHz.

Table 6-7 JPEG features

Standard	Feature	Encoder support
JPEG	Input data format	YCbCr 4:2:0 planar or semi-planar.
		YCbCr and CbYCrY 4:2:2 interleaved.
	Output data format	JFIF file format 1.02.
		Non-progressive JPEG.
	Supported image size	80x16 to 4672x3504.
		Step size 4 pixels.
	Maximum bit rate	Up to 28 million pixels per second.
	Thumbnail encoding	JPEG compressed thumbnails supported.

Pre-processing features

Pre-processing is pipelined with encoder and it can be used only with encoder. Pre-processing features are presented in Table below.

Table 6-8 pre-processing features

Feature	Encoder support
Color space conversion	YCbYCr or CbYCrY 4:2:2 Interleaved or semi-planar 4:2:0 to YCbCr
	4:2:0.
Cropping	JPEG-from 4672x4672 to any supported encoding size.
	Video-from 1920x1920 to any supported encoding size.
Rotation	90 or 270 degrees.

Video stabilization features

Digital video stabilization detects and compensates undesired jitter effect on the video (For example, images from camera). Stabilization operates with the two input picture buffers simultaneously.

Video stabilization can be used pipelined with video encoding or in standalone mode when video encoding is disabled.

Video stabilization features are explained as followed.

Feature	Encoder support
Maximum stabilization move in pixels	+-16 pixels.
for two sequential input video pictures.	
Adaptive motion compensation filter.	From 6 to 40 sequential video pictures noticed in
	unwanted and wanted movement separation.
Offset around stabilized picture.	Minimum 8 pixels in standalone mode.
	Minimum 16 pixels when pipelined with video encoder.
	Recommended 64 pixels.
	Maximum not limited.

Table 6-9 video stabilization features

Connectivity features

The encoder supports AXI and APB bus interfaces, and different bus width from master interface and slave interface. And restrict maximum burst length on bus interface, and also the endian modes can be separately set for input and output data.

The encoder supports connectivity features presented below.

Table 6-10 connectivity features

Feature	Encoder support

Vimicro Copyright© 1999-2011

VC0882 Data Book

APB slave interface	Yes. 32-bit bus width.
AXI master interface	Yes. 64-bit bus width.
Restricting maximum issued AXI burst length	Yes, to any value between from 1 to 16.
Interrupt method	Polling or level based interrupting.
32-bit little endian	Yes, byte order 3-2-1-0.
32-bit big endian	Yes, byte order 0-1-2-3.
64-bit little endian	Yes, byte order 7-6-5-4-3-2-1-0.
64-bit big endian	Yes, byte order 0-1-2-3-4-5-6-7.
Maxed 32-bit little endian in a 64-bit bus	Yes, byte order 3-2-1-0-7-6-5-4.
Maxed 32-bit big endian in a 64-bit bus	Yes, btye order 4-5-6-7-0-1-2-3.

6.2 Video Decoder

Video standard and profiles

Main standards and profiles description of decoder supported.

Standard	Decoder support
H.264 profile and level	Baseline Profile, levels 1 - 4.1
	Main Profile, levels 1 - 4.1
	High Profile, levels 1 - 4.1
	Support I, P, B frame
SVC profile and level	Scalable Baseline Profile, base layer only
	Scalable High Profile, base layer only
	Support I, P, B frame.
MPEG-4 visual profile and level	Simple Profile, levels 0 – 6
	Advanced Simple Profile, level 0-5
	Support I, P, B frame
MPEG-2 profile and level	Main Profile, low, medium and high levels
	Support I, P, B frame
MPEG-1 profile and level	Main Profile, low, medium and high levels
	Support I, P, B frame
H.263 profile and level	Profile 0, levels 10-70. Image size up to
	720x576.
	Support I, P frame.
Sorenson Spark profile and level	Bitstream version 0 and 1
VC-1 profile and level	Simple Profile, low, medium and high levels

Table 6-11 profile and level

VC0882 Data Book

	Main Profile, low, medium and high levels
	Advance Profile, levels 0-3
	Support I, P, B frame
JPEG profile and level	Baseline interleaved
RV profile and level	RV8
	RV9
	RV10
	Support I, P, B frame
VP6 profile and level	VP6.0 (Simple Profile)
	VP6.1
	VP6.2 (Advanced Profile)
DivX profile and level	DivX Home Theater Profile Quanlified
	DivX3
	DivX4
	DivX5
	DivX6

Some special function description:

Table 6-12 special function

Standard	Tool	Decoder support
H.263	Time code extensions	Not supported
H.264	Slice groups (FMO)	If more than one slice group used, SW performs
		entropy decoding
H.264	Arbitrary slice order	Supported, SW performs entropy decoding
H.264	Redundant slices	Supported, but not utilized; redundant slices are
		skipped by SW
H.264	Image cropping	Not performed by the decoder, cropping
		parameters are returned to the application
SVC	Enhancement layers	Not supported
MPEG-4	Data partitioning	Supported, SW performs entropy decoding
MPEG-4	Global motion	Not supported
	compensation	
VC-1	Multi-resolution	Supported, upscaling will be performed by the
		post- processor
VC-1	Range mapping	Supported, range mapping will be performed by
		the post-processor
JPEG	Non-interleaved data order	Not supported

Decoder features

The features of the decoder for each supported standard are shown in following tables.

Feature	Decoder support
Input data format	H.264 byte or NAL unit stream / SVC stream
Decoding scheme	Frame by frame (or field by field)
	Slice by slice
Output data format	YCbCr 4:2:0 semi-planar
Supported image size	48 x 48 to 1920 x 1088
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by H.264 HP level 4.1
Error detection and concealment	Supported

Table 6-13 H.264/SVC base layer features

Table 6-14 MPEG-4/H.263/Sorenson Spark features

Feature	Decoder support
Input data format	MPEG-4 / H.263 / Sorenson Spark elementary
	video stream
Decoding scheme	Frame by frame (or field by field)
	Video packet by video packet
Output data format	YCbCr 4:2:0 semi-planar
Supported image size	48 x 48 to 1920 x 1088 (MPEG-4, Sorenson
	Spark)
	48 x 48 to 720 x 576 (H.263)
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by MPEG-4 ASP level 5
Error detection and concealment	Supported

Table 6-15 MPEG-2/MPEG-1 features

Feature	Decoder support
Input data format	MPEG-2 / MPEG-1 elementary video stream
Decoding scheme	Frame by frame (or field by field)
	Video packet by video packet
Output data format	YCbCr 4:2:0 semi-planar

Vimicro Copyright© 1999-2011

Supported image size	48 x 48 to 1920 x 1088
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by MPEG-2 MP high level
Error detection and concealment	Supported

Table 6-16 JPEG features

Feature	Decoder support
Input data format	JFIF file format 1.02
	YCbCr 4:0:0, 4:2:0, 4:2:2, 4:4:0, 4:1:1 and 4:4:4
	sampling formats
Decoding scheme	Input: buffer by buffer, from 5kB to 8MB at a
	time
	Output: from 1 MB row to 16 Mpixels at a time
Output data format	YCbCr 4:0:0, 4:2:0, 4:2:2, 4:4:0, 4:1:1 and 4:4:4
	semi-planar
Supported image size	48 x 48 to 8176 x 8176 (66.8 Mpixels)
	Step size 8 pixels
Maximum data rate	Up to 76 million pixels per second
Thumbnail decoding	JPEG compressed thumbnails supported
Error detection	Supported

Table 6-17 VC-1 features

Feature	Decoder support
Input data format	VC-1 stream
Decoding scheme	Frame by frame (or field by field)
	Slice by slice
Output data format	YCbCr 4:2:0 semi-planar
Supported image size	48 x 48 to 1920 x 1088
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by VC-1 AP level 3
Error detection and concealment	Supported

Table 6-18 RV features

Feature	Decoder support
Input data format	RV8, RV9 or RV10 stream
Decoding scheme	Frame by frame

VC0882 Data Book

	Slice by slice
Output data format	YCbCr 4:2:0 semi-planar
Supported image size	48 x 48 to 1920 x 1088
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by RV specification
Error detection and concealment	Supported

Table 6-19 VP6 features

Feature	Decoder support
Input data format	VP6.0 / VP6.1 / VP6.2 stream
Decoding scheme	Frame by frame
Output data format	YCbCr 4:2:0 semi-planar
Supported image size	48 x 48 to 1920 x 1088
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by VP6 specification
Error detection and concealment	Supported

Table 6-20 DivX feature

Feature	Decoder support
Input data format	Divx3, 4, 5 or 6 stream
Decoding scheme	Frame by frame
	Video packet by video packet
Output data format	YCbCr 4:2:0 semi-planar
Supported image size	48 x 48 to 1920 x 1088
	Step size 16 pixels
Maximum frame rate	30 fps at 1920 x 1088
Maximum bit rate	As specified by the DivX specification
Error detection and concealment	Supported

Post-processing features

The post-processor (PP) features are described in following table. It is possible to run the post-processor combined with the decoder, or as a stand-alone IP block, when it can process image data from any external source.

Using combined mode reduces bus bandwidth, as PP can read its input data directly from the

decoder output without accessing external memory.

The post-processor output image can be alpha blended with two rectangular areas. If alpha blending is used in combined mode, the currently decoded image will be set as the background image.

Alpha blending can be used for creating transparent menus, subtitles and logos on top of the video playback. These overlay regions must be in the same color space, YCbCr or RGB, as the target format of the post-processor output image. If the two areas for alpha blending overlap, the second area overrides the first (the first area content is discarded). Alpha blending increases the bus load.

Feature	Post-processor support
Input data format	Any format generated by the decoder in
	combined mode
	YCbCr 4:2:0 semi-planar
	YCbCr 4:2:0 planar
	YCbYCr 4:2:2
	YCrYCb 4:2:2
	CbYCrY 4:2:2
	CrYCbY 4:2:2
Post-processing scheme	Frame by frame. Post-processor handles the
	image macroblock by macroblock, also in
	standalone mode.
Input image source	Internal source (combined mode)
	External source (standalone mode)
Output data format	YCbCr 4:2:0 semi-planar
	YCbYCr 4:2:2
	YCrYCb 4:2:2
	CbYCrY 4:2:2
	CrYCbY 4:2:2
	Fully configurable ARGB channel lengths and
	locations inside 32 bits, e.g. ARGB 32-bit
	(8-8-8-8), RGB 16-bit (2-6-5), ARGB 16-bit
	(4-4-4-4)
Input image size (combined mode)	48 x 48 to 8176 x 8176 (66.8 Mpixels)
	Step size 16 pixels
Input image size (stand-alone mode)	Width from 48 to 8176
	Height from 48 to 8176

Table 6-21 post-processor features

VC0882 Data Book

VC0882 Data Book

RGB image contrast adjustment	Segmented linear
RGB image brightness adjustment	Linear
RGB image color saturation adjustment	Linear
De-blocking filter for MPEG-4 simple profile	Using a modified H.264 in-loop filter as a
/H263	post-processing filter. Filtering has to be
	performed in combined mode.
Image cropping / digital zoom	User definable start position, height and width.
	Can be used with scaling to perform digital
	zoom. Usable only for JPEG or stand-alone
	mode.
Picture in picture	Output image can be written to any location
	inside video memory. Up to 1920 x 1088 sized
	displays supported.
Output image masking	Output image writing can be prevented on two
	rectangular areas in the image. The masking
	feature is exclusive with alpha blending;
	however it is possible to have one masking area
	and one blending area.
Image rotation	Rotation 90, 180 or 270 degrees
	Horizontal
	Vertical

Connectivity features

The decoder and post-processor support the connectivity features presented in following table. The usage of these features is described in more detail. Note that the endian modes can be separately set for input and output data, but they have no effect on RGB output data, as RGB channel order and their lengths are controlled separately.

