Micropower Undervoltage Sensing Circuits

MC34164, MC33164, NCV33164

The MC34164 series are undervoltage sensing circuits specifically designed for use as reset controllers in portable microprocessor based systems where extended battery life is required. These devices offer the designer an economical solution for low voltage detection with a single external resistor. The MC34164 series features a bandgap reference, a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation, an open collector reset output capable of sinking in excess of 6.0 mA , and guaranteed operation down to 1.0 V input with extremely low standby current. The MC devices are packaged in $3-$ pin TO-92 (TO-226AA), micro size TSOP-5, 8-pin SOIC-8 and Micro8 surface mount packages. The NCV device is packaged in SOIC-8.

Applications include direct monitoring of the 3.0 V or 5.0 V MPU/logic power supply used in appliance, automotive, consumer, and industrial equipment.

Features

- Temperature Compensated Reference
- Monitors 3.0 V (MC34164-3) or 5.0 V (MC34164-5) Power Supplies
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 6.0 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation With 1.0 V Input
- Extremely Low Standby Current: As Low as $9.0 \mu \mathrm{~A}$
- Economical TO-92 (TO-226AA), TSOP-5, SOIC-8 and Micro8 Surface Mount Packages
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

Figure 1. Representative Block Diagram
This device contains 28 active transistors.

STRAIGHT LEAD

TO-92
CASE 29-10

Pin: 1. Output
2. Ground
3. Input

TSOP-5 SN SUFFIX CASE 483

SOIC-8 D SUFFIX CASE 751

Micro8 DM SUFFIX CASE 846A

PIN CONNECTIONS

(Top View)

TSOP-5
Pin 1. Ground
TO-92
2. Input

Pin 1. Reset
2. Input
3. Reset
3. Ground
4. NC
5. NC

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 8 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Input Supply Voltage	$V_{\text {in }}$	-1.0 to 12	V
Reset Output Voltage	V_{O}	-1.0 to 12	V
Reset Output Sink Current	$\mathrm{I}_{\text {Sink }}$	Internally Limited	mA
Clamp Diode Forward Current, Reset to Input Pin (Note 1)	IF	100	mA
Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air D Suffix, Plastic Package Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air DM Suffix, Plastic Package Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air	P_{D} $\mathrm{R}_{\text {日JA }}$ P_{D} $\mathrm{R}_{\theta \mathrm{JA}}$ P_{D} $\mathrm{R}_{\text {日JA }}$	$\begin{aligned} & 700 \\ & 178 \\ & \\ & 700 \\ & 178 \\ & \\ & 520 \\ & 240 \end{aligned}$	mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$ mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$ mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range MC34164 Series MC33164 Series, NCV33164	T_{A}	$\begin{gathered} 0 \text { to }+70 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Machine Model (MM)	ESD	$\begin{gathered} 4000 \\ 200 \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
MC34164-3, MC33164-3 SERIES, NCV33164-3
ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values T_{A} is the operating ambient temperature range that applies [Notes 2 \& 3], unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
COMPARATOR					
Threshold Voltage					V
High State Output ($\mathrm{V}_{\text {in }}$ Increasing $)$	V_{IH}	2.55	2.71	2.80	
Low State Output ($\mathrm{V}_{\text {in }}$ Decreasing)	$\mathrm{V}_{\text {IL }}$	2.55	2.65	2.80	
Hysteresis (${ }_{\text {S Sink }}=100 \mu \mathrm{~A}$)	V_{H}	0.03	0.06	-	

RESET OUTPUT

Output Sink Saturation $\begin{aligned} & \left(V_{\text {in }}=2.4 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}, I_{\text {Sink }}=0.25 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {OL }}$		$\begin{gathered} 0.14 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	V
Output Sink Current ($\mathrm{V}_{\text {in }}$, Reset $=2.4 \mathrm{~V}$)	ISink	6.0	12	30	mA
$\begin{aligned} & \text { Output Off-State Leakage } \\ & \left(\mathrm{V}_{\text {in }}, \text { Reset }=3.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {in }}, \text { Reset }=10 \mathrm{~V}\right) \end{aligned}$	${ }^{1} \mathrm{R}$ (leak)		$\begin{aligned} & 0.02 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$
Clamp Diode Forward Voltage, Reset to Input Pin ($\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$)	V_{F}	0.6	0.9	1.2	V

TOTAL DEVICE

Operating Input Voltage Range	$\mathrm{V}_{\text {in }}$	1.0 to 10	-	-	V
Quiescent Input Current	$\mathrm{I}_{\text {in }}$				$\mu \mathrm{A}$
$\mathrm{V}_{\text {in }}=3.0 \mathrm{~V}$		-	9.0	15	
$\mathrm{~V}_{\text {in }}=6.0 \mathrm{~V}$		-	24	40	

1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC34164 $\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34164
$=-40^{\circ} \mathrm{C}$ for MC33164, NCV33164 $=+125^{\circ} \mathrm{C}$ for MC33164, NCV33164

MC34164-5, MC33164-5 SERIES, NCV33164-5
ELECTRICAL CHARACTERISTICS (For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, for min/max values T_{A} is the operating ambient temperature range that applies [Notes 5 \& 6], unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
COMPARATOR					
Threshold Voltage High State Output ($\mathrm{V}_{\text {in }}$ Increasing) Low State Output ($\mathrm{V}_{\text {in }}$ Decreasing) Hysteresis ($I_{\text {Sink }}=100 \mu \mathrm{~A}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \end{aligned}$	$\begin{aligned} & 4.15 \\ & 4.15 \\ & 0.02 \end{aligned}$	$\begin{aligned} & 4.33 \\ & 4.27 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 4.45 \\ & 4.45 \end{aligned}$	V

RESET OUTPUT

Output Sink Saturation $\begin{aligned} & \left(\mathrm{V}_{\text {in }}=4.0 \mathrm{~V}, I_{\text {Sink }}=1.0 \mathrm{~mA}\right) \\ & \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{~V}, I_{\text {Sink }}=0.25 \mathrm{~mA}\right) \end{aligned}$	$\mathrm{V}_{\text {OL }}$	-	$\begin{gathered} 0.14 \\ 0.1 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	V
Output Sink Current ($\mathrm{V}_{\text {in }}$, Reset $=4.0 \mathrm{~V}$)	$I_{\text {Sink }}$	7.0	20	50	mA
$\begin{aligned} & \text { Output Off-State Leakage } \\ & \left(\mathrm{V}_{\text {in }}, \text { Reset }=5.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {in }}, \text { Reset }=10 \mathrm{~V}\right) \end{aligned}$	${ }^{1} \mathrm{R}$ (leak)	-	$\begin{aligned} & 0.02 \\ & 0.02 \end{aligned}$		$\mu \mathrm{A}$
Clamp Diode Forward Voltage, Reset to Input Pin ($\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$)	V_{F}	0.6	0.9	1.2	V

TOTAL DEVICE

Operating Input Voltage Range	$\mathrm{V}_{\text {in }}$	1.0 to 10	-	-	V
Quiescent Input Current	$\mathrm{I}_{\text {in }}$				$\mu \mathrm{A}$
$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}$		-	12	20	
$\mathrm{~V}_{\text {in }}=10 \mathrm{~V}$		-	32	50	

4. Maximum package power dissipation limits must be observed.
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
6. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC34164 $\quad \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34164
$=-40^{\circ} \mathrm{C}$ for MC33164, NCV33164 $=+125^{\circ} \mathrm{C}$ for MC33164, NCV33164
7. NCV prefix is for automotive and other applications requiring site and change control.

Figure 2. MC3X164-3 Reset Output Voltage versus Input Voltage

Figure 3. MC3X164-5 Reset Output Voltage versus Input Voltage

Figure 4. MC3X164-3 Reset Output Voltage versus Input Voltage

Figure 6. MC3X164-3 Comparator Threshold Voltage versus Temperature

Figure 8. MC3X164-3 Input Current versus Input Voltage

Figure 5. MC3X164-5 Reset Output Voltage versus Input Voltage

Figure 7. MC3X164-5 Comparator Threshold Voltage versus Temperature

Figure 9. MC3X164-5 Input Current versus Input Voltage

Figure 10. MC3X164-3 Reset Output
Saturation versus Sink Current

Figure 12. Clamp Diode Forward Current versus Voltage

Figure 11. MC3X164-5 Reset Output Saturation versus Sink Current

Figure 13. Reset Delay Time
(MC3X164-5 Shown)

A time delayed reset can be accomplished with the addition of $C_{D L Y}$. For systems with extremely fast power supply rise times (< 500 ns) it is recommended that the $\mathrm{RC}_{\text {DLY }}$ time constant be greater than $5.0 \mu \mathrm{~s} . \mathrm{V}_{\mathrm{th}(\mathrm{MPU})}$ is the microprocessor reset input threshold.

Figure 14. Low Voltage Microprocessor Reset

Comparator hysteresis can be increased with the addition of resistor R_{H}. The hysteresis equation has been simplified and does not account for the change of input current $\mathrm{I}_{\text {in }}$ as $\mathrm{V}_{\text {in }}$ crosses the comparator threshold (Figure 8). An increase of the lower threshold $\Delta \mathrm{V}_{\text {th (lower) }}$ will be observed due to $\mathrm{I}_{\text {in }}$ which is typically $10 \mu \mathrm{~A}$ at 4.3 V . The equations are accurate to $\pm 10 \%$ with R_{H} less than $1.0 \mathrm{k} \Omega$ and R_{L} between $4.3 \mathrm{k} \Omega$ and $43 \mathrm{k} \Omega$.

