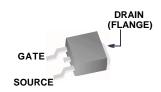
MOSFET, N-Channel, POWERTRENCH®

150 V, 21 A, 66 m Ω

Features

- $r_{DS(ON)} = 58 \text{ m}\Omega$ (Typ.), $V_{GS} = 10 \text{ V}$, $I_D = 7 \text{ A}$
- $Q_g(tot) = 19 \text{ nC (Typ.)}, V_{GS} = 10 \text{ V}$
- Low Miller Charge
- Low Q_{RR} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Applications


- DC/DC Converters and Off-Line UPS
- Distributed Power Architectures and VRMs
- Primary Switch for 24 V and 48 V Systems
- High Voltage Synchronous Rectifier
- Direct Injection / Diesel Injection Systems
- 42 V Automotive Load Control
- Electronic Valve Train System

ON Semiconductor®

www.onsemi.com

DPAk3 (TO-252 3 LD) CASE 369AS

MARKING DIAGRAM

\$Y&Z&3&K FDD2582

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = Numeric Date Code

&K = Lot Code

FDD2582 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_C = 25^{\circ}C$, Unless otherwise noted)

Symbol	Parameter	Ratings	Units
VDSS	Drain to Source Voltage	150	V
VGS	Gate to Source Voltage	±20	V
ID	Drain Current —Continuous (T _C = 25°C, V _{GS} = 10 V)	21	Α
	-Continuous (T _C = 100°C, V _{GS} = 10 V)	15	
	-Continuous ($T_{amb} = 25$ °C, $V_{GS} = 10$ V, $R_{\theta JA} = 52$ °C/W)	3.7	
	-Pulsed	See Figure 4	
EAS	Single Pulse Avalanche Energy (Note 1)	59	mJ
PD	Power Dissipation	95	W
	Derate above 25°C	0.63	W/°C
TJ, TSTG	Operating and Storage Temperature	-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

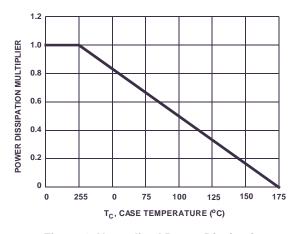
1. Starting $T_J = 25$ °C, L = 1.17 mH, $I_{AS} = 10$ A.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Units
ReJC	Thermal Resistance, Junction to Case TO–252 1.58		00/14/
RθJA	ReJA Thermal Resistance, Junction to Ambient TO-252 100		°C/W
RθJA	Thermal Resistance, Junction to Ambient TO-252, 1 in ² copper pad area	52	

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking		Device	Package	Shipping [†]		
	FDD2582	FDD2582	DPAK3 (TO-252 3 LD) (Pb-Free, Halide Free)	2500 units / Tape & Reel		


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Тур	Max	Units
OFF CHAR	ACTERISTICS	•				
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	150			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 120 V, V _{GS} = 0 V			1	μΑ
		$V_{DS} = 120 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 150^{\circ}\text{C}$			250	
I_{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V			±100	nA
ON CHARA	ACTERISTICS					
$V_{GS(TH)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2		4	V
r _{DS(on)}	Drain to Source On Resistance	I _D = 7 A, V _{GS} = 10 V		0.058	0.066	Ω
		$I_D = 4 \text{ A}, V_{GS} = 6 \text{ V}$ $I_D = 7 \text{ A}, V_{GS} = 10 \text{ V}, T_C = 150^{\circ}\text{C}$		0.066 0.151	0.099 0.172	
DVNAMIC	CHARACTERISTICS	ID = 7 A, VGS = 10 V, IC = 130 C		0.131	0.172	
	CHARACTERISTICS	V 05 V V 0 V 6 4 MHz	1	4005	1	
C _{ISS}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		1295		pF
Coss	Output Capacitance			145		pF _
C _{RSS}	Reverse Transfer Capacitance			30		pF
Q _{g(TOT)}	Total Gate Charge at 10 V	$V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 75 \text{ V}, I_D = 7 \text{ A},$ $I_g = 1.0 \text{ mA}$		19	25	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0 \text{ V to } 4.5 \text{ V}$		2.4	3.2	nC
Q_{gs}	Gate to Source Gate Charge			6.2		nC
Q _{gs2}	Gate Charge Threshold to Plateau			3.8		nC
Q_{gd}	Gate to Drain "Miller" Charge]		4.2		nC
RESISTIVE	SWITCHING CHARACTERISTICS (Vo	_{GS} = 10 V)				
t_{ON}	Turn-On Time	$V_{DD} = 75 \text{ V}, I_D = 7 \text{ A}$			41	ns
t _{d(ON)}	Turn-On Delay Time	$V_{GS} = 10 \text{ V}, R_{GS} = 16 \Omega$		8		ns
t _r	Rise Time			19		ns
t _{d(OFF)}	Turn-Off Delay Time			32		ns
t _f	Fall Time	7		19		ns
t _{OFF}	Turn-Off Time	1			77	ns
DRAIN-SO	URCE DIODE CHARACTERISTICS	•			•	
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 7 A			1.25	V
		I _{SD} = 4 A			1.0	
t rr	Reverse Recovery Time	$I_{SD} = 7 \text{ A}, \Delta I_{SD}/\Delta t = 100 \text{ A/}\mu\text{s}$			67	ns
Q _{RR}	Reverse Recovery Charge	$I_{SD} = 7 \text{ A}, \Delta I_{SD}/\Delta t = 100 \text{ A/}\mu\text{s}$			134	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS $T_C = 25^{\circ}C$ unless otherwise noted.

25 V_{GS} = 10V 20 V_{GS} = 10V 10 25 5 0 25 50 75 100 125 150 175 T_C, CASE TEMPERATURE (°C)

Figure 1. Normalized Power Dissipation vs.
Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs. Case Temperature

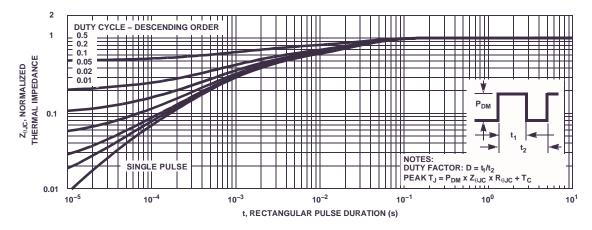


Figure 3. Normalized Maximum Transient Thermal Impedance

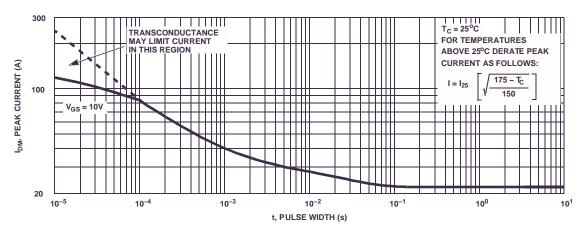


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS $T_C = 25^{\circ}C$ unless otherwise noted.

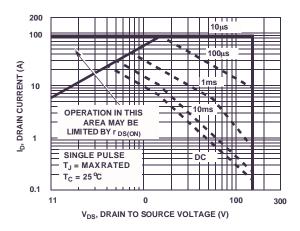


Figure 5. Forward Bias Safe Operating Area

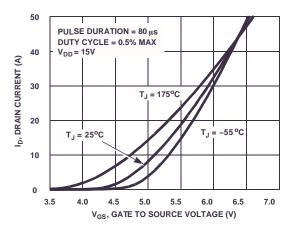


Figure 7. Transfer Characteristics

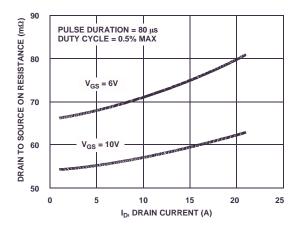
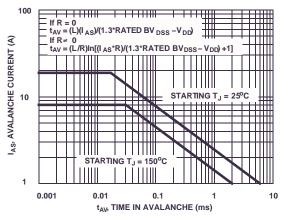



Figure 9. Drain to Source On Resistance vs.

Drain Current

Note: Refer to Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

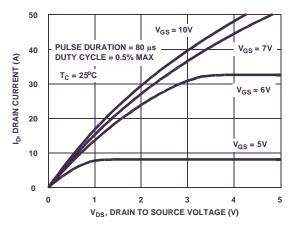


Figure 8. Saturation Characteristics

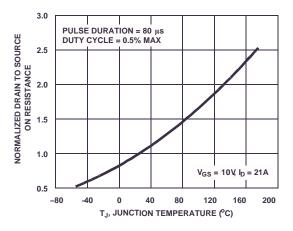


Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

TYPICAL CHARACTERISTICS $T_C = 25^{\circ}C$ unless otherwise noted.

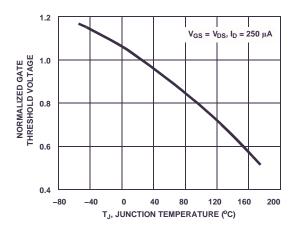


Figure 11. Normalized Gate Threshold vs. Junction Temperature

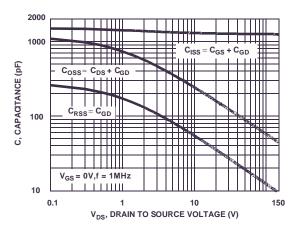


Figure 13. Capacitance vs. Drain to Source Voltage

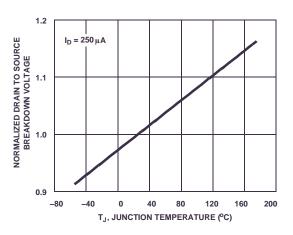


Figure 12. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

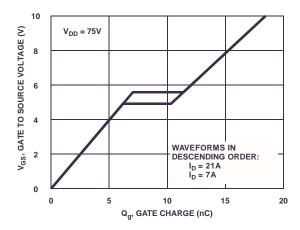


Figure 14. Cate Charge Waveforms for Constant Gate Currents

TEST CIRCUITS AND WAVEFORMS

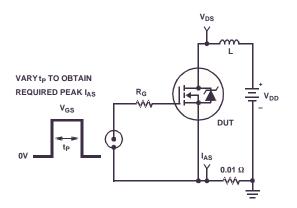


Figure 15. Unclamped Energy Test Circuit

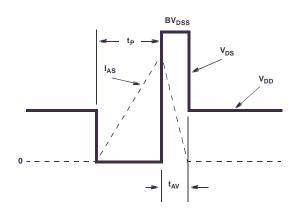


Figure 16. Unclamped Energy Waveforms

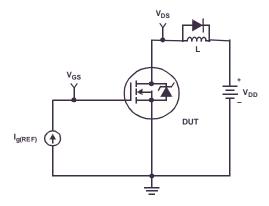


Figure 17. Gate Charge Test Circuit

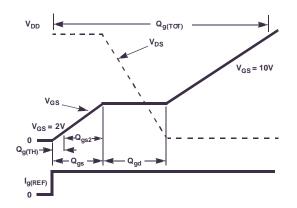


Figure 18. Gate Charge Waveforms

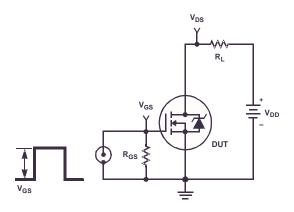


Figure 19. Switching Time Test Circuit

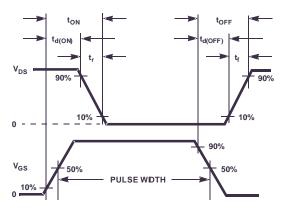


Figure 20. Switching Time Waveforms

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore, the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$\mathsf{P}_{\mathsf{DM}} = \frac{(\mathsf{T}_{\mathsf{JM}} - \mathsf{T}_{\mathsf{A}})}{\mathsf{R}_{\mathsf{\theta}\mathsf{JA}}} \tag{eq. 1}$$

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

ON Semiconductor provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR–4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state

junction temperature or power dissipation. Pulse applications can be evaluated using the ON Semiconductor device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 Area in [in²] (eq. 2)

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 Area in [cm²] (eq. 3)