Feature	Decoder support
AXI master access	Yes,64-bit AXI 1.0
APB slave access	Yes, 32-bit AMBA 3 APB 1.0
Memory addressing	64-bit/32-bit aligned addressing, no byte
	addressing
Restricting the maximum issued AXI burst	Yes, to any value between 1-16
length	
Interrupt method	Polling or level based interrupting

VC0882 Data Book

32-bit little endian	Yes, byte order 3-2-1-0
32-bit big endian	Yes, byte order 0-1-2-3
64-bit little endian	Yes, byte order 7-6-5-4-3-2-1-0
64-bit big endian	Yes, byte order 0-1-2-3-4-5-6-7
Mixed 32-bit little endian in a 64-bit bus	Yes, byte order 3-2-1-0-7-6-5-4
Mixed 32-bit big endian in a 64-bit bus	Yes, byte order 4-5-6-7-0-1-2-3

6.3 Camera Interface

The camera interface (CIF) captures the dynamic video data stream or static image from camera sensor, and store the input into the memory after post-processing.

- Only support master type sensor module
- Only support 8-bit parallel data output from sensor
- Supported two camera sensors(only one works at the same time)
- Supported max sensor resolution: 4096x4096
- Supported max Pixel clock:100Mhz
- Supported max output image size (to memory): 4096x4096
- Support parallel interface for SYNC mode or ITU-R BT656 mode
- Support differential serial interface for MIPI CSI standard (support two data lanes)
- Max bandwidth of MIPI CSI interface: 2Gbps
- Support YCbCr422-format data/RAW image data/JPEG compressed data/RGB data (Bypass post-processing for RAW data/JPEG data/RGB data)
- Support test pattern for debugging
- Support cropping window of input image
- Support two post-processing paths for capture and display
- Support up-scaling for capture path/preview path
 - ♦ Max width of input image in capture path for up-scaling: 4096
 - ♦ Max width of input image in preview path for up-scaling: 2048
 - ♦ Max width of output image for up-scaling: 4096
 - ♦ Max x2 for X direction
 - ♦ Max x2 for y direction
 - ♦ Input format: YCbCr422
 - ♦ Output format: YCbCr422
- Support down-scaling for capture path/preview path
 - ♦ Max width of input image for down-scaling: 4096
 - ♦ Max width of output image for down-scaling: 4096
 - ♦ Max 1/128 for X direction
 - ♦ Max 1/128 for y direction
 - ♦ Input format: YCbCr422
 - ♦ Output format: YCbCr422

- For capture path ♦ If scaling ratio for Y direction is in [1/128, 1/4], output width must not be more than 2048
- For preview path
- If scaling ratio for Y direction is in (1/4, 1/2], output width must not be more than 2048
- If scaling ratio for Y direction is in [1/128, 1/4], output width must not be more than 1024
- Support the following special effect
 - ♦ Sepia
 - ♦ Special color
 - ♦ Negative
 - ♦ Mono color
 - ♦ Four block
 - ♦ Grid color
 - ♦ Embossing
 - ♦ Silhouette
 - ♦ Pencil Draw
 - ♦ Binary Effect
- Support 3-color OSD operation with size 480x24
- Support frame drop operation
- Support storage memory organization as YUV422 interleaved/YUV420 semi-planar format for input from sensor with YCbCr422/ ITU-R BT656 format
 - ♦ Support slice mode and frame mode
 - ♦ Only support little-endian storage organization
- Support direct storage for input from sensor with RAW data/JPEG data/RGB data
 - ♦ Only support frame mode
 - ♦ Only support little-endian storage organization
- Capture path support slice mode and frame mode
- Preview path only support frame mode
- Support auto-focus
 - ♦ Support max width of image for Auto-focus is 4096
 - ♦ Support max 8 rectangle windows for Auto-focus
 - ♦ When using Auto-focus, capture path is disabled for the sake of shared memory
- Support memory to memory path

6.4 Face Detection

The hardware design of face detection includes the calculation of integral and LAB (Locally Assembled Binary), which is composed of follows:

Vimicro Copyright© 1999-2011

VC0882 Data Book

- 1) Support maximum sizer image width is 320 pixels, height is 240 pixels, minimum sizer image width is 24 pixels, and height is 24 pixels and no limitation for original image size.
- 2) Only support sizer image luminance format is row by row progressively.
- 3) Support 64bits AXI master interface.
- 4) Support 32bits APB slave interface.
- 5) Calculation of integral (x, y), and store the results to external memory through AXI bus interface.
- 6) Using Integral (x, y) results stored in external memory, calculate sum Y for both 3*3 and 2*2 blocks, compare the sum results of nine 3*3 or 2*2 blocks, get an 8-bit LAB, and then write it back to external memory.
- 7) Only support LABs image format is row by row progressively.

Actually the face detection include hardware module and software program, some function implement by software, which is composed as follows:

- 1) Support designate search window by software.
- 2) The maximum faces are not limitation in theory. At present in our system the maximum is 8.
- 3) Only support the smallest face haves 12x12 pixels resolution between two eyes.
- 4) About process 5~10 QVGA frames in a second.
- 5) Support detection of smile faces, but not wink faces.
- 6) Only report the eyes position.
- 7) Support the face in profile angle is $-20 \sim 20$ degrees, pitching angle is $-30 \sim 30$ degrees.
- 8) Support detection of black skin faces, actually need enough red pixels could be detected.
- 9) Support detection of color eyes and white hair.
- 10)The average value of luminance in image must surpass 16.
- 11)Support detection of face with glasses. The mask will decrease accuracy of detection.

6.5 LCD interface

LCD (Liquid Crystal Display) interface module is the interface between VC0882 and LCD panel. LCD interface module provides control signals and pixel data for LCD panels according to the timing requirements. It can support both DBI (Data Bus Interface) output mode and DPI (Display Pixel Interface) output mode.

- Supports Display Bus Interface (DBI) output mode, compliant to the MIPI(Mobile Industry Processor Interface) Alliance Display Bus Interface protocol v2.0.
 - •Supports DBI Type A (Clocked E Mode) interface implementation;
 - •Supports DBI Type B interface implementation;
 - •Supports accessing (including writing and reading) in through mode;
 - •Supports dual LCD panels work at different time(DBI & DBI, DBI&DPI)
 - •Supports up to 24 bits per pixel (BPP);
 - •Supports up to 24 bits interface with external device;
 - •Supports flexible address mapping;
 - •Supports flexible data mapping;
 - •Supports flexible timing adjustment of control and data signals ;
 - Display size programmable up to 1080p(1920*1080) with configured interlaced or progressed mode;
- Supports Display Pixel Interface (DPI) output mode, compliant to the MIPI Alliance Display Pixel Interface protocol V2.0.
 - Display size programmable up to 1080p(1920 x1080) with configured interlaced or progressed mode;
 - •Support for 12 & 16&18BPP&24BPP modes for RGB parallel output format (RGB444, RGB565, RGB666, RGB888);
 - •Support programmable pixel clock and asynchronous reset signal ;
 - Support flexible 3-wire and 4-wire serial interface(including write operation and read operation of panel registers)
 - •Support parallel dpi interface with up to 24 bits interface;
 - •Support CCIR656 interface (PAL mode and NTSC mode, 8 bit interface only);
 - •Support CCIR601 interface.
 - •Support UPS051&UPS052 interface (8 bit interface only).
 - •Support 24BPP modes for UPS051&UPS052 interface.
 - •Support 16BPP modes for CCIR656 and 24BPP modes for CCIR601.
 - •Programmable 24-bit/18-bit/16-bit/12-bit/8-bit digital output interface
 - Supports various RGB format (RGB888, RGB565, RGB666, RGB555), YUV format (YUV444, YUV422) with 1X, 2X, 3X, 4X multiplexed output.
 - Support Max pixel rate up to 150MHz in DPI mode.

Note:

1) 1x for 1pixel/1 clock period, 2x for 1pixel/2 clock periods, 3x for 1pixel/3 clock periods, 4x for 1pixel/4 clock periods.

2) Dual panel work at the same time is not support. We can support dual panel in TDM mode. The dual panel is better to be dual DBI panel. Which panel will be used is selected by chip select signal separately. The other control and data pins are shared by these two panels. One DBI panel & one DPI panel can also be implemented, during which case, the DBI panel make use of the VSYNC blank time of DPI panel to refresh in through mode. It is hard for software to control the data flow.

3) The interlaced or progressive mode is configured in display engine mode

4) UPS051 represents RGB888 format with 1pixel/3 clock periods.

5) UPS052 represents RGB888 format with 1pixel/4 clock periods, the fourth clock data is invalid.

6) The Max pixel rate is up to 150MHz in DPI mode. It is also the max pixel clock. For 2X, the max pixel rate is 75MHz, For 3X, The max pixel rate is 50MHz.

7) When working in interlaced mode, only the odd lines will be refreshed in odd fields and only even lines will be refreshed in even fields. When working in progressive mode, all the valid lines in one frame will be refreshed including odd lines and even lines.

6.6 TV Encoder

 Support NTSC-M/J/4.43 and PAL- /B/D/G/H/M/N/I/Nc SDTV Composite signal output. (SECAM system and PAL-60 are not supported in CVBS Encoder)

No	Standards	Field	Number	Active	Scan	Color	Blanking	Line
		Rate(Hz)	of Lines	Lines	Туре	Sub	pedestal	Frequency
			per	per		Carrier	(IRE)	(KHz)
			frame	frame		(MHz)		
1	NTSC-M	60/1.001	525	480	Interlaced	3.58	7.5	15.734
2	NTSC-J	60/1.001	525	480	Interlaced	3.58	0	15.734
3	NTSC-443	60/1.001	525	480	Interlaced	4.43	7.5	15.734
4	PAL-B/D/G/H/I	50	625	576	Interlaced	4.43	0	15.625
5	PAL-M	60/1.001	525	480	Interlaced	3.58	7.5	15.734
6	PAL-N	50	625	576	Interlaced	4.43	7.5	15.625
7	PAL-Nc	50	625	576	Interlaced	3.58	0	15.625
8	PAL-60	60/1.001	525	480	Interlaced	4.43	7.5	15.734
	(Not Supported)							

Table 6-23 Supported NTSC/PAL Video Standards

VC0882 Data Book

9	SECAM-D/K/K1/L	50	625	576	Interlaced	4.25(Db)	0	15.625
	(Not Supported)					4.40(Dr)		
10	SECAM-B/G	50	625	576	Interlaced	4.25(Db)	0	15.625
	(Not Supported)					4.40(Dr)		

(Note: the letter, such as M,N,B,D,G,H,I,K, is related with the TV audio sub carrier)

- 1. Support YPbPr analog signals output on 480i/480p/576i/576p/720p/1080i/1080p systems
- Support programmable timing controller for various YPbPr resolutions. The Timing controller should be coincident with DE(Display Engine) timing controller
- Support internal test pattern for CVBS and YPbPr.
- Support Sync information from display engine as a timing slave mode.
- Support 10-bits video DAC for analog TV signal.

6.7 Display Engine

Display engine can read image pixel data stored in system memory (Frame Buffer, FBUF for abbreviation in later chapters) and transmit the processed image pixel data to LCD_IF or TV ENC module for displaying on the LCD panel or TV. The main function of display engine includes:

- Read image pixel data from at most 4 FBUF (at most 4 display layers + HW Cursor + Background)
- Convert the different format of SRC Image pixel data stored in FBUF to uniform format YUV444
- Implement overlay & alpha-blending operation to merge image pixel from different display layers
- Implement post-processing such as up-scaling, brightness/ contrast/ hue/ saturation/ adjustment, gamma, dithering, and etc.
- Convert the format of processed pixel data to proper format configured by SW
- Output pixel data and sync signals to TV Encoder or LCD_IF.
- Implement "capture with frame" function

Features

- Support MIPI DPI/MIPI DBI interface standard
- Support two DBI panels connection or one DPI panel plus one DBI panel connection (But the two panels can't work at the same time.)
- Max panel resolution: 1600x1200 for TV/1920x1080 for LCD panel¹⁾
- Max pixel rate up to 162MHz
- Support BT601 and BT609 color domain
- Programmable bits-per-pixel when output to LCD IF: 16/18/24-bpp such as YUV422, RGB565, RGB666, RGB888, and etc.

