

Features

- Support IEEE 802.3av™-2009 10GBASE-PR30 Power budget
- 1270nm Burst-Mode Transmitter with DFB Laser
- 1577nm Continuous-Mode Receiver with APD-TIA
- Sleep Mode for Power Consumption
- Compliant with SFP+ MSA SFF-8431
- Compliant Digital Diagnostic SFF-8472
- Single 3.3V Power Supply
- Simplex SC/UPC Connector Bi-directional
- Telcordia GR-468 Compliant
- Commercial and Industrial Temperature
 Available
- RoHS compliance
- Compliant with ITU-T G.9807.1 XGS-PON N1/N2/E1 class

Regulatory Compliance

Table 1 - Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883E	
(ESD) to the Electrical Pins	Method 3015.7	Class 1(>500 V)
	FCC Part 15 Class B	
Electromagnetic Interference (EMI)	EN55022 Class B (CISPR 22B)	Compatible with standards
	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Logor Evo Sofoty	FDA 21CFR 1040.10 and 1040.11	Compatible with Class1 laser
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.
Component Recognition	UL and CSA	Compliant with standards
RoHS	2011/65/EU	Compliant with exemptions

Absolute Maximum Ratings

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Ambient Temperature	Ts	-40	-	85	°C	

Operating Case Temperature (SPPS-27-XE-R3-CDFD)	Tc	0	70	°C	
Operating Case Temperature (SPPS-27-XE-R3-IDFD)	Tc	-40	85	°C	
Operating Relative Humidity	RH	5	95	%	
Power Supply Voltage	Vcc	0	4	V	
Maximum Reach		20		Km	

Recommended Operating Conditions

Table 3 – Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.14	3.3	3.47	V	
Power Supply Current	lcc	-	-	550	mA	
Inrush Current	IIN-RUSH	-	-	600	mA	
Data Rate	DR	10.3125			Gbit/s	

Optical Characteristics

Table 4 – Optical Characteristics

Transmitter										
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes				
Centre Wavelength	λc	1260	1270	1280	nm					
Spectral Width (-20dB)	$\Delta \lambda$			1	nm					
Side Mode Suppression Ratio	SMSR	30			dB					
Average Launch Power	Роит	4		9	dBm	1				
Average Launch Power-OFF	POFF			-45	dBm	1				
Extinction Ratio	EX	6			dB	2				
Optical Eye Mask	Complia	nt With IEEE Std 802.3av™-2009				2,3				
	Rece	eiver								
Operating Wavelength	λc	1575	1577	1580	nm					
Sensitivity	P _{SEN1}			-28.5	dBm	4				
Saturation	P _{SAT}	-8			dBm	- 4				
Bit Error Ratio			10E-3	<u>.</u>						
Loss of Signal Deassert Level	PLOSD	-	-	-30	dBm	5				

Loss of Signal Assert Level	PLOSA	-45		dBm	6
	ISO(1400~1560nm)	35		dB	
WDM Filter Isolation	ISO(1600~1675nm)	35		dB	
	ISO(1575~1580nm)	34.5		dB	

Notes:

- 1. The optical power is launched into 9/125um SMF.
- 2. Measured with PRBS 2³¹-1 test pattern @10.3125Gbps.
- 3. Transmitter eye mask definition {0.25,0.40,0.45,0.25,0.28,0.40}
- 4. Measured with a PRBS 2³¹-1 test pattern @10.3125Gbps and ER=6dB, BER ≤10⁻³
- 5. An increase in optical power above the specified level will cause Los of Signal (LOS) output to switch from a low state to a high state.
- 6. A decrease in optical power below the specified level will cause Los of Signal (LOS) output to switch from a high state to a low state.

Electrical Characteristics

Table 5 – Electrical Characteristics

Electrical & Timing										
	Liectrica		-							
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes				
Time to Initialize	t-start-up	-	-	300	ms					
	Trans	mitter								
Parameter Symbol Min. Typical Max. Unit										
Power Supply Current	Ісс_тх	-	-	425	mA					
Data Input Differential Swing	VIN	190	-	1000	mVp-p	1				
Input Differential Impedance	ZIN	80	100	120	Ω					
Transmitter Disable Voltage - Low	VTDIS, L	0		0.8	V	0				
Transmitter Disable Voltage - High	V _{TDIS, H}	2.0		Vcc	V	2				
Power Down Voltage _Low	V_pdl	0		0.8						
Power Down Voltage _High	V_pdh	2.0		Vcc						
TX Fault Assert Time	T_FAULT_on	-	-	50	ms					
TX Fault Reset Time	TX_fault_reset	10	-	-	μs					
Burst Turn On Time	T _{BURST-ON}			512	ns					
Burst Turn Off Time	TBURST-OFF			512	ns					
TX Power Down Assert Time	T_PD assert			512	ns	3				
TX Power Down De-assert Time	T_PD recover			512	ns	4				
	Rec	eiver								
Power Supply Current	ICC_RX			235	mA					

Data Output Differential Swing	Vout	600		850	mV _{P-P}	5
Loss of Signal (LOS)Assert Time	TLOSA	-	-	100	μs	
Loss of Signal(LOS) Deassert Time	TLOSD	-	-	100	μ S	
Output Differentia Impedance	Rout	80	100	120	Ω	
RX-LOS	Vol	0	-	0.4	V	
	Vон	2.4		Vcc	V	

Notes:

- 1. Compatible with CML input, AC coupled internally. (See <u>Recommended Interface Circuit</u>)
- 2. TX_nBRST (See Pin Function Definitions).
- 3. Measured to 10% of final supply current
- 4. Measured to 90% of final supply current
- 5. CML output, AC coupled internally, guaranteed in the full range of input optical power (-24dBm to -8dBm) (See <u>Recommended Interface Circuit</u>).

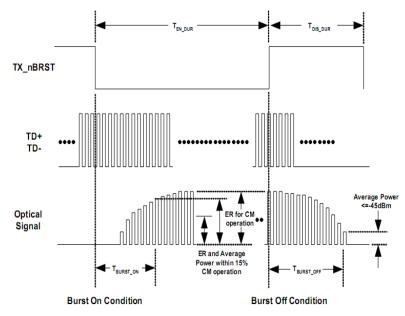
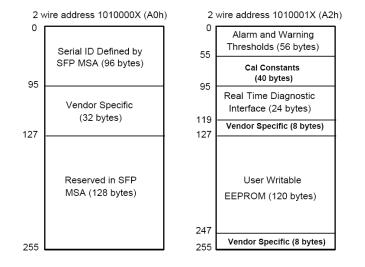


Figure 1, Timing Parameter Definition in Burst Mode Sequence

Diagnostic


Table 6 – Diagnostic

Address	Parameter	Range	Accuracy	Unit	Calibration	Notes
96	Temperature	0 ~70	±3	°C	Internal	LSB equal to 1/256C
98	Voltage	2.97 ~ 3.63	±3%	V	Internal	LSB equal to 100uV
100	Bias Current	0 ~ 262(notes)	±10%	mA	Internal	LSB equal to 4uA
102	Tx Power	4 ~ 9	±3	dB	Internal	LSB equal to 0.2uW
104	Rx Power	-29 ~ -8	±3	dB	Internal	LSB equal to 0.1uW

Notes: only for continuous mode

EEPROM Definition

Pin Function Definitions

Table 8 – Pin Function Definitions

Pin No.	Logic	Name	Description
1		VEET ⁽¹⁾	Module Ground
2	LVTTL-O	TX_FAULT ⁽²⁾	Module Transmitter Fault
3	LVTTL-I	TX_nBRST	Transmitter Burst Control
4	LVTTL-I/O	SDA	2-wire serial Interface Data line
5	LVTTL-I	SCL	2-wire serial Interface Clock
6		MOD_ABS	Connect to VEET OR VEER in the Module
7	LVTTL-O	TX_SD	TX Signal detected
			Receiver Loss of Signal Indication(in FC designated as
8	LVTTL-O	RX_LOS ⁽³⁾	RX_LOS, in SONET Designated as Los, as in Ethernet
			Designated as not Signal Detect)
			Power saving of Tx side, On/off time less than 1ms, high
9	LVTTL-I	PDWN_TX (4)	active, if not use this feature, main board connection
			should be NC.
10		VEER	Module Receiver Ground
11		VEER	Module Receiver Ground
12	CML-O	RD-	Receiver inverted Data Output
13		RD+	Receiver Non-inverted Data Output

