

4 CHANNEL LOW CAPACITANCE TVS DIODE ARRAY

Product Summary

V _{BR} (Min)	I _{PP} (Max)	C _{I/O} (Typ)
4.5V	45A	2.1pF

Description

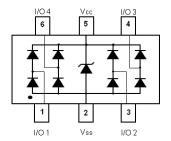
The D5V0P4UR6SO is a high-performance device suitable for protecting four high-speed I/Os. These devices are assembled in SOT26 package and have high ESD surge capability and low capacitance.

Applications

Typically used at high-speed ports such as USB 2.0, IEEE1394 (FireWire[®], iLink), Serial ATA, DVI™, HDMI™ and PCI™.

Features

- Low Clamping Voltage: Typical 7.5V at 12A 100ns, TLP, I/O to Vss; Typical 5.8V at 12A 100ns, TLP, Vcc to Vss
- IEC 61000-4-2 (ESD): Air ±30kV, Contact ±30kV
- IEC 61000-4-4 (EFT): ±80A (5/50ns)
- IEC 61000-4-5 (Lighting): 20A, I/O to Vss; 45A, Vcc to Vss
- TLP Dynamic Resistance: 0.15Ω, I/O to Vss; 0.07Ω, Vcc to Vss
- Low Channel Input Capacitance of 2.1pF Typical
- 4 Channels of ESD Protection
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. https://www.diodes.com/quality/product-definitions/


Mechanical Data

- Package: SOT26
- Package Material: Molded Plastic, "Green" Molding Compound.
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Schematic
- Terminals Finish Matte Tin Pleated Leadframe.
 Solderable per MIL-STD-202, Method 208 (23)
- Weight: 0.016 grams (Approximate)

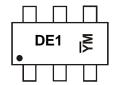
SOT26

Top View

Device Schematic

Ordering Information (Note 4)

Part Number	Compliance	Package Marking Re		Reel Size (inches)	Tape Width (mm)	Packing		
Fait Nullibei	Compliance	Package	Warking	Reel Size (Iliches)	rape widin (ililii)	Qty.	Carrier	
D5V0P4UR6SO-7	Standard	SOT26	DE1	7	8	3,000	Tape & Reel	


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

FireWire is a registered trademark of Apple Computer, Inc.

Marking Information

 $\begin{array}{l} \underline{D}\text{E1} = \text{Product Type Marking Code} \\ \overline{Y}\text{M} = \text{Date Code Marking} \\ Y = \text{Year (ex: J} = 2022) \\ \text{M} = \text{Month (ex: 2} = \text{February)} \\ \text{Note: "---" Represents Internal Code} \end{array}$

Date Code Key

Year	2016		2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
Code	D		J	K	L	М	N	0	Р	R	S	T
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

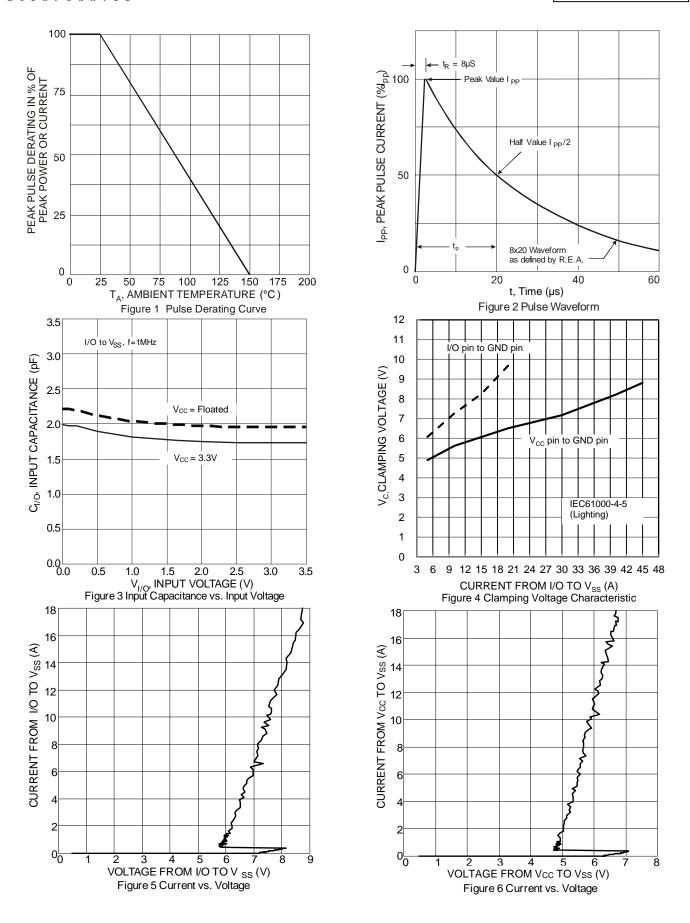
Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit	Conditions
Peak Pulse Current, per IEC 61000-4-5	Ipp	20	Α	I/O to V _{SS} , 8/20µs
Peak Pulse Current, per IEC 61000-4-5	Ірр	45	Α	Vcc to Vss, 8/20µs
Peak Pulse Power, per IEC 61000-4-5	P _{PP}	180	W	I/O to Vss, 8/20µs
Operating Supply Voltage (DC)	V_{DC}	3.6	V	V _{CC} to V _{SS}
ESD Protection – Contact Discharge, per IEC 61000-4-2	Vesd_contact	±30	kV	I/O to V _{SS} , V _{CC} to V _{SS}
ESD Protection – Air Discharge, per IEC 61000-4-2	Vesd_air	±30	kV	I/O to Vss, Vcc to Vss
Operating and Storage Temperature Range	TJ, TSTG	-55 to +150	°C	_

Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation Typical (Note 5)	PD	300	mW
Thermal Resistance, Junction to Ambient Typical (Note 5)	R _{θJA}	417	°C/W

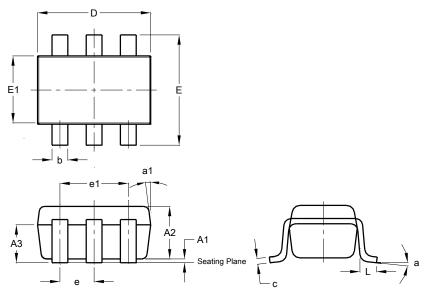
Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Тур	Max	Unit	Test Conditions
Reverse Working Voltage	V _{RWM}	_	_	3.3	V	V _{CC} to V _{SS}
Reverse Leakage Current (Note 6)	ILEAK	_	_	5	μA	Vcc = 3.3V, Vcc to Vss
Channel Leakage Current (Note 6)	ICH-LEAK	_	_	1	μA	V _{I/O} = 3.3V, I/O to Vss
Reverse Breakdown Voltage	V _{BR}	4.5	_	7	V	IBR = 1mA, Vcc to Vss
Forward Clamping Voltage	VF	_	0.8	1.2	V	I _F = 15mA, V _{SS} to V _{CC}
Deverse Clamping Valtage (Note 7)	\/ ·	_	6	_	V	IPP = 5A, I/O to Vss, 8/20µs
Reverse Clamping Voltage (Note 7)	Vc_5A	_	4.8	_	V	IPP = 5A, Vcc to Vss, 8/20µs
EOD Olessa's a Velta as	VESD	_	7.5	_	V	TLP, 12A, tp = 100ns, I/O to Vss
ESD Clamping Voltage		_	5.8	_		TLP, 12A, tp = 100ns, Vcc to Vss
Dynamic Resistance	Pour	_	0.15	_	Ω	TLP, 12A, t _P = 100ns, I/O to V _{SS}
Dynamic Resistance	Rdif	_	0.07	_	12	TLP, 12A, tp = 100ns, Vcc to Vss
Channel Innut Conscitones	Corr	_	2.1	2.5	pF	V _{I/O} = 1.65V, V _{CC} = 3.3V, f = 1MHz
Channel Input Capacitance	C _{I/O}	_	2.4	3.0	pF	V _{I/O} = 1.65V, V _{CC} = floated, f = 1MHz
			0.05		ηE	Vss = 0V, I/O = 1.65V, Vcc = 3.3V, f = 1MHz,
Variation of Channel Input Capacitance	ΔCI/O	_	0.05	_	pF	I/O_x to V _{SS} - I/O_y to V _{SS}
variation of Charmer Input Capacitance	ΔΟΙ/Ο	_	0.04	_	pF	Vss = 0V, I/O = 1.65V, Vcc = floated, f = 1MHz, I/O_x to Vss - I/O_y to Vss

Notes: 5. Device mounted on FR-4 PCB pad layout (2oz copper) as shown on Diodes Incorporated's website at http://www.diodes.com/package-outlines.html.

^{6.} Short duration pulse test used to minimize self-heating effect.

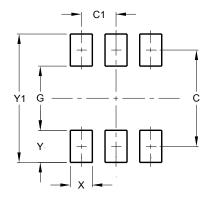
^{7.} Clamping voltage value is based on an $8x20\mu s$ peak pulse current (I_{PP}) waveform.



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT26



SOT26						
Dim	Min	Max	Тур			
A1	0.013	0.10	0.05			
A2	1.00	1.30	1.10			
A3	0.70	0.80	0.75			
b	0.35	0.50	0.38			
С	0.10	0.20	0.15			
D	2.90	3.10	3.00			
е	-	_	0.95			
e1	-	_	1.90			
Е	2.70	3.00	2.80			
E1	1.50	1.70	1.60			
L	0.35	0.55	0.40			
а	_	_	8°			
a1	_	_	7°			
All	Dimen	sions	in mm			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT26

Dimensions	Value (in mm)
C	2.40
C1	0.95
G	1.60
Х	0.55
Y	0.80
V1	3.20

March 2022

© Diodes Incorporated

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2022 Diodes Incorporated

www.diodes.com