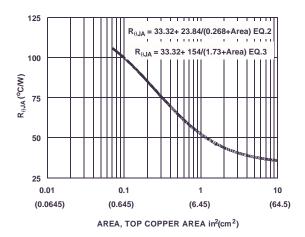


Figure 21. Thermal Resistance vs. Mounting Pad Area

PSPICE Electrical Model

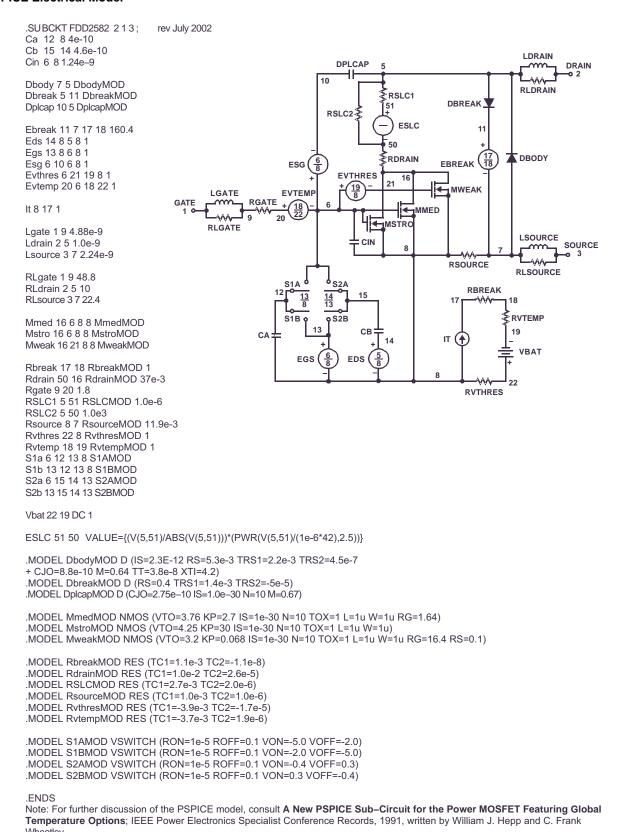
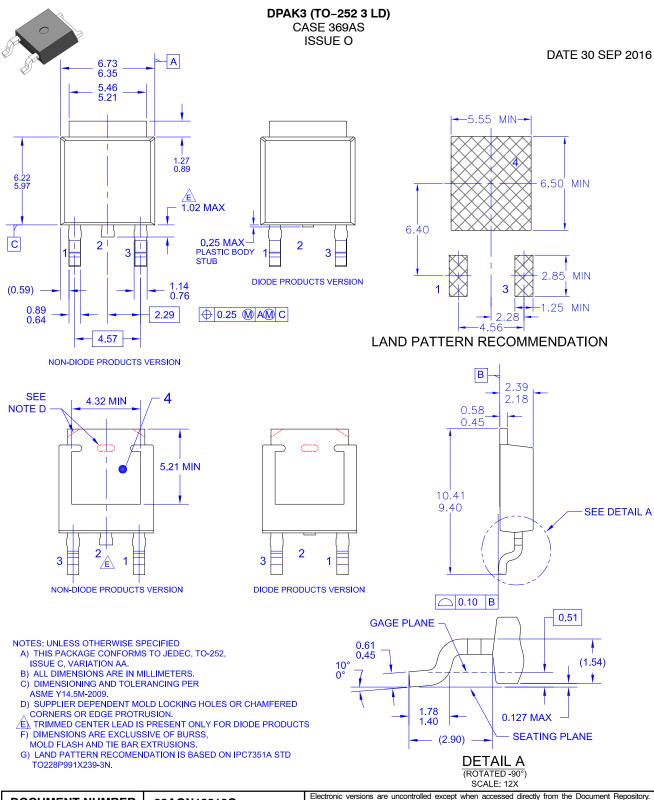


Figure 22. PSPICE Electrical Model

SABER Electrical Model

```
REV July 2002
ttemplate FDD2582 n2,n1,n3
electrical n2,n1,n3
var i iscl
dp..model dbodymod = (isl=2.3e-12,rs=5.3e-3,trs1=2.2e-3,trs2=4.5e-7,cjo=8.8e-10,m=0.64,tt=3.8e-8,xti=4.2)
dp..model dbreakmod = (rs=0.4,trs1=1.4e-3,trs2=-5.0e-5)
dp..model dplcapmod = (cjo=2.75e-10,isl=10.0e-30,nl=10,m=0.67)
m..model mmedmod = (type=_n,vto=3.76,kp=2.7,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=4.25,kp=30,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=3.2,kp=0.068,is=1e-30, tox=1,rs=0.1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5.0,voff=-2.0)
                                                                                                            LDRAIN
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2.0,voff=-5.0)
                                                                   DPLCAP
                                                                                                                     DRAIN
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.4,voff=0.3)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.3,voff=-0.4)
                                                               10
                                                                                                           RLDRAIN
c.ca n12 n8 = 4e-10
                                                                             ≨RSLC1
c.cb n15 n14 = 4.6e-10
                                                                 RSLC2 ₹
c.cin n6 n8 = 1.24e-9
                                                                                ISCL
dp.dbody n7 n5 = model=dbodymod
                                                                                          DBREAK 3
                                                                              50
dp.dbreak n5 n11 = model=dbreakmod
                                                                             RDRAIN
dp.dplcap n10 n5 = model=dplcapmod
                                                         ESG
                                                                                                           DBODY
                                                                   EVTHRES
spe.ebreak n11 n7 n17 n18 = 160.4
                                                                      1<u>9</u>
8
                                                                                            MWFAK
                                        LGATE
                                                       EVTEMP
spe.eds n14 n8 n5 n8 = 1
                                                RGATE
                                        _____
                                                         18
22
spe.egs n13 n8 n6 n8 = 1
                                                                                            EBREAK
                                                                                    MMFD
spe.esg n6 n10 n6 n8 = 1
                                               9
                                                      20
                                                                        MSTR
                                       RLGATE
spe.evthres n6 n21 n19 n8 = 1
                                                                                                           LSOURCE
spe.evtemp n20 n6 n18 n22 = 1
                                                                         CIN
                                                                                                                    SOURCE
                                                                                  8
i.it n8 n17 = 1
                                                                                         RSOURCE
                                                                                                          RLSOURCE
I.lgate n1 n9 = 4.88e-9
                                                                                               RBREAK
I.ldrain n2 n5 = 1.0e-9
                                                                                            17
I.Isource n3 n7 = 2.24e-9
                                                                                                         RVTEMP
                                                                 oS2B
res.rlgate n1 n9 = 48.8
                                                                        СВ
                                                                                                         19
                                                  CA
                                                                                          IT
                                                                              14
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 22.4
                                                                                                           VBAT
                                                           EGS
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
                                                                                               RVTHRES
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=1.1e-3,tc2=-1.1e-8
res.rdrain n50 n16 = 37e-3, tc1=1.0e-2,tc2=2.6e-5
res.rgate n9 n20 = 1.8
res.rslc1 n5 n51 = 1.0e-6, tc1=2.7e-3,tc2=2.0e-6
res.rslc2 n5 n50 = 1.0e3
res.rsource n8 n7 = 11.9e-3, tc1=1.0e-3,tc2=1.0e-6
res.rvthres n22 n8 = 1, tc1=-3.9e-3,tc2=-1.7e-5
res.rvtemp n18 n19 = 1, tc1=-3.7e-3,tc2=1.9e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/42))** 2.5))
```

Figure 23. SABER Electrical Model


SPICE / SABER Thermal Model

SPICE Thermal Model JUNCTION REV 19 July 2002 FDD2582 CTHERM1 TH 6 1.6e-3 CTHERM2 6 5 4.5e-3 CTHERM3 5 4 5.0e-3 CTHERM1 RTHERM1 CTHERM4 4 3 8.0e-3 CTHERM5 3 2 8.2e-3 CTHERM6 2 TL 4.7e-2 6 RTHERM1 TH 6 3.3e-2 RTHERM2 6 5 7.9e-2 RTHERM3 5 4 9.5e-2 CTHERM2 RTHERM2 RTHERM4 4 3 1.4e-1 RTHERM5 3 2 2.9e-1 RTHERM6 2 TL 6.7e-1 5 SABER Thermal Model SAB RTHERM3 CTHERM3 thermal_c th, tl ctherm.ctherm1 th 6 =1.6e-3 ctherm.ctherm2 6 5 =4.5e-3 ctherm.ctherm3 5 4 =5.0e-3 ctherm.ctherm4 4 3 =8.0e-3 ctherm.ctherm5 3 2 =8.2e-3 RTHERM4 CTHERM4 ctherm.ctherm6 2 tl =4.7e-2 rrtherm.rtherm1 th 6 =3.3e-2 rtherm.rtherm2 6 5 = 7.9e-2 3 rtherm.rtherm3 5 4 = 9.5e-2 rtherm.rtherm4 4 3 =1.4e-1 rtherm.rtherm5 3 2 =2.9e-1 CTHERM5 RTHERM5 rtherm.rtherm6 2 tl =6.7e-1 2 RTHERM6 CTHERM6 CASE

Figure 24. SPICE / SABER Thermal Model

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

		Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"			
DESCRIPTION:	DPAK3 (TO-252 3 LD)		PAGE 1 OF 1		

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative