# Dual 1-of-4 Decoder/Demultiplexer

The MC74AC139/74ACT139 is a high–speed, dual 1–of–4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually–exclusive active–LOW outputs. Each decoder has an active–LOW Enable input which can be used as a data input for a 4–output demultiplexer. Each half of the MC74AC139/74ACT139 can be used as a function generator providing four minterms of two variables.

### Features

- Multifunctional Capability
- Two Completely Independent 1-of-4 Decoders
- Active LOW Mutually Exclusive Outputs
- Outputs Source/Sink 24 mA
- 'ACT139 Has TTL Compatible Inputs
- These are Pb–Free Devices

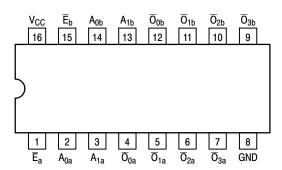
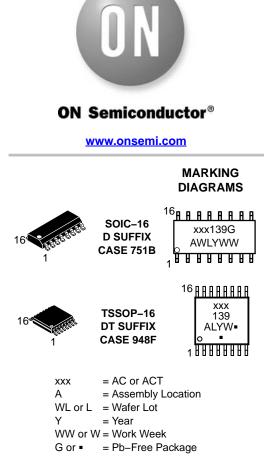



Figure 1. Pinout: 16–Lead Packages Conductors (Top View)

#### **PIN ASSIGNMENT**

| PIN                               | FUNCTION       |
|-----------------------------------|----------------|
| A <sub>0</sub> , A <sub>1</sub>   | Address Inputs |
| Ē                                 | Enable Inputs  |
| $\overline{O}_0 - \overline{O}_3$ | Outputs        |


#### TRUTH TABLE

| I | nputs          | ;              |                  | Ou               | tputs            |                  |
|---|----------------|----------------|------------------|------------------|------------------|------------------|
| Ē | A <sub>0</sub> | A <sub>1</sub> | $\overline{O}_0$ | $\overline{O}_1$ | $\overline{O}_2$ | $\overline{O}_3$ |
| н | Х              | Х              | Н                | Н                | Н                | Н                |
| L | L              | L              | L                | Н                | н                | н                |
| L | Н              | L              | н                | L                | н                | Н                |
| L | L              | Н              | Н                | Н                | L                | Н                |
| L | н              | Н              | Н                | Н                | Н                | L                |

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial



(Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

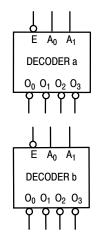
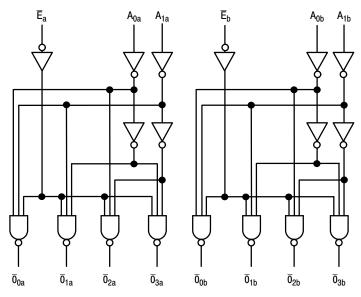
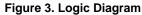





Figure 2. Logic Symbol



NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.



### FUNCTIONAL DESCRIPTION

The MC74AC139/74ACT139 is a high-speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each of which accepts two binary weighted inputs ( $A_0$ - $A_1$ ) and provides four mutually exclusive active-LOW outputs ( $\overline{O}_0$ - $\overline{O}_3$ ). Each decoder has an active-LOW enable ( $\overline{E}$ ). When  $\overline{E}$  is HIGH all outputs are forced HIGH. The enable can be used as the data input for a 4-output demultiplexer application. Each half of the MC74AC139/74ACT139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure 4, and thereby reducing the number of packages required in a logic network.

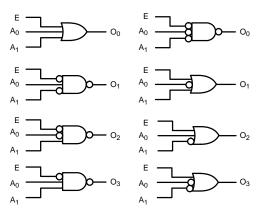



Figure 4. Gate Functions (Each Half)

#### MAXIMUM RATINGS

| Symbol                | Parameter                                               |                                                               | Value                             | Unit |
|-----------------------|---------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|------|
| V <sub>CC</sub>       | DC Supply Voltage                                       |                                                               | -0.5 to +7.0                      | V    |
| VI                    | DC Input Voltage                                        |                                                               | $-0.5 \leq V_I \leq V_{CC} + 0.5$ | V    |
| Vo                    | DC Output Voltage                                       | (Note 1)                                                      | $-0.5 \leq V_O \leq V_{CC} + 0.5$ | V    |
| I <sub>IK</sub>       | DC Input Diode Current                                  |                                                               | ±20                               | mA   |
| I <sub>OK</sub>       | DC Output Diode Current                                 |                                                               | ±50                               | mA   |
| I <sub>O</sub>        | DC Output Sink/Source Current                           |                                                               | ±50                               | mA   |
| I <sub>CC</sub>       | DC Supply Current per Output Pin                        |                                                               | ±50                               | mA   |
| I <sub>GND</sub>      | DC Ground Current per Output Pin                        |                                                               | ±50                               | mA   |
| T <sub>STG</sub>      | Storage Temperature Range                               |                                                               | -65 to +150                       | °C   |
| TL                    | Lead temperature, 1 mm from Case for 10 Seconds         |                                                               | 260                               | °C   |
| TJ                    | Junction temperature under Bias                         |                                                               | + 150                             | °C   |
| $\theta_{JA}$         | Thermal Resistance (Note 2)                             | SOIC<br>TSSOP                                                 | 69.1<br>103.8                     | °C/W |
| P <sub>D</sub>        | Power Dissipation in Still Air at 65°C (Note 3)         | SOIC<br>TSSOP                                                 | 500<br>500                        | mW   |
| MSL                   | Moisture Sensitivity                                    |                                                               | Level 1                           |      |
| F <sub>R</sub>        | Flammability Rating Oxygen                              | Index: 30% – 35%                                              | UL 94 V-0 @ 0.125 in              |      |
| V <sub>ESD</sub>      | Mach                                                    | dy Model (Note 4)<br>ine Model (Note 5)<br>ice Model (Note 6) | > 2000<br>> 200<br>> 1000         | V    |
| I <sub>Latch-Up</sub> | Latch–Up Performance Above V <sub>CC</sub> and Below GN | D at 85°C (Note 7)                                            | ±100                              | mA   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I<sub>O</sub> absolute maximum rating must be observed.

2. The package thermal impedance is calculated in accordance with JESD51-7.

3. 500 mW at 65°C; derate to 300 mW by 10 mW/ from 65°C to 85°C.

4. Tested to EIA/JESD22-A114-A.

5. Tested to EIA/JESD22-A115-A.

6. Tested to JESD22-C101-A.

7. Tested to EIA/JESD78.

#### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                                                                                                 | Parameter                                      |                         |     | Тур | Max             | Unit |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|-----|-----|-----------------|------|
| 、 <i>,</i>                                                                                             |                                                | ′AC                     | 2.0 | 5.0 | 6.0             |      |
| V <sub>CC</sub>                                                                                        | Supply Voltage                                 | ΆCΤ                     | 4.5 | 5.0 | 5.5             | V    |
| V <sub>IN</sub> , V <sub>OUT</sub>                                                                     | DC Input Voltage, Output Voltage (Ref. to GND) |                         | 0   | _   | V <sub>CC</sub> | V    |
|                                                                                                        |                                                | V <sub>CC</sub> @ 3.0 V | -   | 150 | -               |      |
| t <sub>r</sub> , t <sub>f</sub> Input Rise and Fall Time (Note 1)<br>'AC Devices except Schmitt Inputs | V <sub>CC</sub> @ 4.5 V                        | -                       | 40  | -   | ns/V            |      |
|                                                                                                        |                                                | V <sub>CC</sub> @ 5.5 V | -   | 25  | -               |      |
|                                                                                                        | Input Rise and Fall Time (Note 2)              | V <sub>CC</sub> @ 4.5 V | -   | 10  | -               | 20/1 |
| t <sub>r</sub> , t <sub>f</sub>                                                                        | 'ACT Devices except Schmitt Inputs             | V <sub>CC</sub> @ 5.5 V | -   | 8.0 | -               | ns/V |
| TJ                                                                                                     | Junction Temperature (PDIP)                    | •                       | _   | _   | 140             | °C   |
| T <sub>A</sub>                                                                                         | Operating Ambient Temperature Range            |                         |     | 25  | 85              | °C   |
| I <sub>OH</sub>                                                                                        | Output Current – High                          |                         | -   | -   | -24             | mA   |
| I <sub>OL</sub>                                                                                        | Output Current – Low                           |                         |     | _   | 24              | mA   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1.  $V_{IN}$  from 30% to 70%  $V_{CC}$ ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2.  $V_{IN}$  from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

#### **DC CHARACTERISTICS**

|                  |                                      |                   | 74                      | AC                   | 74AC                               |      |                                                                                               |
|------------------|--------------------------------------|-------------------|-------------------------|----------------------|------------------------------------|------|-----------------------------------------------------------------------------------------------|
|                  |                                      | V <sub>cc</sub>   | T <sub>A</sub> = -      | ⊦25°C                | T <sub>A</sub> =<br>–40°C to +85°C |      |                                                                                               |
| Symbol           | Parameter                            | (V)               | Тур                     | Gua                  | aranteed Limits                    | Unit | Conditions                                                                                    |
| V <sub>IH</sub>  | Minimum High Level<br>Input Voltage  | 3.0<br>4.5<br>5.5 | 1.5<br>2.25<br>2.75     | 2.1<br>3.15<br>3.85  | 2.1<br>3.15<br>3.85                | V    | $V_{OUT} = 0.1 V$<br>or $V_{CC} - 0.1 V$                                                      |
| V <sub>IL</sub>  | Maximum Low Level<br>Input Voltage   | 3.0<br>4.5<br>5.5 | 1.5<br>2.25<br>2.75     | 0.9<br>1.35<br>1.65  | 0.9<br>1.35<br>1.65                | V    | $V_{OUT} = 0.1 V$<br>or $V_{CC} - 0.1 V$                                                      |
| V <sub>OH</sub>  | Minimum High Level<br>Output Voltage | 3.0<br>4.5<br>5.5 | 2.99<br>4.49<br>5.49    | 2.9<br>4.4<br>5.4    | 2.9<br>4.4<br>5.4                  | V    | I <sub>OUT</sub> = -50 μA                                                                     |
|                  |                                      | 3.0<br>4.5<br>5.5 | -<br>-<br>-             | 2.56<br>3.86<br>4.86 | 2.46<br>3.76<br>4.76               | V    | $V_{IN} = V_{IL} \text{ or } V_{IH}$<br>-12 mA<br>$I_{OH}$ -24 mA<br>-24 mA                   |
| V <sub>OL</sub>  | Maximum Low Level<br>Output Voltage  | 3.0<br>4.5<br>5.5 | 0.002<br>0.001<br>0.001 | 0.1<br>0.1<br>0.1    | 0.1<br>0.1<br>0.1                  | V    | I <sub>OUT</sub> = 50 μA                                                                      |
|                  |                                      | 3.0<br>4.5<br>5.5 | -<br>-<br>-             | 0.36<br>0.36<br>0.36 | 0.44<br>0.44<br>0.44               | V    | $V_{IN} = V_{IL} \text{ or } V_{IH}$ $12 \text{ mA}$ $I_{OL}$ $24 \text{ mA}$ $24 \text{ mA}$ |
| I <sub>IN</sub>  | Maximum Input<br>Leakage Current     | 5.5               | -                       | ±0.1                 | ±1.0                               | μΑ   | $V_I = V_{CC}, GND$                                                                           |
| I <sub>OLD</sub> | †Minimum Dynamic                     | 5.5               | -                       | -                    | 75                                 | mA   | V <sub>OLD</sub> = 1.65 V Max                                                                 |
| I <sub>OHD</sub> | Output Current                       | 5.5               | -                       | -                    | -75                                | mA   | V <sub>OHD</sub> = 3.85 V Min                                                                 |
| I <sub>CC</sub>  | Maximum Quiescent<br>Supply Current  | 5.5               | -                       | 8.0                  | 80                                 | μΑ   | $V_{IN} = V_{CC}$ or GND                                                                      |

\*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE:  $I_{IN}$  and  $I_{CC}$  @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V<sub>CC</sub>.