Figure 15. Low Voltage Microprocessor Reset With Additional Hysteresis (MC3X164-5 Shown)

Figure 16. Voltage Monitor

Figure 17. Solar Powered Battery Charger

Figure 18. MOSFET Low Voltage Gate Drive Protection Using the MC3X164-5

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC33164D-3G	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC33164D-3R2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	
NCV33164D-3R2G*	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC33164DM-3R2G	$\begin{gathered} \text { Micro8 } \\ (\mathrm{Pb}-\mathrm{Fr} e \mathrm{e}) \end{gathered}$	4000 Units / Tape \& Reel
MC33164P-3G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Box
MC33164P-3RAG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Tape \& Reel
MC33164P-3RPG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Pack
MC33164D-5G	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC33164D-5R2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	
NCV33164D-5R2G*	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC33164DM-5R2G	$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Units / Tape \& Reel
MC33164P-5G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Box
MC33164P-5RAG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Tape \& Reel
MC33164P-5RPG	$\begin{gathered} \hline \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Pack
MC34164D-3G	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC34164D-3R2G	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC34164DM-3R2G	$\begin{gathered} \text { Micro8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Units / Tape \& Reel
MC34164P-3G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Box
MC34164P-3RPG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Pack
MC34164D-5G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC34164D-5R2G	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC34164DM-5R2G	Micro8 (Pb-Free)	4000 Units / Tape \& Reel
MC34164SN-5T1G	$\begin{aligned} & \hline \text { TSOP-5 } \\ & \text { (Pb-Free) } \end{aligned}$	3000 Units / Tape \& Reel
MC34164P-5G	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Box
MC34164P-5RAG	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Tape \& Reel
MC34164P-5RPG	$\begin{gathered} \hline \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	2000 Units / Pack

*NCV33164: $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.
\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC34164，MC33164，NCV33164

PIN CONNECTIONS AND MARKING DIAGRAMS

TO－92 MC3x164P－yRA

TSOP－5 SN SUFFIX CASE 483

SOIC－8 D SUFFIX CASE 751

Micro8	Micro8
MC33164DM	MC34164DM
CASE 846A	CASE 846A
8月日月日	8日日月碞
Mlyo	MCyo
AYW•	AYW•
${ }_{1}$ 目日月日	${ }_{1}$ 日月日目

SRC	$=$ Device Code
x	$=$ Device Number 3 or 4
y	$=$ Suffix Number 3 or 5
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
－	＝Pb－Free

STRAIGHT LEAD

BENT LEAD

TO-92 (TO-226) 1 WATT
CASE 29-10
ISSUE D
DATE 05 MAR 2021

END VIEW

TDP VIEW

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRULLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DU NDT INCLUDE MILD FLASH GR GATE PRITRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRETRUSIDN. LEAD WIDTH INCLUDING PROTRUSIUN SHALL NOT EXCEED 0.20. DIMENSIDN b2 LDCATED ABZVE THE DAMBAR PORTIUN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	1.27 BSC		
L	13.80	14.00	14.20

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 1 OF 3 |

ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

TO-92 (TO-226) 1 WATT
 CASE 29-10
 ISSUE D

DATE 05 MAR 2021

FGRMED LEAD
NDTES:

1. DIMENSIUNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CDNTRDLLING DIMENSIDN: MILLIMETERS
3. DIMENSIDNS D AND E DZ NDT INCLUDE MDLD FLASH GR GATE PRDTRUSIDNS.
4. DIMENSIDN b AND b2 DDES NDT INCLUDE DAMBAR PRDTRUSIDN. LEAD WIDTH INCLUDING PRDTRUSIDN SHALL NDT EXCEED 0.20. DIMENSIUN b2 LDCATED ABZVE THE DAMBAR PGRTIDN DF MIDDLE LEAD.

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	3.75	3.90	4.05
A1	1.28	1.43	1.58
b	0.38	0.465	0.55
b2	0.62	0.70	0.78
c	0.35	0.40	0.45
D	7.85	8.00	8.15
E	4.75	4.90	5.05
E2	3.90	---	---
e	2.50 BSC		
L	13.80	14.00	14.20
L2	13.20	13.60	14.00
L3	3.00 REF		

STYLES AND MARKING ON PAGE 3

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 2 OF 3 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10
ISSUE D

STYLE 1:	
PIN 1.	EMITTER
2.	BASE
3.	COLLECTOR
STYLE 6:	
PIN 1.	GATE
2.	SOURCE \& SUBSTRATE
3.	DRAIN
STYLE 11:	
PIN 1.	ANODE
2.	CATHODE \& ANODE
3.	CATHODE
STYLE 16:	
PIN 1.	ANODE
2.	GATE
3.	CATHODE
STYLE 21:	
PIN 1.	COLLECTOR
2.	Emitter
3.	BASE
STYLE 26:	
PIN 1.	V_{cc}
2.	GROUND 2
3.	OUTPUT
STYLE 31:	
PIN 1.	GATE
2.	DRAIN
3.	SOURCE

STYLE 2:	
PIN 1.	BASE
2.	EMITTER
3.	COLLECTOR
STYLE 7:	
PIN 1.	SOURCE
2.	DRAIN
3.	GATE
STYLE 12:	
PIN 1. MAIN TERMINAL 1	
2.	GATE
3.	MAIN TERMINAL 2
STYLE 17:	
PIN 1.	COLLLECTOR
2.	BASE
3.	EMITTER
STYLE 22:	
PIN 1.	SOURCE
2.	GATE
3.	DRAIN
STYLE 27:	
PIN 1. MT	
2.	SUBSTRATE
3.	MT
STYLE 32:	
PIN 1.	BASE
2.	COLLECTOR
3.	

STYLE 3:	
PIN 1.	ANODE
2.	ANODE
3.	CATHODE
STYLE 8:	
PIN 1.	DRAIN
2.	GATE
3.	SOURCE \& SUBSTRATE
STYLE 13:	
PIN 1.	ANODE 1
2.	GATE
3.	CATHODE 2
STYLE 18:	
PIN 1.	ANODE
2.	CATHODE
3.	NOT CONNECTED
STYLE 23:	
PIN 1.	GATE
2.	SOURCE
3.	DRAIN
STYLE 28:	
PIN 1.	CATHODE
2.	ANODE
3.	GATE
STYLE 33:	
PIN 1.	RETURN
2.	INPUT
3.	OUTPUT

STYLE 4:		STYLE 5:	
PIN 1.	CATHODE	PIN 1.	DRAIN
2.	CATHODE	2.	SOURCE
3.	ANODE	3.	GATE
STYLE 9:		STYLE 10:	
PIN 1.	BASE 1	PIN 1.	CATHODE
2.	EMITTER	2.	
3.	BASE 2	3.	ANODE
STYLE 14		STYLE 15:	
PIN 1.	EMITTER	PIN 1.	ANODE 1
2.	COLLECTOR	2.	CATHODE
3.	BASE	3.	ANODE 2
STYLE 19:		STYLE 20:	
PIN 1.	GATE	PIN 1.	NOT CONNECTED
2.	ANODE	2.	CATHODE
3.	CATHODE	3.	ANODE
STYLE 24		STYLE 25:	
PIN 1.	EMITTER	PIN 1.	MT 1
2.	COLLECTOR/ANODE	2.	GATE
3.	CATHODE	3.	MT 2
STYLE 29:		STYLE 30:	
PIN 1.	NOT CONNECTED	PIN 1.	DRAIN
2.	ANODE	2.	GATE
3.	CATHODE	3.	SOURCE
STYLE 34		STYLE 35:	
PIN 1.	INPUT	PIN 1.	GATE
2.	GROUND	2.	COLLECTOR
3.	LOGIC	3.	Emitter

GENERIC
MARKING DIAGRAM*
XXXXX
XXXXX
ALYW•
\quad.

XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " s ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) 1 WATT | PAGE 3 OF 3 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIZNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DDES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN.
4. DIMENSIDNS D AND E DI NDT INCLUDE MDLD FLASH, PRDTRUSID IR GATE BURRS, MLLD FLASH, PRDTRUSIUNS, IR GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH GR PRDTRUSIDN. INTERLEAD FLASH IR PRZTRUSIZN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE Tロ THE LIWEST PGINT UN THE PACKAGE BUDY.
GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FADTPRINT

DIM	MILLIMETERS		
	MIN.	NDM.	MAX.
A	---	---	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	
e	0.65 BSC		
H_{E}	4.75	4.90	5.05
L	0.40	0.55	0.70

$$
\begin{aligned}
& \text { Solderng an } \\
& \text { SLIDERRT/D. }
\end{aligned}
$$

STYLE 3:

STYLE 1:	STYLE 2:
PIN 1. SOURCE	PIN 1. SOURCE 1
2. SOURCE	2. GATE 1
3. SOURCE	3. SOURCE 2
4. GATE	4. GATE 2
5. DRAIN	5. DRAIN 2
6. DRAIN	6. DRAIN 2
7. DRAIN	7. DRAIN 1
8. DRAIN	8. DRAIN 1

PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE
3. P-GATE
4. P-GATE
5. P-DRAIN
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