VC0882 Data Book

- Support programmable multi-cycle output mode: 1/2/3/4 cycles per pixel
- Support RGB-format pixel data output and YUV-format pixel data output with synchronous signals, and ITU-R BT656 format output
- Support interlace/non-interlace output
- Support 4 display layers plus background and HW cursor
 - ♦ Only support rectangle shape for all the layers
 - ♦ Max resolution of each display layer (from FBUF) is 1920x1080
 - ♦ Flexible cropping window from FBUF
 - Support mono-color background (YUV444 format), the resolution of background is always as same as display panel
 - ♦ Support HW cursor with max resolution 64x64
 - ♦ Supported image format and memory organization stored in FBUF
 - Layer 1 & Layer 2: Semi-planar/Planar/Interleaved format for YUV422 Semi-planar/Planar format for YUV420
 - Layer 3 & Layer4: 8-bpp RGB565 Packed/Unpacked format for RGB888 RGBA8888 ARGB8888
 - Only support little-endian organization
 - Using Pipeline architecture to implement overlay & alpha-blending operation
 - ♦ Each pipeline phase merges two display layers, and the merged result enters the next pipeline phase
 - ♦ Each pipeline phase supports both overlay & alpha-blending operation
 - ♦ Support key color for overlay operation
 - ♦ Support INV/OR/AND/Transparent operation for overlay
 - ♦ Support pixel alpha value for ARGB8888/RGBA8888
 - ♦ Support global alpha value by configuring register
 - ♦ input format: YUV444
 - ♦ output format: YUV444
- Support up-scaling for overlay pixel data , which is output from overlay & alpha-blending unit
 - ♦ Max input size for up-scaling: 1920x1080
 - ♦ Max output size for up-scaling: 1920x1080
 - ♦ Max x6 for X direction
 - ♦ Max x6 for y direction
 - ♦ Input format: YUV444
 - ♦ Output format: YUV444
- Support brightness/contrast/hue/saturation adjustment
 - ♦ Input format: YUV444

- ♦ Output format: YUV444
- Support programmable gamma correction
 - ♦ Support R, G, B color components corrected separately (3 correction curve)
 - ♦ Input format: RGB888
 - ♦ Output format: RGB888
- Support dithering for less than 24-bit color display:
 - ♦ RGB888-> RGB565
 - ♦ RGB888-> RGB666
- Provide capture path to implement the function as "capture with frame". For example, in some applications, it's needed that capturing the image from sensor, then adding "some effect" on the captured image such as photo frame. This "effect" can be implemented by DE which merges the captured image from sensor and "effect" picture. After merging, DE need store the merged image to memory (Capture Buffer, CBUF for abbreviation in later chapters), so the "capture path" is used. Also, "the capture path" could be used for debugging.
- Supported image format and memory organization when writing to CBUF5)
 - ♦ Interleaved format for YUV422
 - ♦ Semi-planar format for YUV420
 - ♦ Unpacked format for RGB888
 - ♦ Only support little-endian organization

Table 6-24 Supported Max Size for Layers (from FBUF)

Layer Number	Image Pixel Format	Max Size		
	YUV422	1080P		
Layer1	YUV420	1080P		
	YUV422	1080P		
Layer2	YUV420	1080P		
	YUV422	1080P		
	YUV420	1080P		
	8-bpp	1080P		
Layer3	RGB565	1080P		
	RGB888	1080P		
	ARGB8888	1080P		
	RGBA8888	1080P		
	YUV422	1080P		
	YUV420	1080P		
	8-bpp	1080P		
Layer4	RGB565	1080P		
	RGB888	1080P		
	ARGB8888	1080P		
	RGBA8888	1080P		

6.8 GPU

The GPU (Graphics Processing Unit) graphics IP core is designed to meet the market requirements for high performance 2D and 3D graphics and video decode and encode in mobile devices or consumer devices.

The GPU IP software stack fully supports for Android, Linux, and windows embedded platforms. It also supports the OpenGL ES 1.1 and the OpenGL ES 2.0 programmable API and OpenVG 1.1.

General Features

- 64 bit AXI interface for independent read and write data buses to memory
- Multiple burst length (support 8 bytes, 16 bytes, 32 bytes and 64 bytes) for AXI
- 4Kbytes addressable register space (could expand to 256Kbytes for future purpose)
- 32-bit data bus no burst
- Low power CMOS technology compatible
- Automatic clock gating for flip-flops and rams
- software controlled clock skipping
- Support up to 500Mhz
- Support virtual memory
- Support interrupt

Full-featured 3D Graphics Pipeline

- OpenGL ES 2.0 compliant, including extensions; OpenGL ES1.1; OpenVG 1.1
- IEEE 32-bit floating-point pipeline supports long shader instructions (maximum 256 instruction)
- Up to 256 threads per shader
- Up to 16 programmable Scalable Ultra-threaded, unified vertex and pixel shaders
- FSAA mechanisms: MSAA 4x, high quality FSAA 16x
- Vertex processing supported format: BYTE, UBYTE, SHORT, USHORT, INT, UINT, DEC, UDEC, FLOAT, FLOAT16, D3DCOLOR, FIXED16DOT16
- Primitive processing support triangle strip, fan, list, line strip and list, point list, quad
- Texture Processing: integer input texture formats: ARGB4444, XRGB4444, ARGB1555, XRGB1555, RGB565, ARGB88888, XRGB88888, RGBA4444, RGBA88888, YV12, NV12, YUY2, UYVY
- Texture processing: integer output texture formats: RGBA4444, RGBA5551, RGB565,

RGBA8888

- Texture mipmap support: 13 mipmap levels, programmable LOD biasing & replacement
- Texture filters: point sample, bi-linear, tri-linear, anisotropic (AF), percentage-closest filtering for depth textures
- Texture types: 2D, cubic environment map, projective, depth, HDR, bump map, displacement map, cube map
- Up to 8 programmable elements per vertex
- Dependent texture operation with high-performance
- Alpha blending
- Depth and stencil compare
- Support for 4 vertex shader and 8 pixel shader simultaneous textures
- Point sampling, bi-linear sampling, tri-linear filtering and cubic textures
- Resolve and fast clear
- 8K x 8K rendering target and texture size
- Low bandwidth at both high and low data rates
- Low CPU loading

Full-featured 2D Graphic Pipeline

- Bit blit, stretch blit, pattern blit and fast clear
- Line drawing
- Rectangle fill and clear
- Mono expansion for text rendering
- Anti-aliased font support
- ROP2, ROP3, ROP4
- Alpha blending
- 90/180/270 degree rotation
- Vertical and Horizontal mirror
- Transparency by monochrome mask, chroma key or pattern mask
- High quality 9-tap filter for scaling
- 32K x 32K coordinate system
- Color space conversion between YUV and RGB for both BT709 and BT601
- Clipping window
- Color Index Input conversion Support
- Filter Blit
- Input Formats: (Only Filter Blit support YUV input)
 - ♦ A1R5G5B5
 - ♦ A4R4G4B4
 - ♦ A8R8G8B8
 - ♦ X1R5G5B5
 - ♦ X4R4G4B4

- ♦ X8R8G8B8
- ♦ RGB565
- ♦ NV12 (semi-planer YUV420)
- ♦ NV16 (semi-planer YUV422)
- ♦ YUY2(package YUV422)
- ♦ UYVY(package YUV422)
- ♦ YV12(planer YUV420)
- ♦ 8-bit color index
- ♦ 1-bit monochrome
- The output data Formats:
 - ♦ A1R5G5B5
 - ♦ A4R4G4B4
 - ♦ A8R8G8B8
 - ♦ X1R5G5B5
 - ♦ X4R4G4B4
 - ♦ X8R8G8B8
 - ♦ RGB565

VC0882 Data Book

Chapter 07

Storage SubSystem

Vimicro Copyright© 1999-2011

Page 94 of 131

7 Storage SubSystem

7.1 USB OTG

The UOTG module is the high-speed universal serial bus dual-role subsystem module. It is composed of the USB 2.0 high-speed dual-role controller (UOTGC) and the high-speed single-port OTG PHY (single_port_otg_phy)

The function requirement of UOTG interface in VC0882 is list as following.

- Support USB Mass Storage in device mode
 - ♦ Provides production firmware download function
 - ♦ Provides access to SD/MMC card or NandFlash
 - ♦ Provides access to baseband resource (Nor-flash/SRAM)
- Support USB web camera in device mode
- Support USB PictBridge in device mode
- Support USB virtual serial port in device mode
- Support USB Virtual Ethernet Adapter in device mode
- Support USB Mass Storage in host mode
 - ♦ Provides access to USB-HDD/USB-DVDRW
- Support USB virtual serial port in host mode
- Support USB mouse in host mode.
- USB device speed could down to 1.1 by configuration
- Support USB charger detecting.
 - ♦ Support standard USB charger (DP and DM are shorted together in charger) detecting
 - Support non-standard USB charger (DP and DM are both floated in charger) detecting.

The UOTG includes the following features:

- Operates either as the host/peripheral in point-to-point communications with another USB function or as a function controller for a USB peripheral
- Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification
- Supports point-to-point communications with one high-, full- or low-speed device
- Support control, interrupt, bulk, isochronous transfers
- Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP)
- Supports Suspend and Resume signaling
- Support remote wakeup in host mode
- Support 7 additional transmit endpoints and 7 additional receive endpoints
- The transfer type of each endpoint is configurable
- Configurable FIFOs, support dynamic FIFO sizing
- All endpoint FIFOs share a synchronous 4K bytes RAM
- Support for CPU access to FIFOs

- Support endpoints interrupt for transmitting or receiving packets
- Support for DMA access to FIFOs
- Support 8 DMA channels
- Support soft connect/disconnect
- Performs all transaction scheduling in hardware
- Supports off-chip charge pump regulator to generate 5 V for VBUS
- Support USB charger detecting.
 - Support standard USB charger (DP and DM are shorted together in charger) detecting
 - \diamond Support non-standard USB charger (DP and DM are both floated in charger) detecting

7.2 USB HOST

The UHOST module is the high-speed universal serial bus host subsystem module. It is composed of the high-speed single-port USB host controller (UHOSTEOC) and the high-speed single-port OTG PHY (single_port_otg_phy)

The main part of UHOSTEOC is an UHOSTIP which is a high-speed single-port USB2.0 host controller. It contains two independent, single-port host controllers that operate in parallel:

- The EHCI controller, based on the Enhanced Host Controller Interface (EHCI) specification for USB Release 1.0, is in charge of high-speed traffic (480M bit/s), over the UTMI interface.
- The OHCI controller, based on the Open Host Controller Interface (OHCI) specification for USB Release 1.0a is in charge of full-speed/low-speed traffic (12/1.5M bit/s, respectively), over a serial interface.

The single-port OTG PHY is owned by exactly one of the controllers at any time.

The UHOST includes the following features:

- High-speed single-port USB host controller. Support one USB downstream port.
- Fully compliant with the USB 2.0 specification, Enhanced Host Controller Interface (EHCI) Specification, Revision 1.0, and the Open Host Controller Interface (OHCI) Specification Release 1.0a.
- Supports high-speed, 480-Mbps transfers using an EHCI Host Controller, as well as full and low speeds through one integrated OHCI Host Controllers.
- The supported peripherals are determined by OS software.
- For VC0882, the following peripherals need to be supported: USB-HDD, USB-DVDRW, USB Mouse, USB Keyboard, USB Modem.

7.3 SDIO Controller

The MMC/SD/SDIO controller (**SDIO**) provides the host interface for supporting the standard MMC/SD/SDIO cards, which acts as a bridge between the host system bus and the MMC/SD/SDIO bus (referred to as "protocol bus"). The **SDIO** handles MMC/SD/SDIO protocols at the transmission level, it passes host bus transactions to the MMC/SD/SDIO cards by sending commands and performing data accesses to/from the cards.

VC0882 **SDIO** module has the following features:

- Compatible with SD Memory Card Spec 2.0 and supports SDHC up to 32GB card
- Compatible with SDIO Card Spec 2.0
- a) Support SDIO Read Wait and Suspend/Resume operations
- b) Support SDIO cards to interrupt the host, also support interrupt period
- Compatible with JESD84-A43 standard (MMC 4.3), up to 8-bit data bus
 - Support MMC boot operation
 - Support MMC bus testing procedure
- Support for SD Memory, SDIO, SD Combo, miniSD, MMC, MMC plus, MMC RS and Trans-Flash cards
 - Support dual voltage cards typically operating at 1.8V and 3V
 - Up to 200 Mbps of data transfer for SD/SDIO cards using 4-bit data bus
 - Up to 416 Mbps of data transfer for MMC cards using 8-bit data bus
- Support programmable protocol bus clock for different cards, up to 52MHz
- Support Single Block, Multi Block read and write, block size from 1 to 4096 bytes
- Support stop during the data transfer at block gap
- Support auto command transfer after completing the last data/non-data command transfer
- Support internal 2-channel DMA for both transmit and receive, up to 4 linked list item (referred to as "LLI") register available for linked memory access
- Support two 32x32 bit FIFO for both transmit and receive
- Interrupt-based application interface to control software interaction

7.4 NAND Flash Controller

NAND Flash Controller (NFC) is designed for NAND flash interface. The NFC provides an interface between standard NAND Flash devices and the IC and hides the complexities of accessing a NAND Flash memory device. It provides an interface to 8-bit or 16-bit NAND flash devices (including SLC, MLC and TLC¹⁾) with different page size from 512B to 16KB. The NAND interface supports a few functions, such as Page Reading, Page Writing, Block erasing, Reset operation and so on. The NFC module can support BCH (Bose, Chaudhuri & Hocquenghem Type of code) encode and decode operation. When sector size is 512B, the

4/8/16 bit ECC is supported, when sector size is 1024B, the 24/32/40/48 bit ECC is supported. Logically, NFC is mainly composed of three parts: MARB DMA interface, ECC codec and NAND flash control interface.

Note1): SLC: Single Level Cell; MLC: Multiple Level Cell; TLC: Triple Level Cell.

- Compliant to open NAND Flash Interface (ONFI) 1.0 Specification.
- Support mainly operation by hardware:
 - •Support page program and page read operation
 - •Support page cache program and page cache read operation
 - •Support page random program and page random read operation
 - •Support status read operation after page program operation
- Support mainly operation by software:
 - Support block erase operation
 - Support reset operation
 - •Support plane program and plane read operation
 - •Support status read operation¹⁾
- Hardware BCH encoder and decoder are included.
 - •Error detection/correction capability of 4/8/16 bits per 512 bytes
 - •Error detection/correction capability of 24/32/40/48 bits per 1024 bytes
 - •8-bit parallel architecture and calculation based on 1-bit length
- The ECC calculation region is configurable (User data only or both user data and FTL²⁾ data or bypass the ECC calculation for both user data and FTL data)
- Support SLC, MLC and TLC NAND flash.
- Support single command transfer by hardware and triggered by software
- Support single address transfer by hardware and triggered by software
- Support single data transfer(including reading and programming) by hardware and triggered by software
- Support auto checking whether page is erased or not by hardware during page reading operation
- Support address & command transfer of random operation by hardware when in FTL transfer
- Support interlaced storage of ECC and user data.
- Support Asynchronous Interface Bus Operation
 - Module frequency is 50Mhz for 8-bit interface, and interface clock is 50Mhz
 - Module frequency is 100Mhz for 16-bit interface, and interface clock is 50Mhz
 - Support max 16 DMA operation consecutively during a page operation
 - ●8KB for 512B/sector
 - ●16KB for 1024B/sector
- Support FTL data length up to 32 byte³⁾ when FTL ECC is enabled.
- Support max 4 consecutive page read/ page cache read by hardware
- Support max 4 consecutive page program/page cache program by hardware
- Support read NAND flash status by hardware after page program operation

- Support AXI BUS Interface.
- Support 8/16 bit data bus.
- Support 16 CS (chip select) signal interface.
- Support 2 RB(ready/busy) signal interface
- Support NAND DMA data transfer by hardware and command & address transfer by software.
- Support both NAND DMA data transfer and command & address transfer by hardware
- Support delay configuration (8bit registers from 0 to 0xFF nfc_mclk) between command and data.
- Support delay configuration (8bit registers from 0 to 0xFF nfc_mclk) between address and data.
- Support error correction by hardware itself before writing data to DRAM during NAND read operation⁴⁾.
- Support configurable page address cycle number (four cycles or five cycles).
- Support 16bit nand flash composed by double chip 8bit nand flash.

Note1): The read status operation can be supported by software. During page program operation, the status operation is done by hardware itself after a page program is done.

Note2): FTL is file transfer layer. The address & command transfer of random operation by hardware is also used when only FTL data needs to be read or written, it can also be used for other type of data transfer for compatibility. But only one DMA random transfer supported for one page in one trigger operation, multiple random transfers are not supported during one trigger operation.

Note3): There is no FTL length restriction when there FTL does not participate in ECC calculating.

Note4): The operation is reading data from NAND and writing them to DRAM.

7.5 SPI (Serial Peripheral Interface)

The SPI controller module has the following features:

- Support *two* SPI controllers;
- Provide master/slave modes selectable by control registers;
- Full duplex synchronous serial data transfer;
- The frequency, polarity, and phase of SCLK are programmable;
- The polarity of SSN is programmable;
- MSB or LSB first data transfer mode is programmable for both 8-bit and 16-bit;
- Support SPI data transfer by APB mode and DMA mode;
- The max transfer length of DMA transfer is 2M bytes for master mode;
- 8X32 FIFO for both transmitting and receiving data;
- The max frequency of module clock (spi_clk) is 216MHz;
- The max transfer speed in master mode is 54MHz;

VC0882 Data Book

- The max transfer speed in slave mode is 27MHz;
- When work in master mode, one SPI master can connect up to 2 SPI slaves with *two* SSN and MISO.

VC0882 Data Book

Chapter 08

Peripheral SubSystem

Vimicro Copyright© 1999-2011

Page 101 of 131

8 Peripheral SubSystem

8.1 Audio Module

VC0882 Audio Subsystem (**AUD**) is responsible for the chip's audio playback and record. It mainly consists of 2 parts: Audio Interface and Audio Codec:

- Audio Interface (referred to as AUDIF): it acts as a bridge which handles data transfer between System Memory and Audio Codec, also supporting data format conversion and digital mixer
- Audio Codec (referred to as ACOD): it's a mixed analog/digital virtual component containing a stereo audio codec (ADC + DAC) and additional analog function offering an ideal mixed signal front end for low power and high quality audio applications

The **AUD** also provides 2 I2S/PCM Interfaces of master mode through VC0882 PADs to support optional outer devices connection, such as Bluetooth and the 3rd-party Audio Codec. With VC0882 Audio Subsystem, various applications can be implemented, such as music playback, microphone record, call in/out with background sound, call in/out with 2-way record, karaoke with record, FM radio with record, as well as WIFI phone call in/out.

The **AUDIF** module provides the following features:

- Provides 2 I2S/PCM Interfaces of master mode through VC0882 PADs, so as to connect external devices of slave mode
 - > Transfers with MSB first and left alignment
 - > Supports 8 I2S Formats and 4 PCM Formats
- Includes two 32-bit stereo digital mixer (produce Y = A + B result)
 - Supports processing left and right channel data separately
 - Supports overflow and underflow clip control
- Includes 1 Transmit DMA channel and 1 Transmit FIFO (32x32 bit), also supports software ping-pong buffer operation
- Includes 2 Receive DMA channels and 2 Receive FIFOs (32x32 bit), also supports software ping-pong buffer operation
- Supports 6 memory formats of audio raw data: Stereo-32bit, Stereo-16bit, Stereo-8bit, Mono-32bit, Mono-16bit, and Mono-8bit
- Supports only signed audio data processing
- Switches data path by multiplexers to implement various applications flexibly

The **ACOD** module provides the following features:

Built-in PLL solution to better jitter issue

Vimicro Copyright© 1999-2011

- 12MHz or 13MHz master clock supply
- Contains a high-quality 24-bit stereo ADC and a high-quality 24-bit stereo DAC
- Provides 6 mono differential line inputs with boost gain stage (0/4/8/12/16/20 dB), they can be used either for line in or microphone in application
- Includes 2 multiplexers in front of the input PGA to select the signal between the line inputs
- Provides 1 stereo single-end 16/32 Ohm headphone output
- Provides 2 mono differential line output that but they can't be driven simultaneously
- Provides 1 mono differential BTL 16/32 Ohm receiver output
- Provides stereo differential speaker output and one of them can also be configured to the mono differential BTL 8 ohm output
- Supports audio sampling rates (Fs) from 8KHz to 96KHz (88.2KHz not supported)
- Supports the Automatic Gain Control (AGC) function for better sound recording performances
- Built-in reduction of audible glitches systems
 - Patented pop-up noise reduction system
 - > Provide soft mute mode to reduce audible parasites
 - > Include zero-cross detection to minimize zipper noise
- Supports output short circuit protection
- Provides 2 microphone bias output
- Embedded low dropout linear regulator
- Internal voltage reference to generate all required internal voltages

8.2 UART

The UART (Universal Asynchronous Receiver/Transmitter) core provides serial communication capabilities, which allow communication with external devices, like another computer using a serial cable and RS232 protocol. The UART module performs all of the normal operations associated with start-stop asynchronous communication. Serial data is transmitted and received at standard bit rates using the internal baud rate generator. This core is designed to be maximally compatible with the industry standard National Semiconductors' 16550A device.

The UART controller module has the following features:

- > Functional compatible with the 16550A.
- Full-duplex operation.
- > Robust receive data sampling with noise filtering.
- ➢ 64-byte FIFO for receiver and 64-byte FIFO for transmitter.
 - Programmable interrupt trigger levels for FIFO.
 - "Old data" timer on receiver FIFO.
- > Fully programmable serial interface.
 - Data bit: 7-bit or 8-bit.

- Parity bit: None, Even, Odd, or Stick check.
- Stop bit: 1-bit or 2-bit.
- > Break condition detection and generation.
- Embody baud rate generator.
 - Programmable integer and fractional divisor for baud rate generation.
 - Programmable Baud rate computation method support up to 12Mbps baud rate.
 - Slow speed mode: Baud rate = (functional clock/16)/divisor.
 - Middle speed mode: Baud rate = (functional clock/8)/divisor.
 - High speed mode: Baud rate = (functional clock/4)/divisor.
- Complete status-reporting capability.
- Internal diagnostic capability.
 - Loop-back mode for self test.
 - Break condition, parity error and framing error simulation.
- Slow infrared asynchronous interface that conforms to the Infrared Data Association (IrDA) specification.
- > Separate APB read/write operation for transmit and receive data.
- > Separate DMA Operation for transmit and receive data services.
- > Modem control functions with DSR, DCD, RI and DTR signals.
- > Auto-flow control capability.
 - RTS controlled by UART receive FIFO.
 - CTS from external controls UART transmitter.
- Software-flow control capability.
 - Programmable XOFF character used to stop the UART transmitter.
 - Programmable XON character used to start the UART transmitter.

8.3 IIC Module

I2C is a two-wire, bi-directional serial bus, which provides a simple and efficient method of data exchange between devices. It is most suitable for applications requiring occasional communication over a short distance between many devices.

There are two separate I2C master controllers in VC0882, each of which provides an interface between the internal ARM processor and any external I2C-bus-compatible device that connects through the I2C serial bus. They use the same I2C master controller module. This document describes the I2C master controller module in VC0882.

The I2C master controller module has the following features:

- Master mode only
- Compliance with Philips I2C bus specification version 2.1
- Support for standard mode (up to 100K bits/s) and fast mode (up to 400K bits/s)
- Support multi master mode

- 7-bit and 10-bit device addressing modes
- Support start/restart/stop
- Transaction based software interface
- Built-in 16-byte FIFO for buffered read or write
- The maximum transfer length of each transaction is 65535 for read or write operation. The zero transfer length means there is no data to be written out or no data to be read in for current transaction.
- Module enable/disable capability
- Programmable SCL clock generation
- 8-bit-wide data access
- Arbitration lost detection
- Bus busy detection
- Clock Stretching and Wait state generation
- Support PMU hardware directly communicates with external power management chip with five request channels and priority control. Support hardware round-robin arbitration and software arbitration. During software arbitration mode the software can has exclusive I2C bus control until it release the I2C bus.
- Not support CBUS address
- Not support high-speed mode

8.4 **PWM**

The PWM module is used to generate square waves with variable pulse width and frequency. The frequency of output signal ranges from 6K to 12MHz with 24MHz reference clock, and the output pulse ratio ranges from 0/256 to 255/256. The average DC voltage of PWM wave can be utilized to drive various devices, such as LED and motor. In VC0882, there are three PWM outputs. Each PWM output can be controlled by software independently.

The following lists the main features of PWM module:

- AMBA 3 APB (Advanced Peripheral Bus) register bus interface
- Supports up to 3 external channels
- The pulse ratio of the output waveform ranges from 0/256 to 255/256.
- The frequency of the output waveform ranges from 6KHz to 12MHz.

8.5 KeyPad

The KPD module supports the keypad that connects the column and row when their intersecting key is pressed. The KPD is a 16-bit interface peripheral and provides interface for R x C off-chip keypad matrix.

An off-chip keypad matrix is defined as an X-Y matrix where one key is pressed at a time or more keys are pressed simultaneously, the keypad definition is used for portable applications such as mobile phones, personal digital assistants, smart handheld devices, personal media players or other handheld applications.

The 16-bit keypad ports can be configured as output ports for C (column) or input ports for R (row) by writing to keypad control registers according to system application. R (row) is input of KPD module, while C (column) is output of KPD module.

The KPD is designed to simplify the software task of scanning a keypad matrix. With appropriate software support, the KPD is capable of detecting depress/release and decoding one or multiple keys pressed simultaneously on the keypad.

Logic in the KPD is capable of scanning the keypad matrix periodically, and storing up to three key-values pressed in the interrupt status register simultaneously. The KPD may generate a CPU interrupt any time when a key press or release is detected, if the interrupt is unmasked.

The following lists the main feature of KPD IP core:

- > 32-bit AMBA-APB slave bus interface.
- Supports R x C external keypad matrix (R + C <= 16).
- > Glitch suppression circuit designs for key depress/release detection.
- > Port pins can be used as general purpose I/O.
- > Supports software matrix scanning.
- > Supports hardware matrix scanning.
- Supports programmable de-bounce time by KPD_DWR register.
- Supports periodic scan, the interval is programmable.
- Supports Short key-press, Long key-press, Continuous key-press and Combined key-press.
- > Interval for Short key-press, Long key-press and Continuous key-press is programmable.
- Supports up to three combined key-presses at most and can store three key-values simultaneously.
- Supports interrupt status reading.
- Supports interrupt mask.
- > Supports two types of interrupt process mode.

8.6 Touch Panel Interface

The TPI module is the touch panel interface controller module. It works with FESAR_TOP (which is also called TPIPHY) in PMU domain to realize following functions:

• Support resistive 4-wire touch panel in multi-touch mode

- Support resistive 5-wire touch panel in single-touch mode.
- Key scan function
- Battery measurement function
 - Battery voltage
 - Battery temperature
 - Battery ID

The TPI has the following features:

- Support resistive 4-wire touch panel in multi-touch mode.
 - ♦ Pen down and pen up detect for touch panel
 - ♦ Distinguish between single-touch and two-touch
 - ♦ X/Y coordinate, movement and touch pressure measurement for single-touch.
 - ♦ Zoom and rotate measurement for two-touch.
- Support resistive 5-wire touch panel in single-touch mode.
- Support key scan using just one pin
 - \diamond Key down detect for key scan
 - ♦ Key up detect for key scan
- Support battery measurement
 - ♦ Max battery voltage input is 5V
 - ♦ Max battery temperature voltage input is 2.4V
 - ♦ Max battery ID voltage input is 2.4V
- Internal 1.2V reference
- 10-bit low power SAR ADC (successive approximation register type ADC)
- Max sample rate is 125KHz
- Support two working modes
 - ♦ MANUAL sample with REGISTER transfer mode
 - ♦ AUTO sample with DMA transfer mode

Chapter 09

Electrical Parameters And Timing

Vimicro Copyright© 1999-2011

Page 108 of 131

9 Electrical Parameters and Timing

9.1 Absolute Maximum Ratings

Symbol	Description	Min	Max	Unit
	Digital			
VDD_CORE_ARM	ARM Core Digital Power	-0.3	1.5	V
VDD_CORE_VIDEO	Video Codec Core Power	-0.3	1.5	V
VDD_CORE_GPU	GPU Core Power	-0.3	1.5	V
VDD_CORE_CORE	Shutdown Domain Core Digital Power except ARM, Video Codec & GPU	-0.3	1.5	V
VDD_CORE_PMU	PMU Domain Core Logic Digital Power and ALL DIGITAL IO Core Power	-0.3	1.5	V
VDD_IO_SYS	SYS IO Digital Power	-0.3	3.0	V
VDD_IO_LCD	LCD I/O Digital Power	-0.3	3.6	V
VDD_IO_NF	NAND Flash I/O Digital Power	-0.3	3.6	V
VDD_IO_SD01	SDIO 0/1 I/O Digital Power	-0.3	3.6	V
VDD_IO_SD23	SDIO 2/3 I/O Digital Power	-0.3	3.6	V
VDD_IO_CS	Camera Sensor I/O Digital Power	-0.3	3.6	V
VDD_IO_DDR	DDR PHY I/O Power	-0.3	1.95	V
DDR_VREF	DDR PHY SSTL Reference Power	-0.3	0.975	V
VDD_EFUSE	On-chip Efuse Cell Power	-0.3	2.75	V
VDD_TP33	Touch Panel SAR ADC 3.3v Digital Power	-0.3	3.6	V
VDD_VDAC	VDAC Digital Power	-0.3	3.6	V
	Analog			
VDDA_VDAC	VDAC Analog Power for Channel R/G/B	-0.3	3.6	V
VDDA_PLL12_1	PLL Analog Power 1	-0.3	1.5	V
VDDA_PLL12_2	PLL Analog Power 2	-0.3	1.5	V
VDDA_PLL12_3	PLL Analog Power 3	-0.3	1.5	V
VDDA_PLL12_4	PLL Analog Power 4	-0.3	1.5	V
VDDA_PLL12_5	PLL Analog Power 5	-0.3	1.5	V
VDDA_PLL12_6	PLL Analog Power 6	-0.3	1.5	V
VDDA_USBOTG33	USB OTG PHY Analog Power 3.3v	-0.3	3.6	V
VDDA_USBHOST33	USB HOST PHY Analog Power 3.3v	-0.3	3.6	V
VDDA_TP33	Touch Panel SAR ADC Analog Power	-0.3	3.6	V
VDDA_AUD_HP	AUD 2.5 V Power Supply For Headphone (from VDDA_AUD_VOUT)	-0.3	2.75	V
VDDA_AUD_OPA	AUD 3.3 V Power Supply For Speaker PA Macro and IO	-0.3	3.6	V

Table 9-1 Absolute Maximum Ratings for BGA445

Vimicro Copyright© 1999-2011

VC0882 Data Book

VDDA_AUD_RCV	AUD 3.3 V Power Supply For Receiver PA	-0.3	3.6	V
VDDA_AUD_VIN	AUD 3.3 V Power Supply Input	-0.3	3.6	V
	Temperature			
t _{STR}	Storage Temperature	-40	125	°C
t _{OP}	Operational Temperature	-20	70	°C

9.2 Recommended Operating Conditions

Table 9-2 Recommended Operating Conditions for BGA445

Symbol	Description	Min	Тур	Max	Unit
	Digital				
VDD_CORE_ARM	ARM Core Digital Power	1.0	1.2	1.5	V
VDD_CORE_VIDEO	Video Codec Core Power	1.0	1.2	1.5	V
VDD_CORE_GPU	GPU Core Power	1.0	1.2	1.5	V
VDD_CORE_CORE	Shutdown Domain Core Digital Power except ARM,	1.0	1.2	1.5	V
Video Codec & GPU					
VDD_CORE_PMU PMU Domain Core Logic Digital Power		1.0	1.2	1.5	V
	DIGITAL IO Core Power				
VDD_IO_SYS	SYS IO Digital Power	2.6	2.8	3.0	V
	LCD I/O Digital Power (1.8v)	1.7	1.8	1.9	V
VDD_IO_LCD	LCD I/O Digital Power (2.8v)	2.6	2.8	3.0	V
	LCD I/O Digital Power (3.3v)	3.0	3.3	3.6	V
	NAND Flash I/O Digital Power (1.8v)	1.7	1.8	1.9	V
VDD_IO_NF	NAND Flash I/O Digital Power (2.8v)	2.6	2.8	3.0	V
	NAND Flash I/O Digital Power (3.3v)	3.0	3.3	3.6	V
	SDIO 0/1 I/O Digital Power (1.8v)	1.7	1.8	1.9	V
VDD_IO_SD01	SDIO 0/1 I/O Digital Power (2.8v)	2.6	2.8	3.0	V
	SDIO 0/1 I/O Digital Power (3.3v)	3.0	3.3	3.6	V
	SDIO 2/3 I/O Digital Power (1.8v)	1.7	1.8	1.9	V
VDD_IO_SD23	SDIO 2/3 I/O Digital Power (2.8v)	2.6	2.8	3.0	V
	SDIO 2/3 I/O Digital Power (3.3v)	3.0	3.3	3.6	V
	Camera Sensor I/O Digital Power (1.8v)	1.7	1.8	1.9	V
VDD_IO_CS	Camera Sensor I/O Digital Power (2.8v)	2.6	2.8	3.0	V
	Camera Sensor I/O Digital Power (3.3v)	3.0	3.3	3.6	V
VDD_IO_DDR	DDR PHY I/O Power (1.5V)	1.425	1.5	1.575	
	DDR PHY I/O Power (1.8V)	1.7	1.8	1.9	V
DDR_VREF	DDR PHY SSTL Reference Power	0.7125	0.75	0.7875	

VC0882 Data Book

			1	T	T
	(0.5 * VDD_IO_DDR)				
	DDR PHY SSTL Reference Power	0.85	0.9	0.95	V
	(0.5 * VDD_IO_DDR)				
VDD_EFUSE	On-chip Efuse Cell Power	2.25	2.5	2.75	V
VDD_TP33	Touch Panel SAR ADC 3.3v Digital Power	3.0	3.3	3.6	
VDD_VDAC	VDAC Digital Power (2.5V)	2.25	2.5	2.75	V
	VDAC Digital Power (3.3V)	3.0	3.3	3.6	V
	Analog				
VDDA_VDAC	VDAC Analog Power for Channel R/G/B (2.5V)	2.25	2.5	2.75	V
	VDAC Analog Power for Channel R/G/B (3.3V)	3.0	3.3	3.6	V
VDDA_PLL12_1	PLL Analog Power 1	1.0	1.2	1.5	V
VDDA_PLL12_2	PLL Analog Power 2	1.0	1.2	1.5	V
VDDA_PLL12_3	PLL Analog Power 3	1.0	1.2	1.5	V
VDDA_PLL12_4	PLL Analog Power 4	1.0	1.2	1.5	V
VDDA_PLL12_5	PLL Analog Power 5	1.0	1.2	1.5	V
VDDA_PLL12_6	PLL Analog Power 6	1.0	1.2	1.5	V
VDDA_USBOTG33	USB OTG PHY Analog Power 3.3v	3.0	3.3	3.6	V
VDDA_USBHOST33	USB HOST PHY Analog Power 3.3v	3.0	3.3	3.6	V
VDDA_TP33	Touch Panel SAR ADC Analog Power	3.0	3.3	3.6	V
VDDA_AUD_HP	AUD 2.5 V Power Supply For Headphone	Supplied by V	DDA_AUD_\	/OUT	V
VDDA_AUD_OPA	AUD 3.3 V Power Supply For Speaker PA Macro and	2.7	3.3	3.6	V
	IO				
VDDA_AUD_RCV	AUD 3.3 V Power Supply For Receiver PA	2.7	3.3	3.6	V
VDDA_AUD_VIN	AUD 3.3 V Power Supply Input	2.7	3.3	3.6	V
	Temperature			•	
t _{STR}	Storage Temperature	-40		125	°C
t _{OP}	Operational Temperature	-20		70	°C

9.3 DC Characteristics

Analog IO

Parameter	Description		Nom.	Max.	Units
Input Voltage Range for the Cell with		-0.3		1.32	V
V I(core)	Thin Device (1.2v analog domain)				
	Input Voltage Range for the Cell with	-0.3		2.75	V
V	Thick Device (2.5v analog domain)				
V I(IO)	Input Voltage Range for the Cell with	-0.3		3.6	V
	Thick Device (3.3v analog domain)				

Table 9-3 Analog IO DC Electrical Specifications

Table 9-4 Analog IO Pin Capacitance

Pin Name	Capacitance (pF)
AIO	0.2907 / 0.9088

Standard Digital IO

Table 9-5 Standard Digital IO DC Electrical Specifications

Parameter	Description	Min.	Nom.	Max.	Units
V_{IL}	Input Low Voltage		0	0.8	V
	Input High Voltage (1.8v power)	1.3	1.8	2.1	V
$V_{I\!H}$	Input High Voltage (2.8v power)	1.7	2.8	3.0	V
	Input High Voltage (3.3v power)	2.0	3.3	3.6	V
	Threshold Point (1.8v power)	0.76	0.82	0.90	V
V_{T}	Threshold Point (2.8v power)	1.18	1.27	1.40	V
-	Threshold Point (3.3v power)	1.39	1.50	1.65	V
	Schmitt Trigger Low to High Threshold Point (1.8v power)	0.88	0.95	1.04	V
V_{T^+}	Schmitt Trigger Low to High Threshold Point (2.8v power)	1.37	1.48	1.61	V
	Schmitt Trigger Low to High Threshold Point (3.3v power)	1.62	1.75	1.90	V

www.vimicro.com

VC0882 Data

	Schmitt Trigger High to Low Threshold Pe	oint (1.8v power)	0.64	0.59	0.78	V
V_{T-}	Schmitt Trigger High to Low Threshold Pe	oint (2.8v power)	1.00	1.09	1.22	V
	Schmitt Trigger High to Low Threshold Pe	oint (3.3v power)	1.18	1.29	1.44	V
I	Input Leakage Current @ V_I =3.3V or 0	/			±10µ	A
I _{oz}	Tri-state Output Leakage Current @ V_{o}	=3.3V or 0V			±10µ	A
R _{PU}	Pull-up Resistor		34K	51K	81K	Ω
R _{PD}	Pull-down Resistor		35K	51K	88K	Ω
V _{OL}	Output Low Voltage				0.4	v
	Output High Voltage (1.8v power)		1.3			V
V_{OH}	Output High Voltage (2.8v power)		2.0			V
	Output High Voltage (3.3v power)		2.4			V
	Low Level	04:04mA	4.9	7.5	10.0	mA
	Output Current	08:08mA	10.0	15.2	20.2	mA
I_{OL}	@ V_{OL} (max)	12:12mA	15.1	22.9	30.4	mA
	16:16mA		20.2	30.6	40.6	mA
High Level		04:04mA	7.0	14.0	24.2	mA
	Output Current	08:08mA	13.9	28.0	48.2	mA
I _{OH}	@ $V_{_{O\!H}}$ (min)	12:12mA	20.9	42.0	72.3	mA
		16:16mA	27.8	56.0	96.3	mA

Table 9-6 Standard Digital IO Pin Capacitance

Cell Name	Pin Name	Capacitance (pF)
Normal Digital IO	PAD	1.44 ~ 1.53

Cell Name	Capacitance (pF)	Requirement		Suggested
		Duty Cycle	Jitter	Frequency (Mhz)
2~30M OSC IO	1.4422	45% ~ 55%	300ps	26

MEMORY IO

LPDDR

Table 9-8 LPDDR DC Electrical Specifications

Parameter	Description	Min	Nom	Max	Units
Vm(L)	Input logic threshold High, Mobile	0.7 * VDDQ			V
\bullet IH (dc)	DDR mode	VDDQ			
V	Input logic threshold Low, Mobile			0.3 * V _{DDQ}	V
V IL(dc)	DDR mode			U.S VDDQ	

Table 9-9 MEMORY IO (LPDDR) Pin Capacitance

Pin Name	Capacitance
	(pF)
PAD/PADP/PADN	2.1131

DDR2

Table 9-10 DDR2 DC Electrical Specifications

Parameter	Description	Min	Nom	Max	Units
$V_{IH(dc)}$	DC input voltage High	V _{REF} + 0.125		V _{DDQ} + 0.3	V
$V_{IL(dc)}$ DC input voltage Low		V _{SSQ} - 0.3		V _{REF} - 0.125	V
$V_{OH(dc)}$	DC output logic High V _{DDQ} - 0.28			V	
$V_{OL(dc)}$	DC output logic Low			V _{SSQ} + 0.28	V
R _{TT}	Input termination resistance (ODT) to V _{DDQ} / 2	120 60 40	150 180 75 90 50 60		ohm

Table 9-11 MEMORY IO (DDR2) Pin Capacitance

Pin Name	Capacitance (pF)
PAD/PADP/PADN	2.13~2.29

DDR3

Table 9-12	DDR3 DC Electrical Specifications
------------	-----------------------------------

Parameter	Description	Min	Nom	Max	Units
$V_{IH(dc)}$	DC input voltage High	V _{REF} + 0.100		V _{DDQ}	V
$V_{IL(dc)}$	DC input voltage Low,	V _{SSQ} - 0.3		V _{REF} - 0.100	V
$V_{OH(dc)}$	DC output logic High	0.8*V _{DDQ}			V
$V_{OL(dc)}$	DC output logic Low			0.2 * V _{DDQ}	V
	Input termination resistance (ODT)	100	120	140	
RTT	Input termination resistance (ODT) to V _{DDQ} /2	54	60	66	ohm
	U V DDQ/Z	36	40	44	

Table 9-13 MEMORY IO (DDR3) Pin Capacitance

Pin Name	Capacitance
	(pF)
PAD/PADP/PADN	2.15~2.31
ZQ	0.91

USB Analog IO

Table 9-14 USB Analog IO DC Electrical Specifications

Parameter	Description	Min.	Nom.	Max.	Units
V _{I(DP/DM/VBUS)}	Input Voltage Range for DP/DM/VBUS	-0.3		5.25	V
VI(ID/RREF/ANA_TEST)	Input Voltage Range for ID/RREF/ANA_TEST	-0.3		2.75	V

9.4 CIF Interface Timing

Timing Condition Parameter		MIN	MAX	Unit	
Input Conditions(CS_PC	Input Conditions(CS_PCLK)				
t _r	Input clock rise time	0.5	2	ns	
t _f	Input clock fall time	0.5	2	ns	
Input Conditions(Excluding CS_PCLK)					
t _R	Input signal rise time	0.5	5	ns	
t _F	Input signal fall time	0.5	5	ns	

Table 9-15 Sensor Interface Timing Conditions

Table 9-16 Sensor Interface Electrical Characteristics

Par	Parameter		MAX	Unit	Notes
t _p	Cycle time, CS_PCLK period	10		ns	(1)
t _{vs}	Setup time, Vsync valid before PCLK active edge	-0.6		ns	
\mathbf{t}_{vh}	Hold time, Vsync valid after PCLK active edge	1.5		ns	
t _{hs}	Setup time, Hsync valid before PCLK active edge	0.9		ns	
t _{hh}	Hold time, Hsync valid after PCLK active edge	1.5		ns	
t _{ds}	Setup time, Data valid before PCLK active edge	0.3		ns	
t _{dh}	Hold time, Data valid after PCLK active edge	1.6		ns	

(1) Related to the input maximum frequency supported by the CIF module.

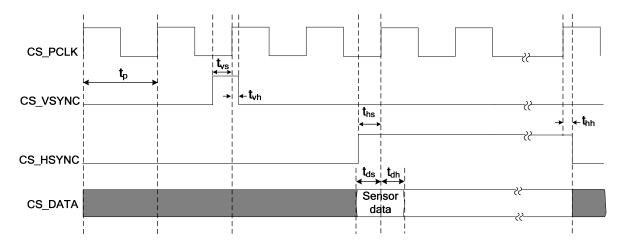


Figure 9-1 Sensor Interface Timing

9.5 SPI Interface Timing

Table 9-17 SPI Interface Timing Conditions

	Timing Condition Parameter	MIN	MAX	Unit
Input Co	nditions			
t _R	Input signal rise time	0.5	5	ns
t _F	Input signal fall time	0.5	5	ns
Output Condition				
Cload	Output load capacitance		30	pf

SPI in Slave Mode

Table 9-18 SPI Interface Electrical Characteristics (Slave Mode)

Par	ameter	MIN	MAX	Unit	Notes
tp	Cycle time, SPI_SCLK period	62.5		ns	(1)
t _{ss}	Setup time, SPI_SSN valid before SPI_SCLK active	3		ns	
	edge				
t _{sh}	Hold time, SPI_SSN valid after SPI_SCLK active	1		ns	
	edge				
\mathbf{t}_{od}	Delay time, SPI_SCLK active edge to SPI_MISO		38.7	ns	(2)
	shifted				
t _{oh}	Hold time, SPI MISO valid after SPI_SCLK active	31.2			(3)
	edge				
t _{ds}	Setup time, SPI_MOSI valid before SPI_SCLK	2		ns	
	active edge				
\mathbf{t}_{dh}	Hold time, SPI_MOSI valid after SPI_SCLK active	1		ns	
	edge				

(1) SPI_SCLK period should be at least 8 times as that of SPI module internal working clock in slave mode: T >= 8 Tm, Tm = 7.8ns

(2) t_{od} < 7.5+4Tm. In slave mode, SPI_SCLK is generated by external SPI device, so SPI need to do synchronization and glitch suppression before use. Time for synchronization and glitch suppression is 4 SPI module internal working clock period Tm. In the above table, Tm = 7.8ns</p>

(3) t_{oh} > 4Tm. In slave mode, SPI_SCLK is generated by external SPI device, so SPI module need to do synchronization and glitch suppression before use. Time for synchronization and glitch suppression is 4 SPI module internal working clock period Tm. In the above table, Tm = 7.8ns

VC0882 Data

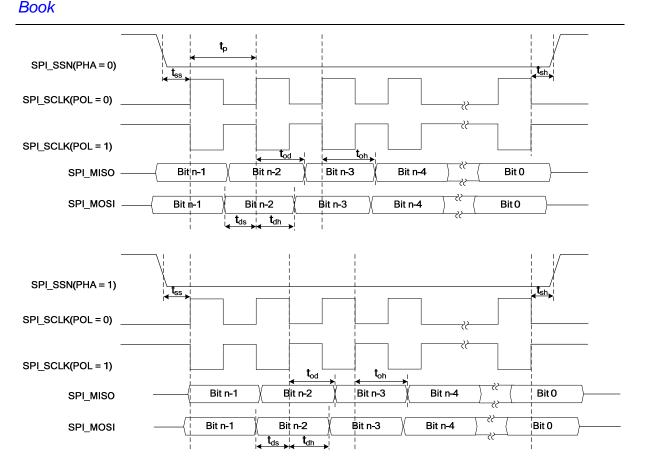


Figure 9-2 SPI Interface--Transmit and Receive in Slave Mode

SPI in Master Mode

Table 9-19	SPI Interface Electrical Characteristics (Master Mode)
------------	--

Par	ameter	MIN	MAX	Unit	Notes
tp	Cycle time, SPI_SCLK period	15.6		ns	(1)
t _{ss}	SPI_SSN active to SPI_SCLK first edge	62.4		ns	(2)
t _{sh}	SPI_SCLK last edge to SPI_SSN inactive	62.4		ns	(2)
t _{od}	Delay time, SPI_SCLK active edge to SPI_MOSI		3.2	ns	
	shifted				
t _{oh}	Hold time, SPI_MOSI valid after SPI_SCLK active	-1		ns	
	edge				
t _{ds}	Setup time, SPI_MISO valid before SPI_SCLK active	9.5		ns	
	edge				
t _{dh}	Hold time, SPI_MISO valid after SPI_SCLK active	-3		ns	
	edge				

(1) SPI_SCLK period should be at least 2 times as that of SPI module internal working clock in master mode: T >= 2 Tm

(2) Programmable by configuring SPI register, 4 SPI_SCLK period is default value and also for

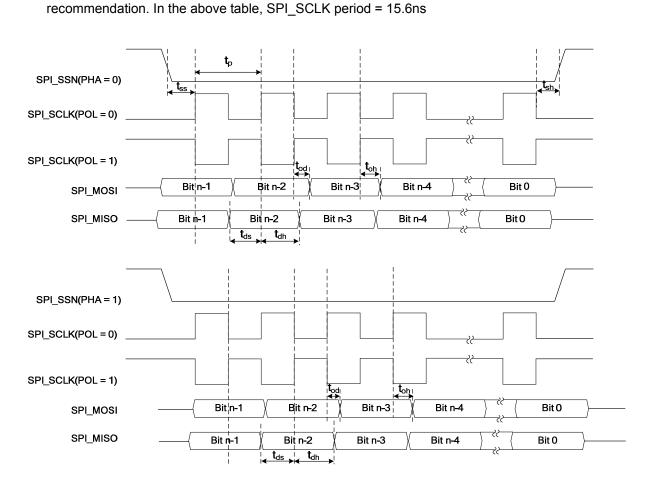


Figure 9-3 SPI Interface--Transmit and Receive in Master Mode

9.6 I2C Interface Timing

Table 9-20 I2C Interface Timing Conditions

	Timing Condition Parameter	MIN	MAX	Unit		
Input Conditions						
t _R	Input signal rise time	0.5	5	ns		
t _F	Input signal fall time	0.5	5	ns		
Output Condition						
Cload	Output load capacitance		20	pf		

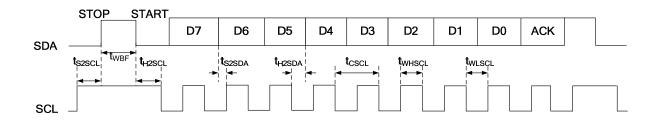


Table 9-21	I2C Interface Electrical Characteristics	(Standard Mode)	•
			/

Param	Parameter		MAX	Unit
t _{CSCL}	Cycle time, SCL period	10		us
t _{WHSCL}	SCL high pulse width	4.0		us
t _{WLSCL}	SCL low pulse width	4.7		us
t _{S2SCL}	Setup time, SDA low to high when SCL high for stop bit	4.0		us
t _{H2SCL}	Hold time, SDA high to low when SCL high for start bit	4.0		us
t _{WBF}	I2C bus free time	4.7		us
t _{S2SDA}	SDA setup time	250		ns
t _{H2SDA}	SDA hold time	0		ns

Table 9-22 I2C Interface Electrical Characteristics (Fast Mode)

Param	Parameter		MAX	Unit
t _{CSCL}	Cycle time, SCL period	2.5		us
t _{WHSCL}	SCL high pulse width	0.6		us
t _{WLSCL}	SCL low pulse width	1.3		us
t _{S2SCL}	Setup time, SDA low to high when SCL high for stop bit	0.6		us
t _{H2SCL}	Hold time, SDA high to low when SCL high for start bit	0.6		us
t _{WBF}	I2C bus free time	1.3		us
t _{S2SDA}	SDA setup time	100		ns
t _{H2SDA}	SDA hold time	0		ns

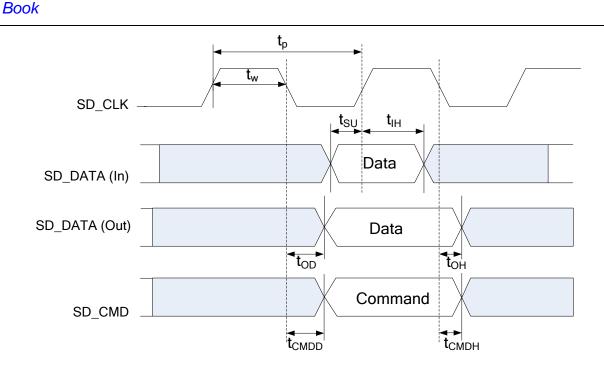
Figure 9-4 I2C Interface Timing

9.7 SDIO Interface Timing

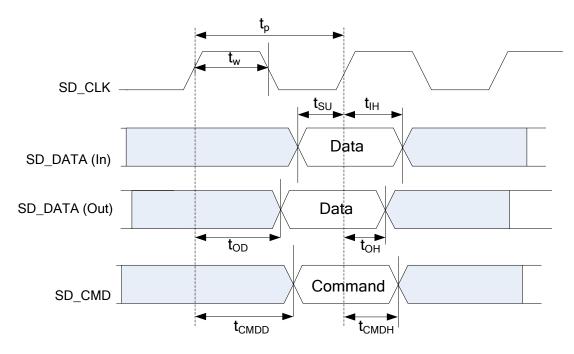
	Timing Condition Parameter	MIN	MAX	Unit		
Input Conditions						
t _R	Input signal rise time	0.5	5	ns		
t _F	Input signal fall time	0.5	5	ns		
Output	Condition					
Cload	Output load capacitance		40	pf		

Table 9-23 SDIO Interface Timing Conditions

Table 9-24 SDIO Interface Electrical Characteristics


Paran	neter	MIN	MAX	Unit	Notes
t _p	Cycle time, SD_CLK period	20		ns	
tw	Duration time, SD_CLK high	8		ns	(1)
t _{su}	Setup time, input data valid before SD_CLK active edge	4.6		ns	
t _{IH}	Hold time, input data valid after SD_CLK active edge	0		ns	
t _{OD}	Delay time, SD_CLK active edge to data output transition		12	ns	(2)
t _{он}	Hold Time, data output valid after SD_CLK active edge	2		ns	(2)
t _{CMDD}	Delay time, SD_CLK active edge to command output transition		12	ns	(2)
t _{CMDH}	Hold Time, command output valid after SD_CLK active edge	2		ns	(2)

(1) Duty cycle of SDIO_CLK is 40% of the clock cycle.


(2) The same value in both normal and high speed mode

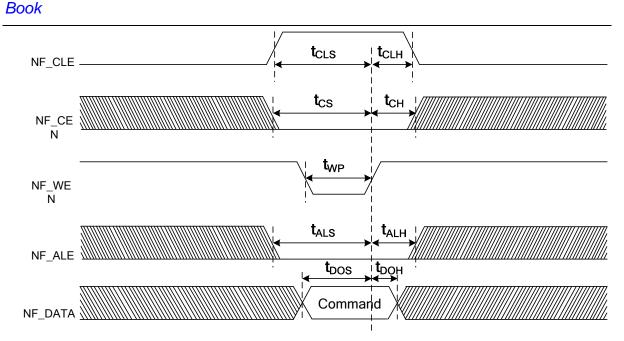
9.8 NFC Interface Timing

	Timing Condition Parameter	MIN	MAX	Unit		
Input Conditions						
t _R	Input signal rise time	0.5	5	ns		
t _F	Input signal fall time	0.5	5	ns		
Output Condition						
Cload	Output load capacitance		40	pf		

Table 9-25 NFC Interface Timing Conditions

Table 9-26 NFC Interface Electrical Characteristics

Paran	neter	MIN	MAX	Unit	Notes
t _{WC}	WEN cycle time	20		ns	(1)
t _{WP}	WEN pulse width	9		ns	
t _{RP}	REN pulse width	20		ns	(1)
t _{RC}	REN cycle time	9		ns	
t _{CLS}	CLE setup time	80		ns	(2)
t _{CLH}	CLE hold time	80		ns	(2)
t _{cs}	CEN setup time	80		ns	(2)
t _{сн}	CEN hold time	80		ns	(2)
t _{ALS}	ALE setup time	80		ns	(2)
t _{ALH}	ALE hold time	80		ns	(2)
t _{DOS}	Data output setup time	10		ns	
t _{DOA}	Data output delay time for access		2	ns	
t _{DOH}	Data output hold time	8.6		ns	(3)
t _{DIS}	Data input setup time	3.3		ns	
t _{DIH}	Data input hold time	0		ns	


(1) Related to the output maximum frequency supported by the NFC module.

(2) Programmable by configuring NFC register, as least 4 write/read cycles are for recommendation. In the above table, write/read cycle period = 20ns.

(3) $t_{DOH} > -0.365 + min (t_{WP})$, relative to the rise edge of WEN, the actual output delay time shall be combined with 1/2 of write cycle time, i.e., the minimum write pulse, here min (t_{WP}) = 9ns.

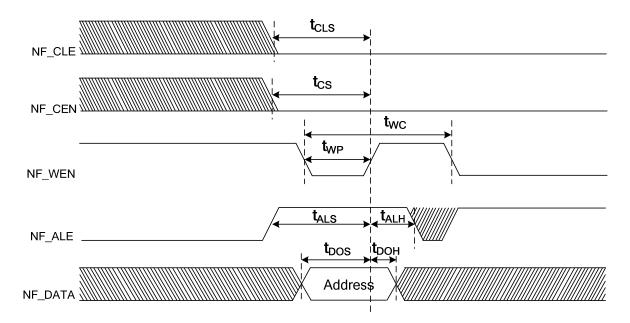


Figure 9-8 NFC Address Latch Timing

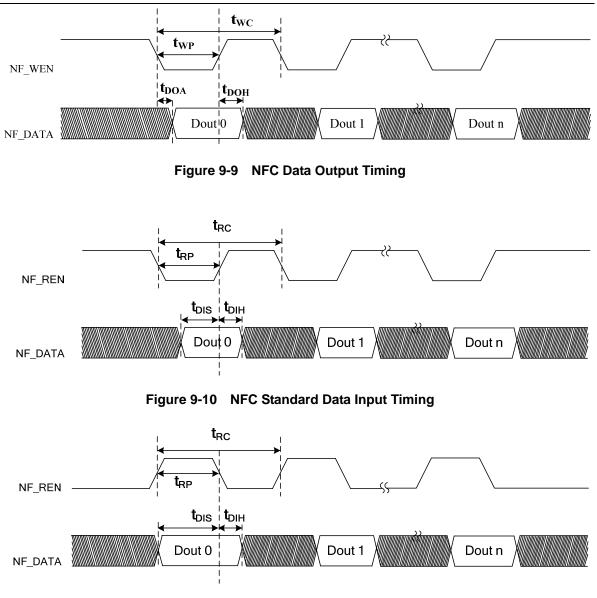


Figure 9-11 NFC EDO Data Input Timing

9.9 AUD Interface Timing

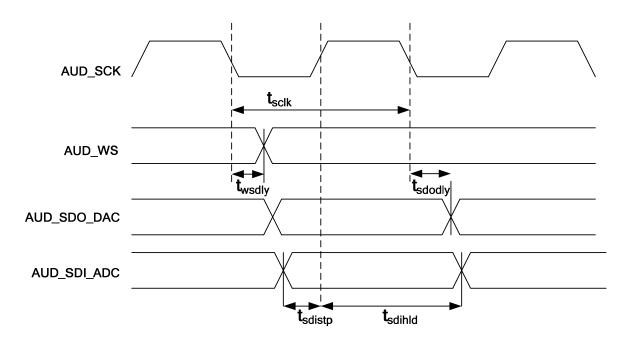

	Timing Condition Parameter	MIN	MAX	Unit		
Input Conditions						
t _R	Input signal rise time	0.5	5	ns		
t _F	Input signal fall time	0.5	5	ns		
Output Condition						
Cload	Output load capacitance		20	pf		

Table 9-27 Audio Interface Timing Conditions

Table 9-28 Audio Interface Electrical Characteristics

Paran	Parameter			Unit	Notes
t _{sclk}	AUD_SCK period	162.5	1953	ns	(1)
t _{wsdly}	Delay time, AUD_SCK active edge to AUD_WS	1	6.2	ns	
	transition				
t _{sdodly}	Delay time, AUD_SCK active edge to	1	8.6	ns	
	AUD_SDO_DAC transition				
t _{sdistp}	AUD_SDI_ADC setup time	11.2		ns	
t _{sdihld}	AUD_SDI_ADC hold time	0		ns	

(1) AUD_SCK = $64 \times fs$, where max(fs) = 96KHz and min(fs) = 8KHz. (fs means frequency of sample)

9.10 LCD Interface Timing

	Timing Condition Parameter	MIN	MAX	Unit			
Input Conditions							
t _R	Input signal rise time	0.5	5	ns			
t _F	Input signal fall time	0.5	5	ns			
Output	Output Condition						
Cload	Output load capacitance		20	pf			

Table 9-29 LCD Interface Timing Conditions

LCD Serial Interface

Table 9-30	LCD Interface Electrical Characteristics (Serial Interface)
------------	---

Parameter		MIN	MAX	Unit	Notes
t _{LSCL}	SCL low level pulse width	40		ns	(1)(2)
t _{HSCL}	SCL high level pulse width	40		ns	(1)(3)
t _{DS}	SDA setup time	30.5		ns	(1)(4)
t _{DH}	SDA hold time	30		ns	(1)(5)
t _{CSS}	CS setup time	30.5		ns	(1)(6)
t _{CSH}	CS hold time	36		ns	(1)(7)
t _{AS}	DCX setup time	29		ns	(1)(8)
t _{AH}	DCX hold time	30		ns	(1)(9)

(1) The setup and hold time can be configured by the internal register of VC0882, the value listed in the table are the parameter range which VC0882 can support at most, the hold/setup need of the panel should not exceed the max hold/setup value. The value in the table above is calculated when T_{PCLK} is 40ns. PCLK is the refresh clock of panel.

- (2) The width of t_{LSCL} is n*T_{PCLK}, in which n can be configured between 1 and 128 by the internal register SCK_WIDTH.
- (3) The width of t_{HSCL} is n* T_{PCLK} , in which n can be configured by the internal register SCK_WIDTH.
- (4) The SDA setup time $t_{DS} = n^* T_{PCLK}$ -9.5, in which n can be configured from 1 to 128 by the internal register SCK_WIDTH. For example, if the panel need of SDA setup time is 120ns and T_{PCLK} is 40ns, so we can configure the n to 4 or even larger. For n=5, the t_{DS} =150.5ns, which is larger than 120ns.
- (5) The SDA hold time $t_{DH} = n^* T_{PCLK}$ -10, in which n can be configured from 1 to 128 by the internal register SCK_WIDTH. We should configure the n parameter according to the panel need. For example, if the panel need of SDA hold time is 120ns and T_{PCLK} is 40ns, so we can configure the n to 4 or even larger. For n=4, the t_{DH} =150ns, which is larger than 120ns.
- (6) The CS setup time $t_{CSS} = n^* T_{PCLK}$ -9.5, in which n can be configured from 1 to 128 by the internal register

SCK_WIDTH.

- (7) The CS hold time $t_{CSH} = n^* T_{PCLK}$ -4, in which n can be configured from 1 to 128 by the internal register SCK_WIDTH.
- (8) The DCX setup time $t_{AS} = n^* T_{PCLK}$ -11, in which n can be configured from 1 to 128 by the internal register SCK_WIDTH.
- (9) The DCX hold time $t_{AH} = n^* T_{PCLK}$ -10, in which n can be configured from 1 to 128 by the internal register SCK WIDTH.

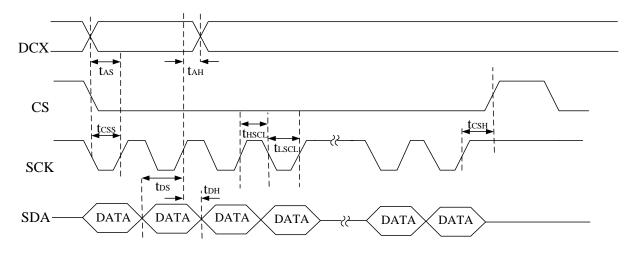


Figure 9-13 LCD Serial Interface Timing

Data Output for DPI Panel

Table 9-31 LCD Interface Electrical Characteristics (Data Output
--

Parameter		MIN	MAX	Unit	Notes
t _p	LCD_PCLK period	6.17		ns	
t _{duty}	LCD_PCLK output clock duty cycle	40%	60%		
t _{odr}	Delay time, LCD_PCLK rise edge to data transition		2.7	ns	
t _{ohf}	Hold time, data valid after LCD_PCLK fall edge	1.74		ns	(1)
t _{odf}	Delay time, LCD_PCLK fall edge to data transition		2.9	ns	
t _{ohr}	Hold time, data valid after LCD_PCLK rise edge	1.88		ns	(2)

(1) $t_{ohf} > -0.72 + 1/2t_p$, relative to the next edge of LCD_PCLK, the actual output delay time shall be combined with 1/2 of pixel cycle time, the duty cycle 40% shall also be considered.

(2) $t_{ohr} > -0.58 + 1/2t_p$, relative to the next edge of LCD_PCLK, the actual output delay time shall be combined with 1/2 of pixel cycle time, the duty cycle 40% shall also be considered.

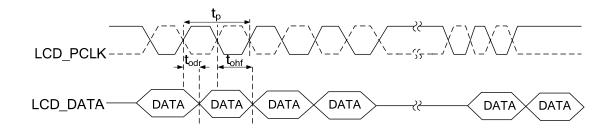
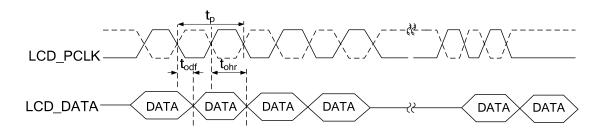



Figure 9-14 Data Output Timing for DPI Panel (falling edge capture)

Interface Timing with DBI Panel

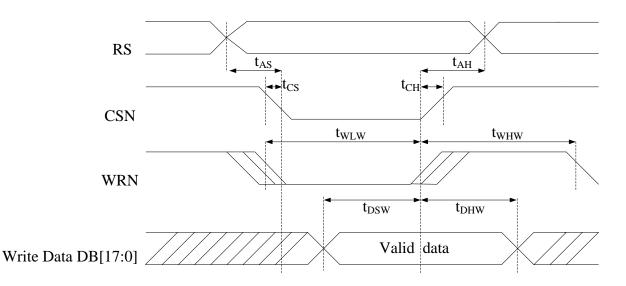
DBI Write Operation

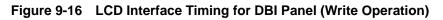
Table 9-32 LCD Interface Electrical Characteristics (DBI Panel for Write Operation)

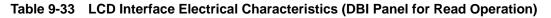
Parameter		MIN	MAX	Unit	Notes
t _{WLW}	Write low level pulse width	40		ns	(1)(2)
t _{WHW}	Write high level pulse width	40		ns	(1)(3)
t _{AS}	Address setup time	35.5		ns	(1)(4)
t _{AH}	Address hold time	37		ns	(1)(5)
t _{DSW}	Write data setup time	35.5		ns	(1)(6)
t _{DHW}	Write data hold time	30.5		ns	(1)(7)
t _{cs}	Chip select setup time	35		ns	(1)(8)
t _{CH}	Chip select hold time	37		ns	(1)(9)

(1) The setup and hold time can be configured by the internal register of VC0882, the value listed in the table are the parameter range which VC0882 can support at most, the hold/setup need of the panel should not exceed the max hold/setup value. The value in the table above is calculated when T_{PCLK} is 40ns. PCLK is the internal working clock of LCDIF module.

(2) The width of t_{WLW} is n^{*}T_{PCLK}, in which n can be configured from 1 to 31 by the internal register WRC.


(3) The width of t_{WHW} is n*T_{PCLK}, in which n can be configured from 1 to 62 by the internal register WSC and DHC


(4) The Address setup time $t_{AS} = n^*T_{PCLK}$ -4.5, in which n can be configured from 1 to 31 by the internal register


WSC. If the panel setup need is 100ns, n can be configured to 3, then the $t_{AS} = (3*40 - 4.5) = 115.5n$, which is larger then 100n.

- (5) The Address hold time $t_{AH} = n^*T_{PCLK}$ -3, in which n can be configured from 1 to 31 by the internal register DHC. If the panel setup need is 60ns, n can be configured to 2, then the $t_{AH} = (2^*40 - 3) = 87n$, which is larger then 60n.
- (6) The Write data setup time $t_{DSW} = n^*T_{PCLK} 4.5$, in which n can be configured from 1 to 62 by the internal register WSC and WRC.
- (7) The Write data hold time $t_{DHW} = n^*T_{PCLK} 9.5$, in which n can be configured from 1 to 31 by the internal register DHC.
- (8) The Chip select setup time during write $t_{CS} = n^*T_{PCLK} 5$, in which n can be configured from 1 to 62 by the internal register WSC and WRC.
- (9) The Chip select hold time $t_{CH} = n^*T_{PCLK} 3$, in which n can be configured from 1 to 31 by the internal register DHC.

DBI Read Operation

Parameter		MIN	MAX	Unit	Notes
t _{RLW}	Read low level pulse width	40		ns	(1)(2)
t _{RHW}	Read high level pulse width	40		ns	(1)(3)
t _{AS}	Address setup time	35.5		ns	(1)(4)
t _{AH}	Address hold time	38.5		ns	(1)(5)
t _{RACC}	Read data access time	10		ns	(1)(6)
t _{DH}	Read data hold time	-15		ns	(1)(7)
t _{cs}	Chip select setup time	35		ns	(1)(8)
t _{CH}	Chip select hold time	38		ns	(1)(9)

(1) The setup and hold time can be configured by the internal register of VC0882, the value listed in the table are

the parameter range which VC0882 can support at most, the hold/setup need of the panel should not exceed the max hold/setup value. The value in the table above is calculated when T_{PCLK} is 40ns. PCLK is the internal working clock of LCDIF module.

- (2) The width of t_{RLW} is n^*T_{PCLK} , in which n can be configured from 1 to 31 by the internal register RAC.
- (3) The width of t_{RHW} is n^*T_{PCLK} , in which n can be configured from 1 to 62 by the internal register RAC and ROC.
- (4) The Address setup time during Read $t_{AS} = n^*T_{PCLK}$ -4.5, in which n can be configured from 1 to 31 by the internal register RSC. If the panel setup need is 100ns, n can be configured to 3, then the $t_{AS} = (3^*40 4.5) = 115.5n$, which is larger then 100n.
- (5) The Address hold time during Read $t_{AH} = n^*T_{PCLK}$ -1.5, in which n can be configured from 1 to 31 by the internal register DHC. If the panel setup need is 60ns, n can be configured to 2, then the $t_{AH} = (2^*40 1.5) = 78.5n$, which is larger then 60n.
- (6) The Read data access time we can tolerate is $t_{RACC} = n^*T_{PCLK}$ -30, in which n can be configured from 1 to 31 by the internal register RAC. The panel access time should not exceed t_{RACC} . For example, if the panel access time is 100n, the n can be configured to 4 or larger. When n=4, t_{RACC} =130ns, which is larger than 100ns.
- (7) The Read data hold time t_{DH} = -15, which means the read data output from panel can be ahead of the posedge of RD 15ns.
- (8) The Chip select setup time during Read $t_{CS} = n^*T_{PCLK}$ -5, in which n can be configured from 1 to 62 by the internal register RAC and RSC.
- (9) The Chip select hold time during Read t $t_{CH} = n^*T_{PCLK}$ -2, in which n can be configured from 1 to 31 by the internal register ROC.

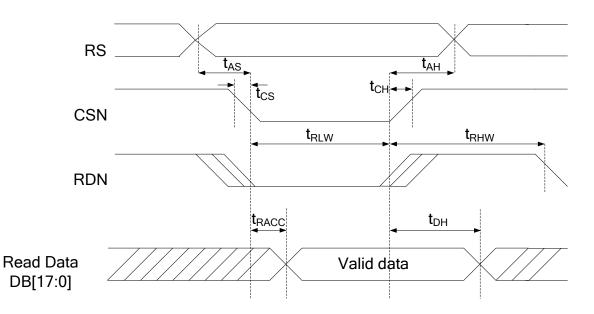


Figure 9-17 LCD Interface Timing for DBI Panel (Read Operation)