#### **AC CHARACTERISTICS**

|                  |                                                        |                   |            | 74AC                                         |             | 74/                                           | AC        |      |      |
|------------------|--------------------------------------------------------|-------------------|------------|----------------------------------------------|-------------|-----------------------------------------------|-----------|------|------|
|                  |                                                        | V <sub>CC</sub> * |            | <sub>A</sub> = +25°<br>C <sub>L</sub> = 50 p |             | T <sub>A</sub> = -40°C<br>C <sub>L</sub> = \$ |           |      | Fig. |
| Symbol           | Parameter                                              | (V)               | Min        | Тур                                          | Max         | Min                                           | Max       | Unit | No.  |
| t <sub>PLH</sub> | Propagation Delay $A_n$ to $\overline{O}_n$            | 3.3<br>5.0        | 4.0<br>3.0 | 8.0<br>6.5                                   | 11.5<br>8.5 | 3.5<br>2.5                                    | 13<br>9.5 | ns   | 3–6  |
| t <sub>PHL</sub> | Propagation Delay<br>A <sub>n</sub> to Ō <sub>n</sub>  | 3.3<br>5.0        | 3.0<br>2.5 | 7.0<br>5.5                                   | 10<br>7.5   | 2.5<br>2.0                                    | 11<br>8.5 | ns   | 3–6  |
| t <sub>PLH</sub> | Propagation Delay $\overline{E}_n$ to $\overline{O}_n$ | 3.3<br>5.0        | 4.5<br>3.5 | 9.5<br>7.0                                   | 12<br>8.5   | 3.5<br>3.0                                    | 13<br>10  | ns   | 3–6  |
| t <sub>PHL</sub> | Propagation Delay $\overline{E}_n$ to $\overline{O}_n$ | 3.3<br>5.0        | 4.0<br>2.5 | 8.0<br>6.0                                   | 10<br>7.5   | 3.0<br>2.5                                    | 11<br>8.5 | ns   | 3–6  |

\*Voltage Range 3.3 V is 3.3 V  $\pm 0.3$  V. \*Voltage Range 5.0 V is 5.0 V  $\pm 0.5$  V.

#### **DC CHARACTERISTICS**

|                  |                                        |                 | 74 <i>A</i>        | СТ           | 74ACT                              |      |                                                                   |
|------------------|----------------------------------------|-----------------|--------------------|--------------|------------------------------------|------|-------------------------------------------------------------------|
|                  |                                        | V <sub>cc</sub> | T <sub>A</sub> = - | +25°C        | T <sub>A</sub> =<br>–40°C to +85°C |      |                                                                   |
| Symbol           | Parameter                              | (V)             | Тур                | Gua          | ranteed Limits                     | Unit | Conditions                                                        |
| V <sub>IH</sub>  | Minimum High Level<br>Input Voltage    | 4.5<br>5.5      | 1.5<br>1.5         | 2.0<br>2.0   | 2.0<br>2.0                         | V    | $V_{OUT} = 0.1 V$<br>or $V_{CC} - 0.1 V$                          |
| V <sub>IL</sub>  | Maximum Low Level<br>Input Voltage     | 4.5<br>5.5      | 1.5<br>1.5         | 0.8<br>0.8   | 0.8<br>0.8                         | V    | $V_{OUT} = 0.1 V$<br>or $V_{CC} - 0.1 V$                          |
| V <sub>OH</sub>  | Minimum High Level<br>Output Voltage   | 4.5<br>5.5      | 4.49<br>5.49       | 4.4<br>5.4   | 4.4<br>5.4                         | V    | I <sub>OUT</sub> = -50 μA                                         |
|                  |                                        | 4.5<br>5.5      |                    | 3.86<br>4.86 | 3.76<br>4.76                       | V    | $V_{IN} = V_{IL} \text{ or } V_{IH}$<br>-24 mA<br>$I_{OH}$ -24 mA |
| V <sub>OL</sub>  | Maximum Low Level<br>Output Voltage    | 4.5<br>5.5      | 0.001<br>0.001     | 0.1<br>0.1   | 0.1<br>0.1                         | V    | l <sub>OUT</sub> = 50 μA                                          |
|                  |                                        | 4.5<br>5.5      |                    | 0.36<br>0.36 | 0.44<br>0.44                       | V    | $V_{IN} = V_{IL} \text{ or } V_{IH}$<br>24 mA<br>$I_{OL}$ 24 mA   |
| I <sub>IN</sub>  | Maximum Input<br>Leakage Current       | 5.5             | _                  | ±0.1         | ±1.0                               | μΑ   | $V_{I} = V_{CC}, GND$                                             |
| $\Delta I_{CCT}$ | Additional Max. I <sub>CC</sub> /Input | 5.5             | 0.6                | -            | 1.5                                | mA   | $V_{I} = V_{CC} - 2.1 V$                                          |
| I <sub>OLD</sub> | †Minimum Dynamic                       | 5.5             | -                  | -            | 75                                 | mA   | $V_{OLD}$ = 1.65 V Max                                            |
| I <sub>OHD</sub> | Output Current                         | 5.5             | -                  | -            | -75                                | mA   | V <sub>OHD</sub> = 3.85 V Min                                     |
| I <sub>CC</sub>  | Maximum Quiescent<br>Supply Current    | 5.5             | _                  | 8.0          | 80                                 | μΑ   | $V_{IN} = V_{CC}$ or GND                                          |

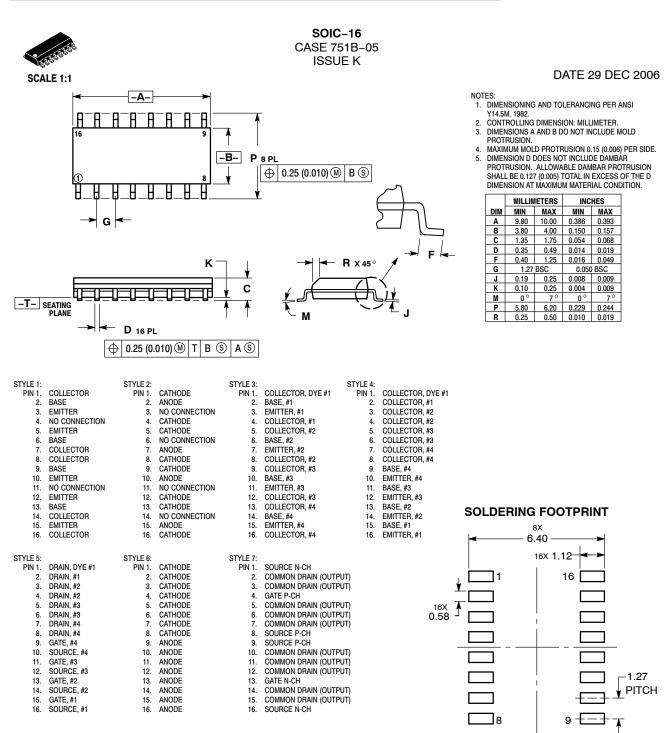
\*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

#### AC CHARACTERISTICS

|                  |                                                        |                  |         | 74ACT                 |      | 74A                                          | СТ   |      |      |
|------------------|--------------------------------------------------------|------------------|---------|-----------------------|------|----------------------------------------------|------|------|------|
|                  |                                                        | v <sub>cc*</sub> | T,<br>C | ₄ = +25°<br>₁_ = 50 p | ЧС   | T <sub>A</sub> = -40°C<br>C <sub>L</sub> = 5 |      |      | Fig. |
| Symbol           | Parameter                                              | (V)              | Min     | Тур                   | Max  | Min                                          | Max  | Unit | No.  |
| t <sub>PLH</sub> | Propagation Delay $A_n$ to $\overline{O}_n$            | 5.0              | 1.5     | 6.0                   | 8.5  | 1.5                                          | 9.5  | ns   | 3–6  |
| t <sub>PHL</sub> | Propagation Delay $A_n$ to $\overline{O}_n$            | 5.0              | 1.5     | 6.0                   | 9.5  | 1.5                                          | 10.5 | ns   | 3–6  |
| t <sub>PLH</sub> | Propagation Delay $\overline{E}_n$ to $\overline{O}_n$ | 5.0              | 2.5     | 7.0                   | 10.0 | 2.0                                          | 11.0 | ns   | 3–6  |
| t <sub>PHL</sub> | Propagation Delay $\overline{E}_n$ to $\overline{O}_n$ | 5.0              | 2.0     | 7.0                   | 9.5  | 1.5                                          | 10.5 | ns   | 3–6  |

\*Voltage Range 5.0 V is 5.0 V  $\pm 0.5$  V.

### CAPACITANCE

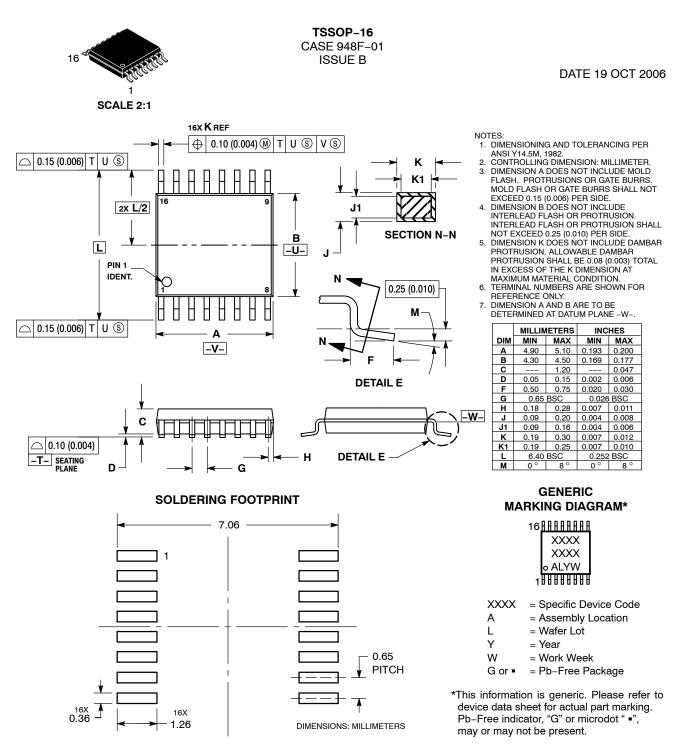

| Symbol          | Parameter                     | Value<br>Typ | Unit | Test Conditions  |
|-----------------|-------------------------------|--------------|------|------------------|
| C <sub>IN</sub> | Input Capacitance             | 4.5          | pF   | $V_{CC} = 5.0 V$ |
| C <sub>PD</sub> | Power Dissipation Capacitance | 40           | pF   | $V_{CC} = 5.0 V$ |

#### **ORDERING INFORMATION**

| Device Order Number | Package               | Shipping <sup>†</sup> |
|---------------------|-----------------------|-----------------------|
| MC74AC139DG         | SOIC-16<br>(Pb-Free)  | 48 Units / Rail       |
| MC74AC139DR2G       | SOIC-16<br>(Pb-Free)  | 2500 Tape & Reel      |
| MC74AC139DTR2G      | TSSOP-16<br>(Pb-Free) | 2500 Tape & Reel      |
| MC74ACT139DG        | SOIC-16<br>(Pb-Free)  | 48 Units / Rail       |
| MC74ACT139DR2G      | SOIC-16<br>(Pb-Free)  | 2500 Tape & Reel      |
| MC74ACT139DTR2G     | TSSOP-16<br>(Pb-Free) | 2500 Tape & Reel      |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.






DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER:                                                         | 98ASB42566B                                                                               | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |                                                   |  |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
| DESCRIPTION:                                                             | SOIC-16                                                                                   |                                                                                                                                                                                     | PAGE 1 OF 1                                       |  |  |  |  |
| ON Semiconductor and ()) are trac<br>ON Semiconductor reserves the right | demarks of Semiconductor Components Indu:<br>to make changes without further notice to an | stries, LLC dba ON Semiconductor or its subsidiaries in the United States<br>y products herein. ON Semiconductor makes no warranty, representation                                  | and/or other countries.<br>or guarantee regarding |  |  |  |  |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.





| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Reposite<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |  |
|------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| DESCRIPTION:     | TSSOP-16    | -                                                                                                                                                                                | PAGE 1 OF 1 |  |  |  |  |
|                  |             | stries, LLC dba ON Semiconductor or its subsidiaries in the United States                                                                                                        |             |  |  |  |  |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative