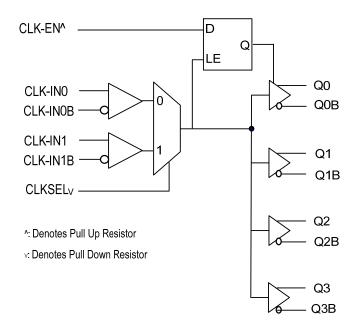
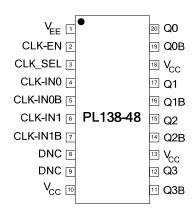


FEATURES

- Four differential 2.5V/3.3V LVPECL output pairs.
- Output Frequency: ≤ 1GHz.
- Two selectable differential input pairs.
- Translates any standard single-ended or differential input format to LVPECL output. It can accept the following standard input formats and more:
 - o LVPECL, LVCMOS, LVDS, HCSL, SSTL, LVHSTL, CML.
- Output Skew: 25ps (typ.).
- Part-to-part skew: 140ps (typ.).
- Propagation delay: 1.5ns (typ.).
- Additive Jitter: <100 fs (typ.).
- Operating Supply Voltage: 2.375V ~ 3.63V.
- Operating temperature range from -40°C to 85°C.
- Package availability: 20-pin TSSOP.

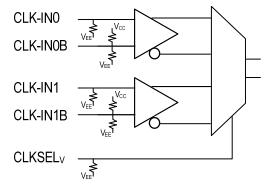

DESCRIPTION


The PL138-48 is a high performance low-cost 1: 4 outputs Differential LVPECL fanout buffer.

PhaseLink's family of Differential LVPECL buffers are designed to operate from a single power supply of 2.5V±5% or 3.3V±10%. The differential input pairs are designed to accept most standard input signal levels, using an appropriate resistor bias network, and produce a high quality set of outputs with the lowest possible skew on the outputs, which is guaranteed for part-to-part or lot-to lot skew.

Designed to fit in a small form-factor package, PL138 family offers up to 1GHz of output operation with very low-power consumption, and lowest additive jitter of any comparable device.

BLOCK DIAGRAM


20-Pin TSSOP Package

PIN DESCRIPTIONS

Name	Package Pin #	Type	Description					
	LQFP-20	(Mode)	·					
V _{EE}	1	Power	Power Supply pin connection					
CLK-EN	2	Input (Pullup)	Synchronizing clock enable. When HIGH, clock outputs follow clock input. When 'Low', Q outputs are forced low, QB outputs are forced high. LVTTL / LVCMOS interface levels.					
CLK-SEL	3	Input (Pulldown)	Clock select input. When HIGH, selects CLK1 input. When LOW, selects CLK0 input. LVTTL / LVCMOS interface levels.					
CLK-IN0	4	Input (Pulldown)	True part of differential clock input signal.					
CLK-IN0B	5	Input (Pullup/Pulldown)	Complementary part of differential clock input signal.					
CLK-IN1	6	Input (Pulldown)	True part of differential clock input signal.					
CLK-IN1B	7	Input (Pullup/Pulldown)	Complementary part of differential clock input signal.					
DNC	8, 9	-	Do Not Connect.					
Vcc	10, 13, 18	Power	Power Supply pin connection					
QB0 ~ QB3	11, 14, 16, 19	Output	LVPECL Complementary output					
Q0 ~ Q3	12, 15, 17, 20	Output	LVPECL True output					

INPUT LOGIC BLOCK DIAGRAM

INPUT PIN CHARACTERISTICS

Parameter	Min.	Тур.	Max.	Units
Input Pulldown Resistor		75		kΩ
Pullup/Pulldown Resistors		100		kΩ

INPUT CLOCK CONTROL SELECTION

CLK_SEL	Selected Source
0	CLK-IN0
1	CLK-IN1

INPUT CLOCK FUNCTION

	Inputs	Outputs				
CLK-EN	CLKSEL	Source	Q0:Q3	Q0B:Q3B		
0	0	CLK-IN0	Disabled Low	Disabled High		
0	1	CLK-IN1	Disabled Low	Disabled High		
1	0	CLK-IN0	Enabled	Enabled		
1	1	CLK-IN1	Enabled	Enabled		

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	V_{DD}		4.6	V
Input Voltage, dc	VI	-0.5	V _{DD} +0.5	V
Output Voltage, dc	Vo	-0.5	V _{DD} +0.5	\
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*	T _A	-40	85	°C
Junction Temperature	TJ		110	°C
Lead Temperature (soldering, 10s)			260	°C
ESD Protection, Human Body Model	2			kV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

DC CHARACTERISTICS, VCC = 3.3V; VEE = 0V

Parameter	Parameter			-40°C			25°C			80°C		Units
Parameter			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullits
Output High Vo	oltage*	Vон	2.215	2.320	2.420	2.275	2.350	2.420	2.275	2.35	2.420	V
Output Low Vo	Itage*	Vol	1.470	1.610	1.745	1.490	1.585	1.680	1.490	1.585	1.680	V
Input High Voltag	ge	VIH	2.075		2.420	2.135		2.420	2.135		2.420	V
Input Low Volta	age	VIL	1.470		1.890	1.490		1.825	1.490		1.825	V
Output Voltage R	eference**	VBB	1.86		1.98	1.92		2.04	1.92		2.04	V
Input High Voltage Range † ††	e Common Mode	VCMR	1.2		3.3	1.2		3.3	1.2		3.3	V
Input High Current	CLK-IN0, CLK-IN1	Іін			75			75			75	μA
Input Low Current	CLK-IN0B, CLK-IN1B	lıL	-75			-75			-75			μA

Input and output parameters vary 1:1 with Vcc when Vcc varies ±10%.

^{*} Note: Operating Temperature is guaranteed by design for all parts (COMMERCIAL and INDUSTRIAL), but tested for COMMERCIAL grade only.

^{*} Outputs terminated with 50Ω to VCCO – 2V.

^{**} Single-ended input operation is limited to Vcc ≥ 3V in LVPECL mode.

[†] Common mode voltage is defined as VIH

 $^{^{++}}$ For single-ended applications, the maximum input voltage for CLK-INx, CLK-INxB is V_{CC} + 0.3V

DC CHARACTERISTICS, VCC = 2.5V; VEE = 0V

Dovometer		Symbol		-40°C			25°C			80°C		Units
Parameter	Parameter Sy		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Ullits
Output High Vo	ltage*	Vон	1.415	1.520	1.620	1.475	1.550	1.620	1.475	1.55	1.620	V
Output Low Vo	ltage*	Vol	0.670	0.810	0.945	0.690	0.785	0.880	0.690	0.785	0.880	V
Input High Voltag	је	VIH	1.275		1.620	1.335		1.620	1.335		1.620	V
Input Low Volta	ige	VIL	0.670		1.090	0.690		1.025	0.690		1.025	V
Input High Voltage Range [†]	e Common Mode	VCMR	1.2		2.5	1.2		2.5	1.2		2.5	V
Input High Current	CLK-IN0, CLK-IN1	Іін			60			60			60	μΑ
Input Low Current	CLK-IN0B, CLK-IN1B	lıL	-60			-60			-60			μΑ

Input and output parameters vary 1:1 with Vcc when Vcc varies ±5%.

AC Electrical Characteristics

 V_{cc} = -3.8V to -2.375V or, V_{cc} = 2.375V to 3.8V; V_{EE} = 0V, T_A = -40°C to 85°C

Parameter		Symbol		-40°C			25°C			80°C		Units
Parameter	Parameter		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Output Frequency		f_{MAX}			700			700			700	MHz
Propagation Delay*		t_{PD}	600	680	750	650	725	790	690	790	890	ps
Output Skew ** †		tsk(o)		25	37		25	37		25	37	ps
Part-to-Part Skew *** †		tsk(pp)		85	225		85	225		85	225	ps
Buffer Additive Phase Jitte refer to Additive Phase Jit		t _{APJ}		0.10			0.10			0.10		ps
Peak-to-Peak Input Vol (Differential Configurati		VPP	150	800	1200	150	800	1200	150	800	1200	mV
Output Rise/Fall Time	20% to 80%	t _R / t _F	200		700	200		700	200		700	ps

All parameters are measured at $f \le 700MHz$, unless otherwise noted.

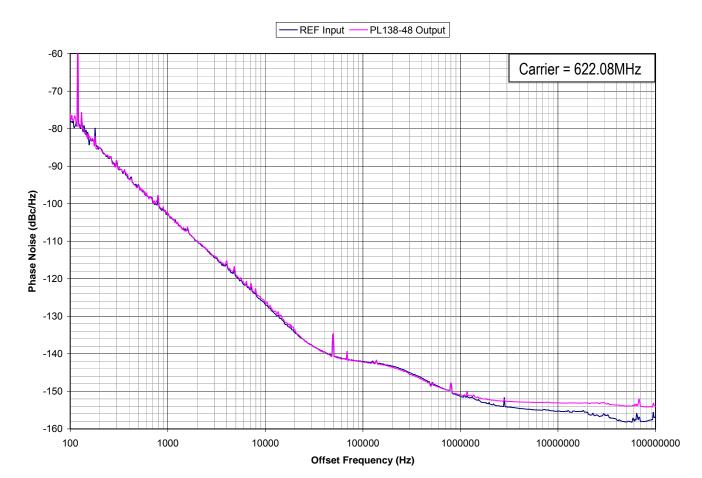
^{*} Outputs terminated with 50Ω to VCCO – 2V.

^{**} Common mode voltage is defined as VIH

[†] For single-ended applications, the maximum input voltage for CLK-INx, CLK-INxB is V_{CC} + 0.3V

^{*} Measured from the differential input crossing point to the differential output crossing point.

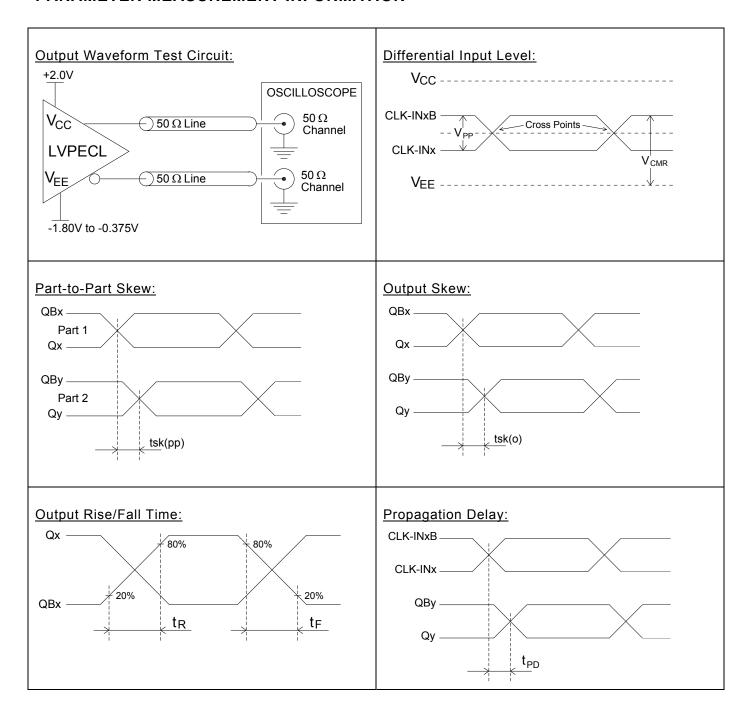
^{**} Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross points.


^{***} Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

[†]This parameter is defined in accordance with JEDEC Standard 65.

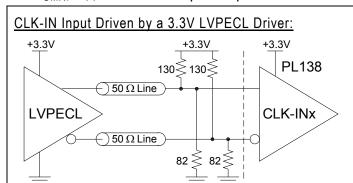
NOISE CHARACTERISTICS (Commercial and Industrial Temperature Devices)

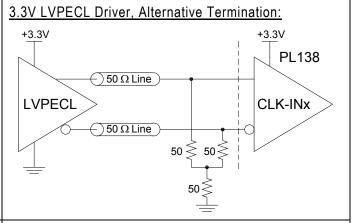
Parameter	Description	Test Conditions	Min.	Тур.	Max.	Unit
	V _{DD} = 3.3V, Frequency = 622.08MHz Offset = 12KHz ~ 20MHz		20	40	fs	
	t _{APJ} Additive Phase Jitter	V _{DD} = 3.3V, Frequency = 156.25MHz Offset = 12KHz ~ 20MHz		50	100	fs
T _{AP} J		V _{DD} = 3.3V, Frequency = 50MHz Offset = 1KHz ~ 1MHz		50	100	fs
		V _{DD} = 3.3V, Frequency = 25MHz Offset = 1KHz ~ 1MHz		50	100	fs