14		VEER	Module Receiver Ground
15		VCCR	Module Receiver 3.3 Supply
16		VCCT	Module Transmitter 3.3 Supply
17		VEET	Module Transmitter Ground
18	CML-I	TD+	Transmitter Non-inverted Data Input
19		TD-	Transmitter Inverted Data Input
20		VEET	Module Transmitter Ground

Notes:

- 1. The module ground pin, VeeT and VeeR, shall be isolated from the module case.
- 2. Shall pulled up with 4.7K-10K ohm to a VccT in the module.
- 3. This pin is an open collector/drain output pin and shall pulled up with 4.7K-10K ohm to a Host-Vcc on the host board.
- 4. Tx Power saving function timing: Tx_Sleep

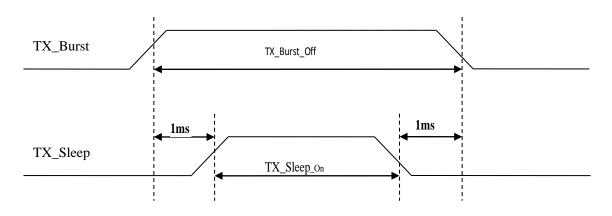


Figure 3, Tx Power saving function timing

SPF+ Module PCB Pinout

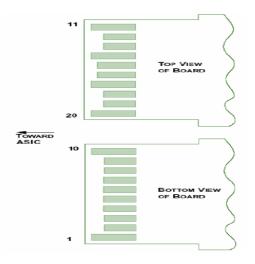
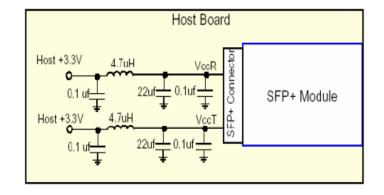



Figure 4, SPF+ Module PCB Pinout

Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

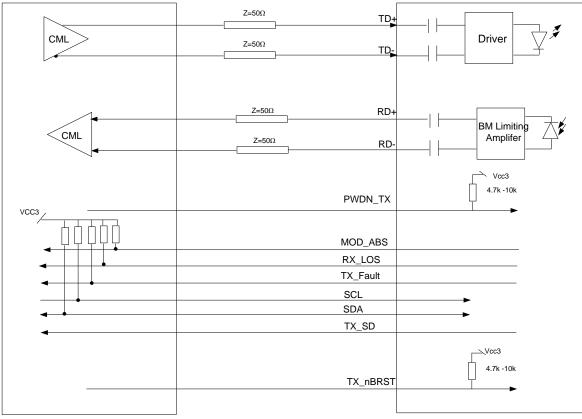
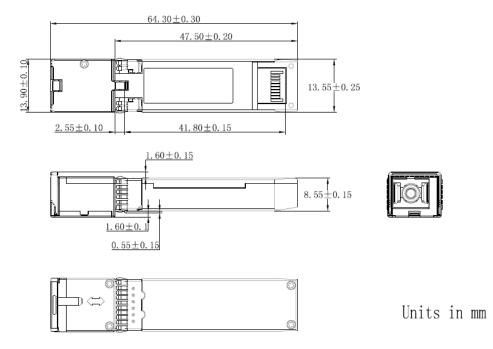
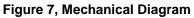




Figure 6, Recommended Interface Circuit

Mechanical Diagram

Order Information

Table 9– Order Information

Part No.	Application	Data Rate	Laser Source	Fiber Type
SPPS-27-XE-R3-CDFD	10GBASE-PR30 ONU, Commercial Temperature	10.3125Gb/s symmetric	1270nm DFB	SMF
SPPS-27-XE-R3-IDFD	10GBASE-PR30 ONU, Industrial Temperature	10.3125Gb/s symmetric	1270nm DFB	SMF

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.
Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics' sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fitness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

Contact

U.S.A. Headquarters

8521 Fallbrook Avenue Suite 200, West Hills, CA 91304, USA Tel: +1-818-773-9044 Fax: +1-818-773-0261 Building #2&5, West Export Processing Zone No. 8 Kexin Road, Hi-Tech Zone Chengdu, 611731, China Tel: +86-28-8795-8788 Fax: +86-28-8795-8789

© Copyright Source Photonics, Inc. 2008~2017 All rights reserved

China

Taiwan

9F, No 81, Shui Lee Rd. Hsinchu, 300, Taiwan R.O.C. Tel: +886-3-5169222 Fax: +886-3-5169213