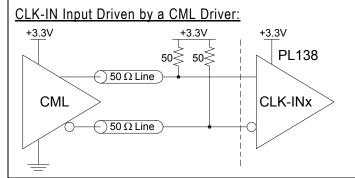


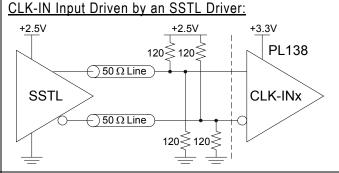
When a buffer is used to pass a signal then the buffer will add a little bit of its own noise. The phase noise on the output of the buffer will be a little bit more than the phase noise in the input signal. To quantify the noise addition in the buffer we compare the Phase Jitter numbers from the input and the output. The difference is called "Additive Phase Jitter". The formula for the Additive Phase Jitter is as follows:

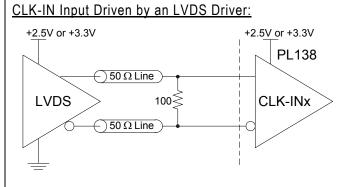
Additive Phase Jitter = $\sqrt{\text{(Output Phase Jitter)}^2 - \text{(Input Phase Jitter)}^2}$

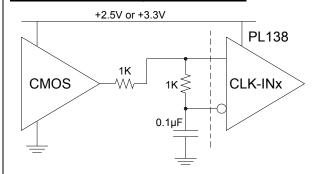

PARAMETER MEASUREMENT INFORMATION

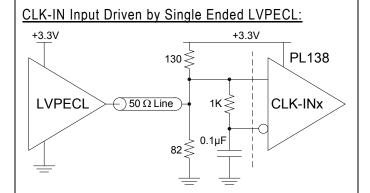




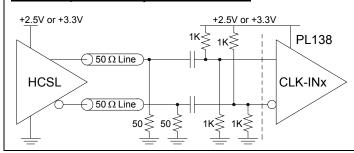

APPLICATION INFORMATION


The following circuits show different configurations for different input logic type signals. For good signal integrity at the PL138 input, the signals need to be properly terminated according to the logic type requirements. The signals need to be presented at the PL138 input according to V_{CMR} , V_{PP} and other input requirements.



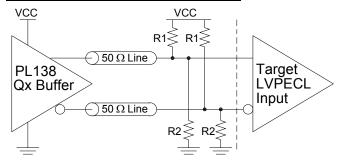


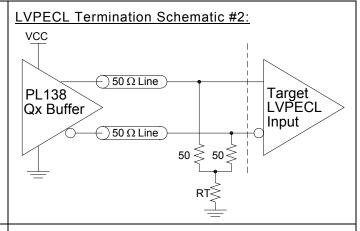
This circuit is for compatibility only. AC coupling is not really required for LVDS. The V_{CMR} range of the PL138 reaches low enough that LVDS signals can be connected directly to the PL138 input like in the circuit to the left.



CLK-IN Input Driven by a CMOS Driver:

CLK-IN Input Driven by an HCSL Driver:




HCSL presents its signals very close to the ground rail, below the V_{CMR} range, so the HCSL signals can not be connected to the PL138 input directly. AC coupling is required for HCSL signals on the PL138 input.

TERMINATION FOR LVPECL OUTPUTS

The required termination for LVPECL is 50Ω to a V_{CC}-2V DC voltage level. Below are two schematics to implement this termination.

LVPECL Termination Schematic #1:

VCC=3.3V, Ideal values: R1=127 Ω , R2=82.5 Ω Commercial values (E24): R1=130 Ω , R2=82 Ω

VCC=2.5V, Ideal values: R1=250 Ω , R2=62.5 Ω Commercial values (E24): R1=240 Ω , R2=62 Ω

Schematic #2 is an alternative simplified termination.

VCC=3.3V, Ideal value: RT=48.7 Ω Commercial value: RT=50 Ω (E24: 51 Ω) VCC=2.5V, Ideal value: RT=18.7 Ω

Commercial value: RT=18 Ω

POWER CONSIDERATIONS

Driving LVPECL outputs requires an amount of power that can warm up the chip significantly.

The general requirement for the chip is that the junction temperature should not exceed +110°C.

The power consumption can be divided into two parts:

- 1) Core power dissipation
- 2) Output buffers power dissipation

CORE POWER DISSIPATION

The chip core power is equal to VCC×IEE. With a worst case VCC and IEE the power dissipation in the core is 3.63V×45mA=163mW.

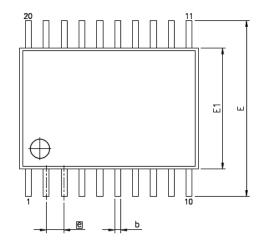
OUTPUT BUFFER POWER DISSIPATION

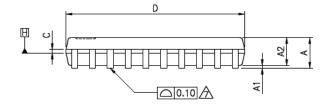
The output buffers are not exposed to the full VCC-VEE voltage. On the differential output, one line is at logic 1 with a small voltage across the buffer and a large output current. The other line is at logic 0 with a larger voltage across the buffer and a smaller output current. The power dissipation per output buffer is 32mW. Only buffers that are loaded will have power dissipation. With all 4 buffers loaded the worst case output buffer power dissipation will be 128mW.

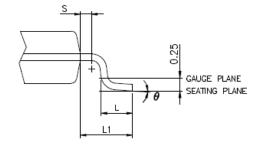
Total Chip Power Dissipation, worst case, is 163mW + 128mW = 291mW.

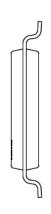
JUNCTION TEMPERATURE

How much the chip is warmed up from the power dissipation depends upon the thermal resistance from the chip to the environment, also known as "junction to ambient". The thermal resistance depends upon the type of package, how the package is assembled to the PCB and if there is additional air flow for improved cooling. For the TSSOP package the thermal resistance is as follows:


TSSOP 20-pin Package	Air Flow Velocity in Linear Feet per Minute					
	0 200 500					
JEDEC Standard Multi Layer PCB	$\theta_{JA} = 73$ °C/W	$\theta_{JA} = 67^{\circ}C/W$	$\theta_{JA} = 64$ °C/W			


The temperature of the chip (junction) will be higher than the environment (ambient) with an amount equal to $\theta_{JA} \times Power$. For an ambient temperature of +85°C, all outputs loaded and no air flow, the junction temperature $T_J = 85$ °C+73×0.291 = 106°C.




PACKAGE DRAWING (GREEN PACKAGE COMPLIANT)

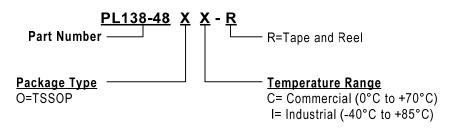
TSSOP173 20L

VARIATIONS (ALL DIMENSIONS SHOWN IN MM)

MIN.	NOM.	MAX.
-	-	1.20
0.05	-	0.15
0.80	0.90	1.05
0.19	-	0.30
0.09	-	0.20
6.40	6.50	6.60
4.30	4.40	4.50
	6.40 BSC	
	0.65 BSC	
	1.00 REF	
0.50	0.60	0.75
0.20	-	-
0,	-	8.

NOTES:

- STANDARD : MO-153 AC REV.F THERMALLY ENHANCED : MO-153 ACT REV.F
- 2.DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS, MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.
- DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.
- 4.DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION.
 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM
 TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM
 MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE
 LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM.
- 5.DIMENSIONS 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE \blacksquare .



ORDERING INFORMATION (GREEN PACKAGE)

For part ordering, please contact our Sales Department: 2880 Zanker Road, San Jose, CA 95134 USA Tel (408) 571-1668 Fax (408) 571-1688

PART NUMBER

The order number for this device is a combination of the following: Part number, Package type and Operating temperature range

Part/Order Number	Marking	Package Option
PL138-48OC	P138-48 OC LLLLL	20-Pin TSSOP (Tube)

*Note: LLLLL designates lot number

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

Solder reflow profile available at www.phaselink.com/QA/solderingGreen.pdf