VSC8658 Datasheet
 Octal 10/100/1000BASE-T PHY and 100BASE-FX/1000BASE-X SerDes

a 1 Microchip company
a Microchip company
Microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com
©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsem hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace \& defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Contents

1 Revision History 1
1.1 Revision 4.1 1
1.2 Revision 4.0 1
1.3 Revision 2.0 2
2 Introduction 3
2.1 Register and Bit Conventions 3
3 Product Overview 4
$3.1 \quad$ Features and Benefits 4
3.2 Block Diagram 5
4 Functional Descriptions 7
4.1 Operating Modes 7
4.1.1 SerDes MAC-to-Cat5 Mode MAC Interface 8
4.1.2 SGMII MAC-to-Cat5 Mode MAC Interface 8
4.1.3 All Modes Cat5 Media Interface 9
4.2 SerDes Media Interface 10
4.3 SGMII MAC-to-100BASE-FX Mode 10
4.4 Automatic Media-Sense (AMS) Interface Mode 10
4.5 Cat5 Auto-Negotiation 11
4.6 Manual MDI/MDI-X Setting 12
4.7 Automatic Crossover and Polarity Detection 12
4.8 Link Speed Downshift 13
4.9 Transformerless Ethernet 13
4.10 Ethernet Inline Powered Devices 13
4.11 IEEE 802.3af PoE Support 15
4.12 ActiPHY Power Management 15
4.12.1 Low Power State 15
4.12.2 Link Partner Wake-up State 16
4.12.3 Normal Operating State 16
4.13 Serial Management Interface 16
4.13.1 SMI Frames 16
4.13.2 SMI Interrupts 17
4.14 LED Interface 18
4.14.1 LED Modes 18
4.14.2 LED Behavior 19
4.14.3 Serial LED Mode 20
4.15 GPIO Pins 21
4.16 Testing Features 21
4.16.1 Ethernet Packet Generator (EPG) 21
4.16.2 CRC Counters 21
4.16.3 Far-End Loopback 22
4.16.4 Near-End Loopback 22
4.16.5 Connector Loopback 22
4.16.6 VeriPHY Cable Diagnostics 23
4.16.7 IEEE 1149.1 JTAG Boundary Scan 23
4.16.8 JTAG Instruction Codes 24
4.16.9 Boundary Scan Register Cell Order 25
4.17 IEEE 1149.6 AC-JTAG Boundary Scan Interface 25
5 Configuration 26
5.1 Registers 26
5.1.1 Reserved Registers 26
5.1.2 Reserved Bits 27
5.2 IEEE Standard and Main Registers 27
5.2.1 Mode Control 28
5.2.2 Mode Status 29
5.2.3 Device Identification 30
5.2.4 Auto-Negotiation Advertisement 30
5.2.5 Link Partner Auto-Negotiation Capability 31
5.2.6 Auto-Negotiation Expansion 31
5.2.7 Transmit Auto-Negotiation Next Page 32
5.2.8 Auto-Negotiation Link Partner Next Page Receive 32
5.2.9 1000BASE-T Control 32
5.2.10 1000BASE-T Status 33
5.2.11 Main Registers Reserved Addresses 33
5.2.12 1000BASE-T Status Extension 1 34
5.2.13 100BASE-TX Status Extension 34
5.2.14 1000BASE-T Status Extension 2 35
5.2.15 Bypass Control 35
5.2.16 Reserved Main Address Space 36
5.2.17 Extended Control and Status 36
5.2.18 Extended PHY Control Set 1 37
5.2.19 Extended PHY Control Set 2 38
5.2.20 Interrupt Mask 39
5.2.21 Interrupt Status 40
5.2.22 MAC Interface Auto-Negotiation Control and Status 41
5.2.23 Device Auxiliary Control and Status 42
5.2.24 LED Mode Select 43
5.2.25 LED Behavior 44
5.3 Extended Page Registers 45
5.3.1 Extended Page Access 46
5.3.2 SerDes Media Control 46
5.3.3 SerDes MAC/Media Control 47
5.3.4 CRC Good Counter 47
5.3.5 SIGDET Polarity Control 47
5.3.6 ActiPHY Control 48
5.3.7 EEPROM Interface Status and Control 49
5.3.8 EEPROM Data Read/Write 49
5.3.9 PoE and Miscellaneous Functionality 49
5.3.10 VeriPHY Control 1 50
5.3.11 VeriPHY Control 2 50
5.3.12 VeriPHY Control 3 51
5.3.13 Reserved Extended Address Space 51
5.3.14 Ethernet Packet Generator Control 1 51
5.3.15 Ethernet Packet Generator Control 2 52
5.4 General-Purpose I/O Registers 52
5.4.1 Reserved GPIO Address Space 53
5.4.2 SIGDET vs GPIO Control 53
5.4.3 GPIO Input 54
5.4.4 GPIO Output 54
5.4.5 GPIO Pin Configuration 54
5.4.6 100BASE-FX Control 54
5.5 CMODE 55
5.5.1 CMODE Pins and Related Functions 55
5.5.2 Functions and Related CMODE Pins 55
5.5.3 CMODE Resistor Values 57
5.6 EEPROM 58
5.6.1 EEPROM Contents Description 58
5.6.2 Read/Write Access to the EEPROM 59
6 Electrical Specifications 61
6.1 DC Characteristics 61
6.1.1 VDDIO at 3.3 V 61
6.1.2 VDDIO at 2.5 V 61
6.1.3 VDDIO at 1.8 V 62
6.1.4 VDD at 3.3 V 62
6.1.5 MAC and SerDes Outputs 63
6.1.6 MAC and SerDes Inputs 63
6.1.7 LED Pins 64
6.1.8 JTAG Pins 64
6.2 Current Consumption 65
6.3 AC Characteristics 66
6.3.1 Reference Clock Input 66
6.3.2 Clock Output 66
6.3.3 JTAG Interface 67
6.3.4 SMI Interface 67
6.3.5 Device Reset 68
6.3.6 Serial LEDs 69
6.4 Operating Conditions 70
6.5 Stress Ratings 70
7 Pin Descriptions 72
7.1 Pin Diagram 72
7.2 Pin Identifications 73
7.2.1 SerDes MAC Interface 74
7.2.2 SerDes Media Interface 74
7.2.3 GPIO and SIGDET 75
7.2.4 Twisted Pair Interface 76
7.2.5 Serial Management Interface 77
7.2.6 JTAG 78
7.2.7 Power Supply 78
7.2.8 Miscellaneous 80
8 Package Information 82
8.1 Package Drawing 82
8.2 Thermal Specifications 83
8.3 Moisture Sensitivity 84
9 Design Considerations 85
9.1 PHY Address ID (Register 23E, Bits 15 to 11) 85
9.2 JTAG Input High Voltage at 2.1 V 85
9.3 First SMI Write Fails After Software Reset 85
9.4 LED3 Port 7 Coupling Issue into XTAL Clock Pin 85
9.5 100BASE-FX Clock Data Recovery Improvement 85
10 Ordering Information 87

Figures

Figure 1 Typical Application 4
Figure 2 High-level Block Diagram 6
Figure 3 SerDes MAC Interface 8
Figure 4 SGMII MAC Interface 9
Figure 5 Cat5 Media Interface 9
Figure 6 Automatic Media Sense Block Diagram 11
Figure 7 Inline Powered Ethernet Switch Diagram 14
Figure 8 ActiPHY State Diagram 15
Figure 9 SMI Read Frame 16
Figure 10 SMI Write Frame 17
Figure 11 MDINT_n Configured as an Open-Drain (Active-Low) Pin 17
Figure 12 MDINT_n Configured as an Open-Source (Active-High) Pin 18
Figure 13 Far-End Loopback Diagram 22
Figure 14 Near-End Loopback Diagram 22
Figure 15 Connector Loopback Diagram 22
Figure 16 Test Access Port and Boundary Scan Architecture Diagram 24
Figure 17 Register Space Diagram 26
Figure 18 EEPROM Read and Write Register Flow 60
Figure 19 JTAG Interface Timing 67
Figure 20 SMI Interface Timing 68
Figure 21 Reset Timing 69
Figure 22 Serial LED Timing 70
Figure 23 Pin Diagram, Left Side, Top View 72
Figure 24 Pin Diagram, Right Side, Top View 73
Figure 25 Package Drawing 83

Tables

Table 1 Features and Benefits 4
Table 2 Operating Mode vs. Speed 7
Table 3 AMS Media Preferences 11
Table 4 Supported MDI Pair Combinations 12
Table 5 LED Mode and Function Summary 18
Table 6 LED Serial Stream Order 20
Table 7 JTAG Device Identification Register Description 24
Table 8 JTAG Interface Instruction Codes 25
Table 9 IEEE 802.3 Standard Registers 27
Table 10 Main Registers 27
Table 11 Mode Control, Address 0 ($0 x 00$) 28
Table 12 Mode Status, Address 1 (0×01) 29
Table 13 Identifier 1, Address 2 ($0 x 02$) 30
Table 14 Identifier 2, Address 3 (0×03) 30
Table 15 Device Auto-Negotiation Advertisement, Address 4 (0×04) 30
Table 16 Auto-Negotiation Link Partner Ability, Address 5 (0x05) 31
Table 17 Auto-Negotiation Expansion, Address 6 (0x06) 31
Table 18 Auto-Negotiation Next Page Transmit, Address 7 (0x07) 32
Table 19 Auto-Negotiation LP Next Page Receive, Address 8 (0x08) 32
Table 20 1000BASE-T Control, Address 9 (0x09) 32
Table 21 1000BASE-T Status, Address 10 (0x0A) 33
Table 22 1000BASE-T Status Extension 1, Address 15 (0x0F) 34
Table 23 100BASE-TX Status Extension, Address 16 (0x10) 34
Table 24 1000BASE-T Status Extension 2, Address 17 (0x11) 35
Table 25 Bypass Control, Address 18 (0x12) 35
Table 26 Extended Control and Status, Address 22 (0×16) 36
Table 27 Extended PHY Control 1, Address 23 (0×17) 37
Table 28 Extended PHY Control 2, Address 24 (0x18) 38
Table 29 Interrupt Mask, Address 25 (0x19) 39
Table 30 Interrupt Status, Address 26 (0×1 A) 40
Table 31 MAC Auto-Negotiation Control and Status, Address 27 ($0 \times 1 B$) 41
Table 32 Auxiliary Control and Status, Address 28 (0x1C) 42
Table 33 LED Mode Select, Address 29 (0x1D) 43
Table 34 Available LED Mode Settings 43
Table 35 LED Behavior, Address 30 (0x1E) 44
Table 36 Extended Registers Page Space 45
Table 37 Extended Page Access, Address 31 (0x1F) 46
Table 38 SerDes Media Auto-Negotiation Control/Status, Address 16E (0x10) 46
Table 39 SerDes MAC Control, Address 17E (0x11) 47
Table 40 CRC Good Counter, Address 18E (0x12) 47
Table 41 SIGDET Polarity Control, Address 19E (0x13) 47
Table 42 Extended PHY Control 3, Address 20E (0x14) 48
Table 43 EEPROM Interface Status and Control, Address 21E (0x15) 49
Table 44 EEPROM Read or Write, Address 22E (0x16) 49
Table 45 Extended PHY Control 4, Address 23E (0x17) 49
Table 46 VeriPHY Control Register 1, Address 24E (0x18) 50
Table 47 VeriPHY Control Register 2, Address 25E (0x19) 50
Table 48 VeriPHY Control Register 3, Address 26E (0x1A) 51
Table 49 VeriPHY Control Register 3 Fault Codes 51
Table 50 EPG Control Register 1, Address 29E (0x1D) 51
Table 51 EPG Control Register 2, Address 30E (0x1E) 52
Table 52 General-Purpose Registers Page Space 53
Table 53 SIGDET vs GPIO Control, Address 13G (0x0D) 53
Table 54 GPIO Input, Address 15G (0x0F) 54
Table 55 GPIO Output, Address 16G (0×10) 54
Table 56 GPIO Input/Output Configuration, Address 17G (0x11) 54
100BASE-FX Control, Address 18G (0x12) 54
Table 58 CMODE Configuration Pins and Device Functions 55
Table 59 Device Functions and Associated CMODE Pins 55
Table 60 CMODE Resistor Values and Resultant Bit Settings 57
Table 61 EEPROM Configuration Contents 58
Table 62 DC Characteristics for Pins Referenced to VDDIO at 3.3 V 61
Table 63 DC Characteristics for Pins Referenced to VDDIO at 2.5 V 61
Table 64 DC Characteristics for Pins Referenced to VDDIO at 1.8 V 62
Table 65 DC Characteristics for Pins Referenced to VDD33 at 3.30 V 62
Table 66 DC Characteristics for MAC_RDP/N_n and SER_DOP/N_n Pins 63
Table 67 DC Characteristics for MAC_TDP/N_n and SER_DIP/N_n Pins 63
Table 68 DC Characteristics for LED[3:0]_n Pins 64
Table 69 DC Characteristics for JTAG Pins 64
Table 70 Typical Current Consumption 65
Table 71 Current Consumption in SerDes/SGMII to 1000BASE-X Mode 65
Table 72 Consumption in SerDes/SGMII to 100BASE-FX or SerDes Pass-Through Mode 65
Table 73 AC Characteristics for REFCLK Input 66
Table 74 AC Characteristics for REFCLK Input with 25 MHz Clock Input 66
Table 75 AC Characteristics for the CLKOUT Pin 66
Table 76 AC Characteristics for the JTAG Interface 67
Table 77 AC Characteristics for the SMI Interface 67
Table 78 AC Characteristics for Device Reset 68
Table 79 AC Characteristics for Serial LEDs 69
Table 80 Recommended Operating Conditions 70
Table 81 Stress Ratings 70
Table 82 SerDes MAC Interface Pins 74
Table 83 SerDes Media Interface Pins 74
Table 84 GPIO and SIGDET Pins 75
Table 85 Twisted Pair Interface Pins 76
Table 86 SMI Pins 77
Table 87 JTAG Pins 78
Table 88 Power Supply Pins 78
Table 89 Power Supply and Associated Function Pins 79
Table 90 Miscellaneous Pins 80
Table 91 Thermal Resistances 83
Table 92 Ordering Information 87

This section describes the changes that were implemented in this document. The changes are listed by revision, starting with the most current publication.

1.1 Revision 4.1

Revision 4.1 of this datasheet was published in June 2007. In revision 4.1, design consideration issues were added. For more information, see LED3 Port 7 Coupling Issue into XTAL Clock Pin, page 85 and 100BASE-FX Clock Data Recovery Improvement, page 85.

1.2 Revision 4.0

Revision 4.0 of this datasheet was published in March 2007. The following is a summary of the changes implemented in the datasheet:

- In register 0, the definitions for bits 13 and 6 (forced speed selection) were combined, because they are correlated.
- Throughout the electrical specifications, all references to $\mathrm{V}_{\text {DD33A }}$ were corrected to $\mathrm{V}_{\text {DD33 }}$ and all references to $\mathrm{V}_{\text {DDIG }}$ were corrected to $\mathrm{V}_{\mathrm{DD12}}$.
- In the DC characteristics for VDDIO at 1.8 V , the condition for the output low voltage parameter $\left(\mathrm{V}_{\mathrm{OL}}\right)$ was corrected from a negative value $\left(\mathrm{I}_{\mathrm{OL}}=-0.5 \mathrm{~mA}\right)$ to a positive value $\left(\mathrm{l}_{\mathrm{OL}}=0.5 \mathrm{~mA}\right)$.
- In the DC characteristics for VDD33 at 3.30 V , the output leakage (IOLEAK) was changed to match the same values as the input leakage (IIEEAK) with the same condition (internal resistor included). Specifically, the values were changed from $-10 \mu \mathrm{~A}$ minimum and $10 \mu \mathrm{~A}$ maximum to $-42 \mu \mathrm{~A}$ minimum and $42 \mu \mathrm{~A}$ maximum.
- In the DC characteristics for MAC_RDP/N_n and SER_DOP/N_n pins, the total jitter parameter $\left(T_{J}\right)$ was updated from 160 ps typical to 185 ps typical and from 180 ps maximum to 260 ps maximum.
- In the DC characteristics for MAC_TDP/N_n and SER_DIP/N_n pins, the input differential voltage parameter ($\mathrm{V}_{\text {IDIFF }}$) was updated from 1400 mV maximum to 2400 mV maximum.
- For better organization, the total receive jitter tolerance parameter (J_{RX} Total) was moved from the MAC_RDP/N_n and SER_DOP/N_n pin characteristics to the MAC_TDP/N_n and SER_DIP/N_n pin characteristics. The values were also updated to account for differences between 1000BASE-X and 100BASE-FX modes.
- In the DC characteristics for LED pins, a qualifier in the introductory paragraph was removed stating that these specifications are valid only when a voltage range of 1.3 V to 2.3 V is applied to the LED pins. For the low voltage parameter $\left(\mathrm{V}_{\mathrm{OL}}\right)$, the condition was corrected from a negative value ($\mathrm{l}_{\mathrm{OL}}=$ -4.0 mA) to a positive value ($\mathrm{l}_{\mathrm{OL}}=4.0 \mathrm{~mA}$). The output low current drive strength parameter (l_{OL}) was updated from 4.0 mA maximum to 8.0 mA maximum. The maximum value for the output high current drive strength parameter (I_{OH}) was removed.
- The current consumption specifications previously named 1000BASE-X/100BASE-FX mode are now named 1000BASE-X mode. The current consumption specifications previously named 1000BASE-X mode are now named 100BASE-FX or SerDes pass-through mode.
- The current consumption specifications were updated for 100BASE-FX or SerDes pass-through mode (previously named 1000BASE-X mode). All of the parameters were updated, except for the $I_{\text {VDDIO }}$ parameters, which remain the same.
- In the stress ratings, for the DC input voltage on both the VDD12 and VDD12A supply pins, the maximum was updated from 1.5 V to 1.4 V . The electrostatic discharge voltage values were added. For charged device model, it was specified $\pm 250 \mathrm{~V}$. For human body model, it was specified as meeting a Class 2 rating.
- For the serial management interface (SMI) pins, it was clarified that EECLK and EEDAT are referenced to VDD33, not VDDIO.
- The moisture sensitivity was specified as level 3 for the VSC8658HJ package. For the lead(Pb)-free package, VSC8658XHJ, it was specified as level 4.
- Design consideration issues were added.

1.3 Revision 2.0

Revision 2.0 of this datasheet was published in November 2006. This was the first publication of the document.

2 Introduction

This document consists of descriptions and specifications for both functional and physical aspects of the Octal 10/100/1000BASE-T PHY and 100BASE-FX/1000BASE-X SerDes.

In addition to datasheets, the Microsemi website offers an extensive library of documentation, support files, and application materials specific to each device. The address of the Microsemi website is www.microsemi.com.

2.1 Register and Bit Conventions

This document refers to registers by their address and bit number in decimal notation. A range of bits is indicated with a colon. For example, a reference to address 26 , bits 15 through 14 is shown as 26.15:14.

Bit numbering follows the IEEE standard with bit 15 being the most significant bit and bit 0 being the least significant bit.

3 Product Overview

The VSC8658 device is a low-power, octal Gigabit Ethernet transceiver with dual, fully integrated 1.25 Gbps SerDes interfaces. It is designed for use in applications, such as multiport switches and routers, where its compact ball grid array (BGA) packaging, low electromagnetic interference (EMI) line driver, and integrated line side termination resistors conserve both power and PC board space. Using the VSC8658 device in your design makes it possible to lower the component count of your PC board, subassembly, or device without sacrificing chip-centric capabilities or utility. This feature can make it less expensive to produce and more cost-effective to deploy.
Microsemi's mixed signal and digital signal processing (DSP) architecture-a key operational feature of the VSC8658 device-assures robust performance even under less-than-favorable environmental conditions. It supports both half-duplex and full-duplex 10BASE-T, 100BASE-TX, and 1000BASE-T communication speeds over Category 5 (Cat5) unshielded twisted pair (UTP) cable at distances greater than 140 m , displaying excellent tolerance to NEXT, FEXT, echo, and other types of ambient environment and system electronic noise. This device also supports 100BASE-FX and 1000BASE-X to connect to fiber modules, such as GBICs and SFPs.

The following illustration shows a high-level, generic view of a VSC8658 application.
Figure 1• Typical Application

3.1 Features and Benefits

This section lists key aspects of the VSC8658 device functionality and design that distinguish it from similar products.

Table 1- Features and Benefits

Feature	Benefit
650 mW per port power consumption (when configured	Lowers system cost by eliminating the need for extra heat-dissipating and power-processing components; simplifies system design
$27 \mathrm{~mm} \times 27 \mathrm{~mm}, 444$-pin BGA packaging	Facilitates single row, high port density switch designs
Patented, low EMI line driver with integrated line side	Eliminates the need for as many as 384 passive termination resistors
components in 48-port switch applications	

Table 1- Features and Benefits (continued)

Feature	Benefit		
Dual, high-performance, 1.25 Gbps SerDes	Maximizes receive jitter tolerance and minimizes transmit jitter (in comparison to single SerDes architectures)		
Compliance with IEEE standard 802.3 (10BASE-T, 100BASE-TX, 1000BASE-T, 1000BASE-X, 100BASE-FX)	Ensures seamless deployment in devices throughout existing copper networks while maintaining excellent tolerance to ambient electronic noise and any substandard cabling		
Support for frame sizes greater than 16 kilobytes at all device throughput settings and programmable synchronization FIFO buffers	Provides for maximum Jumbo frame sizes on custom SANs and LANs		
Four integrated and programmable LED direct drivers per			
port, on-chip filtering and support for bi-color LEDs		\quad	Eliminates the need for external components, lowers EMI
:---			
generation, and lowers design cost			

3.2 Block Diagram

The following illustration shows the primary functional blocks of the VSC8658 device.

Figure 2• High-level Block Diagram

4 Functional Descriptions

This section provides detailed information about how the VSC8658 device works, what configurations and operational features are available, and how to test its function. It includes descriptions of the various device interfaces and how to set them up.

With the information in this section, you can better determine which device setup parameters you must access to configure the VSC8658 device to work in your application. There are three ways to configure the VSC8658 device. You can access and set its internal memory registers, use a combination of the device CMODE pins and its registers, or configure and connect an external EEPROM to execute a configuration sequence upon system startup.

For information about VSC8658 device registers, see Configuration, page 26.
For information about the device CMODE pins, see CMODE, page 55 .
For information about using an EEPROM with the VSC8658 device, see EEPROM, page 58.

4.1 Operating Modes

With respect to its function in your design, the VSC8658 device can act as the interface between a media access controller (MAC) and either Category 5 (Cat5) media, 100BASE-FX fiber media, or 1000BASE-X fiber media. Or, the VSC8658 device can act as a MAC-to-MAC pass-through device to take advantage of the auto-negotiation feature.

Depending upon the speed of data throughput required in your application, the MAC may be either a SerDes or an SGMII device, and can also be configured to support twisted pair Cat5 cabling, 100BASE-FX/1000BASE-X fiber optic cabling, or copper small form factor pluggable (SFP) devices.

As shown in the following table, the operating mode you choose when setting up the VSC8658 device is a function of which type of MAC is to be connected, which data throughput speeds are required in the application, and the type of Cat5 media support required.

Table 2• Operating Mode vs. Speed

| | | 1000BASE-X |
| :--- | :--- | :--- | :--- | | 10/100/ |
| :--- |
| VSC8658 Mode |

Table 2• Operating Mode vs. Speed (continued)

VSC8658 Mode	10/100/1000BAS E-T Support	1000BASE-X Fiber Optic Support	100BASE-FX Support	10/100/ 1000BASE-T Copper SFP Support
SerDes MAC with AMS and Pass-Through	1000BASE-T Only	Yes ${ }^{(1)}$		$\begin{aligned} & \text { 1000BASE-T } \\ & \text { only }{ }^{(1)} \end{aligned}$
SGMII MAC with AMS and Pass-Through	Yes	Yes ${ }^{(1)}$		Yes ${ }^{(1)}$

1. The MAC used must be capable of supporting this media.

4.1.1 SerDes MAC-to-Cat5 Mode MAC Interface

When connected to a SerDes MAC, the VSC8658 device provides data throughput at a rate of 1000 Mbps only; 10 Mbps and 100 Mbps rates are not supported. To configure the device for operation in this mode, select the 1000BASE-T-only setting in the registers, using the CMODE pin, or in the external EEPROM startup sequence.

For information about using the device registers to configure the VSC8658 device for operation in SerDes MAC-to-Cat5 mode, see Mode Control, page 28.

For information about the device CMODE pins, see CMODE, page 55.
For information about using an EEPROM with the VSC8658 device, see EEPROM, page 58.
The following illustration shows a typical connection of the VSC8658 device to a SerDes MAC.
Figure 3- SerDes MAC Interface

4.1.2 SGMII MAC-to-Cat5 Mode MAC Interface

When configured to detect and switch between 10BASE-T, 100BASE-T, and 1000BASE-T data rates, the VSC8658 device can be connected to an SGMII-compatible MAC.

For information about using the device registers to configure the VSC8658 device for operation in SerDes MAC-to-Cat5 Mode, see Mode Control, page 28.

For information about the device CMODE pins, see CMODE, page 55.
For information about using an EEPROM with the VSC8658 device, see EEPROM, page 58.
The following illustration shows a typical connection of the VSC8658 device to an SGMII-compatible MAC.

Figure 4 • SGMII MAC Interface

4.1.3 All Modes Cat5 Media Interface

The VSC8658 device twisted pair interface is compliant with the IEEE standard 802.3-2000. Unlike many other gigabit PHYs, the VSC8658 device uses fully integrated, passive components (required to connect the PHY's Cat5 interface to an external 1:1 transformer). The following illustration shows the connections.

Figure 5- Cat5 Media Interface

4.2 SerDes Media Interface

The VSC8658 device SerDes Media Interface performs data serialization and deserialization functions using an integrated SerDes block. The interface operates at 1.25 Gbps speed, providing full-duplex and half-duplex 1000 Mbps bandwidth that can connect directly to 100BASE-FX/1000BASE-X-compliant optical devices as well as to 10/100/1000BASE-T copper SFP devices. The interface can be operated in two SerDes modes:

- SerDes with Media Interface PCS Auto-Negotiation mode
- SerDes with Pass-Through mode

The SerDes with Media Interface PCS Auto-Negotiation mode supports IEEE standard 802.3, clauses 36 and 37 , which describe fiber auto-negotiation. In this mode, control and status of the SerDes media is displayed in the VSC8658 device registers 0 through 15 in a manner similar to what is described in the IEEE standard 802.3, clause 28. In this mode, connected copper SFPs can only operate at 1000BASE-T speed. A link in this mode is established using auto-negotiation (enabled or disabled) between the PHY and the link partner.

For information about how the VSC8658 LEDs operate in this mode, see LED Behavior, page 19.
SerDes with Pass-Through mode is a feature that links a fiber module or copper SFP directly to the SerDes interface of the MAC through the VSC8658 device. For example, to support 10/100/1000 copper SFPs, the MAC must be able to operate in SGMII mode. Because the MAC controls the establishment of the link, PHY registers 0 through 15 and the PHY LEDs do not indicate link information when in SerDes Pass-Through Mode. In this case, the only supported LED operation is the force on and force off modes. A pass-through link is established when the SIGDET pin is asserted.

4.3 SGMII MAC-to-100BASE-FX Mode

The VSC8658 can support the 100BASE-FX communication speed to connect to fiber modules, such as GBICs and SFPs.

This capability is facilitated by using the connections on the SerDes pins when connected to a MAC through SGMII. Ethernet Package Generator (EPG), cyclical redundancy checking (CRC) counters, and loopback modes are supported in the 100BASE-FX over SerDes mode. For information about how the VSC8658 LEDs operate in this mode, see LED Behavior, page 19.

For information about how to configure the VSC8658 in 100BASE-FX mode using the twisted pair interface, see 100BASE-FX Control, page 54.

4.4 Automatic Media-Sense (AMS) Interface Mode

This mode can automatically set the media interface to Cat5 or to SerDes interface modes automatically. The active media mode chosen is based on the automatic media-sense (AMS) preferences set in the device register 23, bit 11.
The following illustration shows a block diagram of the AMS functionality in the VSC8658 device.

Figure 6- Automatic Media Sense Block Diagram

When both SerDes and Cat5 media interfaces attempt to establish a link, the preferred media interface overrides a link-up of the non-preferred media interface. For example, if the preference is set for SerDes mode and Cat5 media establishes a link, then Cat5 becomes the active media interface. However, after the SerDes media interface establishes a link, the Cat5 interface drops its link because the preference was set for SerDes mode. In this scenario, the SerDes preference determines the active media source until the SerDes link is lost. Also, Cat5 media cannot link up unless there is no SerDes media link established.

The following table lists the available AMS preferences.
Table 3 • AMS Media Preferences

Preference Setting	Cat5 Linked, Fiber Not Linked	SerDes Linked, Cat5 Not Linked	Cat5 Linked, SerDes Attempts to Link	SerDes Linked, Cat5 Attempts to	Both Cat5 and SerDes Attempt to Link
SerDes	Cat5	SerDes	SerDes	SerDes	SerDes
Cat5	Cat5	SerDes	Cat5	Cat5	Cat5

The status of the media mode selected by the AMS can be read from device register 20E, bits 7:6. It indicates whether copper media, SerDes media, or no media is selected.

Each PHY has two auto-media sense modes. The difference between the modes is based on the SerDes media modes:

- SerDes with Auto-Negotiation
- SerDes with Pass-Through

For more information about SerDes media mode functionality with AMS enabled, see SerDes Media Interface, page 10.

For AMS with SerDes auto-negotiation, the status and control of both the Cat5 and the SerDes media can be made using registers 0 through 15 . For AMS with SerDes pass-through, only the Cat5 interface can have its interface control and status monitored. The SerDes media must then be controlled and monitored within the MAC.

4.5 Cat5 Auto-Negotiation

The VSC8658 device supports twisted pair auto-negotiation as defined by clause 28 of the IEEE standard 802.3-2000.

The auto-negotiation process consists of the evaluation of the advertised capabilities of the PHY and its link partner to determine the best possible operating mode, throughput speed, duplex configuration, and master or slave operating modes in the case of 1000BASE-T setups. Auto-negotiation also allows a
connected MAC to communicate with its link partner MAC through the VSC8658 device using optional "next pages," which set attributes that may not otherwise be defined by the IEEE standard.

In installations where the Cat5 link partner does not support auto-negotiation, the VSC8658 automatically switches to use parallel detection to select the appropriate link speed.

Clearing VSC8658 device register 0, bit 12 disables clause 28 twisted-pair auto-negotiation. If autonegotiation is disabled, the state of register bits $0.6,0.13$, and 0.8 determine the device operating speed and duplex mode. For more information about configuring auto-negotiation, see IEEE Standard and Main Registers, page 27.

4.6 Manual MDI/MDI-X Setting

As an alternative to Auto MDI/MDI-X detection, you can force the PHY to be MDI or MDI-X using the following scripts.

Format:

Phywrite (register(dec), data(hex))
Phywritemask (register(dec), data(hex), mask(hex))
To force MDI:
Phywrite (31, 0x2A30)
Phywritemask (5, 0x0010, 0x0018)
Phywrite (31, 0x0000)
To force MDI-X:
Phywrite (31, 0x2A30)
Phywritemask (5, 0x0018, 0x0018)
Phywrite (31, 0x0000)
To resume MDI/MDI-X setting based on register 18, bits 7 and 5:
Phywrite (31, 0x2A30)
Phywritemask (5, 0x0000, 0x0018)
Phywrite (31, 0x0000)

4.7 Automatic Crossover and Polarity Detection

For trouble-free configuration and management of Ethernet links, the VSC8658 device includes a robust, automatic, media-dependent and crossed media-dependent detection feature, Auto MDI/MDI-X, in all of its three available speeds (10BASE-T, 100BASE-T, and 1000BASE-T). The function is fully compliant with clause 40 of the IEEE standard 802.3-2002.

Additionally, the device detects and corrects polarity errors on all MDI pairs-a useful capability that exceeds the requirements of the standard.

Both auto MDI/MDI-X detection and polarity correction are enabled in the device by default. You can change the default settings using device register bits 18.5:4. Status bits for each of these functions are located in register 28.

The VSC8658 device's automatic MDI/MDI-X algorithm successfully detects, corrects, and operates with any of the MDI wiring pair combinations listed in the following table.

Table 4• Supported MDI Pair Combinations

RJ-45 Pin Pairings

$\mathbf{1 , 2}$	$\mathbf{3 , 6}$	$\mathbf{4 , 5}$	$\mathbf{7 , 8}$	Mode
A	B	C	D	Normal MDI
B	A	D	C	Normal MDI-X
A	B	D	C	Normal MDI with pair swap on C and D pair
B	A	C	D	Normal MDI-X with pair swap on C and D pair

Note: The VSC8658 device can be configured to perform Auto MDI/MDI-X even when its Auto-negotiation feature is disabled (setting register 0.12 to 0) and the link is forced into $10 / 100$ speeds. To enable this feature, set register 18.7 to 0 .

4.8 Link Speed Downshift

For operation in cabling environments that are incompatible with 1000BASE-T, the VSC8658 device provides an automatic link speed "downshift" option. When enabled, the device automatically changes its 1000BASE-T auto-negotiation advertisement to the next slower speed after a set number of failed attempts at 1000BASE-T.

This is useful in setting up in networks using older cable installations that may include only pairs A and B and not pairs C and D .
You can configure and monitor link speed downshifting using register bits 20E.4:1. For more information, see Extended PHY Control Set 1, page 37.

4.9 Transformerless Ethernet

The Cat5 media interface supports 10/100/1000BT Ethernet for backplane applications such as those specified by the PICMG ${ }^{\text {TM }} 2.16$ and ATCA $^{\text {TM }} 3.0$ specifications for eight-pin channels. With proper AC coupling, the typical Cat5 transformer can be removed and replaced with capacitors.

4.10 Ethernet Inline Powered Devices

The VSC8658 device can detect legacy inline powered devices in Ethernet network applications. Its inline powered detection capability can be part of a system that allows for IP-phone and other devices such as wireless access points to receive power directly from their Ethernet cable, similar to office digital phones receiving power from a Private Branch Exchange (PBX) office switch over the telephone cabling. This can eliminate the need for an IP-phone to have an external power supply. It also enables the inline powered device to remain active during a power outage (assuming the Ethernet switch is connected to an uninterrupted power supply, battery, back-up power generator, or some other uninterruptable power source).

For more information about legacy inline powered device detection, visit the Cisco Web site at www.cisco.com.

The following illustration shows an example of this type of application.

Figure 7• Inline Powered Ethernet Switch Diagram

The following procedure describes the process that an Ethernet switch must perform in order to process inline power requests made by a link partner (LP) that is, in turn, capable of receiving inline power.

1. Enable the inline powered device detection mode on each VSC8658 PHY using its serial management interface. Set register bit 23E. 10 to 1.
2. Ensure that the VSC8658 device Auto-Negotiation Enable bit (register 0.12) is also set to 1 . In the application, the device sends a special Fast Link Pulse (FLP) signal to the LP. Reading register bit 23E.9:8 returns 00 during the search for devices that require Power-over-Ethernet (PoE).
3. The VSC8658 PHY monitors its inputs for the FLP signal looped back by the LP. An LP capable of receiving PoE loops back the FLP pulses when the LP is in a powered-down state. This is reported when VSC8658 device register bit 23E.9:8 reads back 01. It can also be verified as an inline power detection interrupt by reading VSC8658 device register bit 26.9, which should be a 1, and which is subsequently cleared and the interrupt de-asserted after the read. If an LP device does not loop back the FLP after a specific time, VSC8658 device register bit 23E.9:8 automatically resets to 10.
4. If the VSC8658 PHY reports that the LP needs PoE, the Ethernet switch must enable inline power on this port, externally of the PHY.
5. The PHY automatically disables inline powered device detection if the VSC8658 device register bit 23E.9:8 automatically resets to 10, and then automatically changes to its normal auto-negotiation process. A link is then auto-negotiated and established when the link status bit is set (register bit 1.2 is set to 1).
6. In the event of a link failure (indicated when VSC8658 device register bit 1.2 reads 0), the inline power should be disabled to the inline powered device external to the PHY. The VSC8658 PHY disables its normal auto-negotiation process and re-enables its inline powered device detection mode.

4.11 IEEE 802.3af PoE Support

The VSC8658 device is also compatible with switch designs that are intended for use in systems that supply power to Data Terminal Equipment (DTE) by means of the MDI or twisted pair cable, as described in clause 33 of the IEEE standard 802.3af.

4.12 ActiPHY Power Management

In addition to the IEEE-specified power-down control bit (device register bit 0.11), the device also includes an ActiPHY ${ }^{\text {TM }}$ power management mode for each PHY. This mode enables support for powersensitive applications such as laptop computers with Wake-on-LAN ${ }^{\text {TM }}$ capability. It utilizes a signal-detect function that monitors the media interface for the presence of a link to determine when to automatically power-down the PHY. The PHY "wakes up" at a programmable interval and attempts to "wake-up" the link partner PHY by sending a burst of FLP over copper media.

The ActiPHY ${ }^{\text {TM }}$ power management mode in the VSC8658 device is enabled on a per-port basis during normal operation at any time by setting register bit 28.6 to 1.
There are three operating states possible when ActiPHY ${ }^{\text {TM }}$ mode is enabled:

- Low power state
- LP wake-up state
- Normal operating state (link up state)

The VSC8658 device switches between the low power state and LP wake-up state at a programmable rate (the default is two seconds) until signal energy has been detected on the media interface pins. When signal energy is detected, the PHY enters the normal operating state. If the PHY is in its normal operating state and the link fails, the PHY returns to the low power state after the expiration of the link status timeout timer. After reset, the PHY enters the low power state.

When auto-negotiation is enabled in the PHY, the ActiPHY state machine operates as described. If autonegotiation is disabled and the link is forced to use 10BT or 100BTX modes while the PHY is in its low power state, the PHY continues to transition between the low power and LP wake-up states until signal energy is detected on the media pins. At that time, the PHY transitions to the normal operating state and stays in that state even when the link is dropped. If auto-negotiation is disabled while the PHY is in the normal operation state, the PHY stays in that state when the link is dropped and does not transition back to the low power state.

The following illustration shows the relationship between ActiPHY states and timers.
Figure 8 • ActiPHY State Diagram

4.12.1 Low Power State

In the low power state, all major digital blocks are powered down. However, the following functionality is provided:

- SMI interface (MDC, MDIO, MDINT_n)
- CLKOUT

In this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of low power state and transitions to the normal operating state when signal energy is detected on the media. This happens when the PHY is connected to one of the following:

- Auto-negotiation capable link partner
- Another PHY in enhanced ActiPHY LP wake-up state

In the absence of signal energy on the media pins, the PHY transitions from the low power state to the LP wake-up state periodically based on the programmable sleep timer (register bits 20E.14:13). The actual sleep time duration is randomized from -80 milliseconds (ms) to +60 ms to avoid two linked PHYs in ActiPHY mode entering a lock-up state during operation.

4.12.2 Link Partner Wake-up State

In this state, the PHY attempts to wake up the link partner. Up to three complete FLP bursts are sent on alternating pairs A and B of the Cat5 media for a duration based on the wake-up timer, which is set using register bits 20E.12:11.
In this state, the following functionality is provided:

- SMI interface (MDC, MDIO, MDINT_n)
- CLKOUT

After sending signal energy on the relevant media, the PHY returns to the low power state.

4.12.3 Normal Operating State

In this state, the PHY establishes a link with a link partner. When the media is unplugged or the link partner is powered down, the PHY waits for the duration of the programmable link status time-out timer, which is set using register bit 28.7 and bit 28.2. It then enters the low power state.

4.13 Serial Management Interface

The VSC8658 device includes an IEEE 802.3-compliant serial management interface (SMI) that is affected by use of its MDC and MDIO pins. The SMI provides access to device control and status registers. The register set that controls the SMI consists of 32 16-bit registers, including all required IEEE-specified registers. Also, there are additional pages of registers accessible using device register 31.

For more information, see Extended Page Registers, page 45.
The SMI is a synchronous serial interface with bidirectional data on the MDIO pin that is clocked on the rising edge of the MDC pin. The interface can be clocked at a rate from 0 MHz to 12.5 MHz , depending on the total load on MDIO. An external, $2 \mathrm{k} \Omega$ pull-up resistor is required on the MDIO pin.

4.13.1 SMI Frames

Data is transferred over the SMI using 32-bit frames with an optional and arbitrary length preamble. The following illustrations show the SMI frame format for the read operation and write operation.

Figure 9• SMI Read Frame

Figure 10• SMI Write Frame

The following provides additional information about the terms used in Figure 9 and Figure 10.
Idle During idle, the MDIO node goes to a high-impedance state. This allows an external pull-up resistor to pull the MDIO node up to a logical 1 state. Because the idle mode should not contain any transitions on MDIO, the number of bits is undefined during idle.
Preamble By default, preambles are not expected or required. The preamble is a string of ones. If it exists, the preamble must be at least one bit; otherwise, it may be of an arbitrary length.

Start of Frame (SFD) A pattern of 01 indicates the start of frame. If the pattern is not 01, all following bits are ignored until the next preamble pattern is detected.
Read or Write Opcode A pattern of 10 indicates a read. A 01 pattern indicates a write. If the bits are not either 01 or 10 , all following bits are ignored until the next preamble pattern is detected.

PHY Address The particular VSC8658 responds to a message frame only when the received PHY address matches its physical address. The physical address is five bits long (4:0). Bits $4: 3$ are set by the CMODE pins. Bits 2:0 represent the PHY of the device being addressed.

Register Address The next five bits are the register address.
Turnaround The two bits used to avoid signal contention when a read operation is performed on the MDIO are called the turnaround (TA) bits. During read operations, the VSC8658 device drives the second TA bit, a logical 0 .
Data The 16-bits read from or written to the device are considered the data or data stream. When data is read from a PHY, it is valid at the output from one rising edge of MDC to the next rising edge of MDC. When data is written to the PHY, it must be valid around the rising edge of MDC.
Idle The sequence is repeated.

4.13.2 SMI Interrupts

The SMI also includes an output interrupt signal, MDINT_n, for signaling the station manager when certain events occur in the PHY. A separate MDINT_n pin is included for each VSC8658 device PHY.

Each MDINT_n pin can be configured for open-drain (active-low) by tying the pin to a pull-up resistor and to VDDIO. The following illustration shows this configuration.
Figure 11 • MDINT_n Configured as an Open-Drain (Active-Low) Pin

Alternatively, each MDINT_n pin can be configured for open-source (active-high) by tying the pin to a pull-down resistor and to VSS. The following illustration shows this configuration.

Figure 12• MDINT_n Configured as an Open-Source (Active-High) Pin

If only one interrupt pin is required, each MDINT_ n pin can be tied together to a single pull-up or pulldown resistor in a wired-OR configuration.
When a PHY generates an interrupt, the MDINT_n pin is asserted (driven high or low, depending on resistor connection) if the interrupt pin enable bit (MII register 25.15) is set.

4.14 LED Interface

The VSC8658 device drives up to four LEDs directly for each PHY port. All LED outputs are active-low and are driven using 3.3 V from the VDD33 power supply. The pins, mainly used to sink the current of the cathode side of an LED when active, can also supply power to the anode portion of LEDs when not in the active state. This allows for two LED pins to be used to drive a multi-status, bi-colored LED.

4.14.1 LED Modes

Each LED pin can be configured to display different status information. Set the LED mode either by using register 29 or the CMODE pin setting. For additional operating flexibility, LED output functions can be set on a per-port basis.

The modes in the following table are equivalent to the setting used in register 29 to configure each LED pin. For all LED states, $1=$ pin held high (de-asserted), $0=$ pin held low (asserted), and the blink/pulsestretch is dependent on the LED behavior setting in register 30 .

Table 5- LED Mode and Function Summary

Mode	Function Name	LED State and Description
0	Link/Activity ${ }^{(1)}$	1 = No link in any speed on any media interface. $0=$ Valid link at any speed on any media interface. Blink or pulse-stretch = Valid link at any speed on any media interface with activity present.
1	Link1000/Activity	$\begin{aligned} & 1 \text { = No link in 1000BASE-T. } \\ & 0=\text { Valid 1000BASE-T link. } \\ & \text { Blink or pulse-stretch = Valid 1000BASE-T link with activity present. } \end{aligned}$
2	Link100/Activity	1 = No link in 100BASE-TX. $0=$ Valid 100BASE-TX link. Blink or pulse-stretch = Valid 100BASE-TX link with activity present.
3	Link10/Activity	$\begin{aligned} & 1 \text { = No link in 10BASE-T. } \\ & 0=\text { Valid 10BASE-T link. } \\ & \text { Blink or pulse-stretch = Valid 10BASE-T link with activity present. } \end{aligned}$

Table 5-LED Mode and Function Summary (continued)

Mode	Function Name	LED State and Description
4	Link100/1000/Activity	```1 = No link in 100BASE-TX or 1000BASE-T. 0 = Valid 100BASE-TX or 1000BASE-T link. Blink or pulse-stretch = Valid 100BASE-TX or 1000BASE-T link with activity present.```
5	Link10/1000/Activity	$\begin{aligned} & 1=\text { No link in 10BASE-T or 1000BASE-T. } \\ & 0=\text { Valid 10BASE-T or 1000BASET-T link. } \\ & \text { Blink or pulse-stretch = Valid 10BASE-T or 1000BASE-T link with activity } \\ & \text { present. } \end{aligned}$
6	Link10/100/Activity	```1 = No link in 10BASE-T or 100BASE-TX. 0 = Valid 10BASE-T or 100BASE-TX link. Blink or pulse-stretch = Valid 10BASE-T or 100BASE-TX link with activity present.```
7	Link100BASE-FX/ 1000BASE-X/Activity	```1 = No link in 100BASE-FX or 1000BASE-X. 0 = Valid 100BASE-FX or 1000BASE-X link. Blink or pulse-stretch = Valid 100BASE-FX or 1000BASE-X link with activity present.```
8	Duplex/Collision	1 = Link established in half-duplex mode, or no link established. $0=$ Link established in full-duplex mode. Blink or pulse-stretch = Link established in half-duplex mode but collisions are present.
9	Collision	1 = No collision detected. Blink or pulse-stretch = Collision detected.
10	Activity	1 = No activity present. Blink or pulse-stretch = Activity present (becomes TX activity present if register bit 30.14 is set to 1).
11	100BASE-FXI 1000BASE-X Fiber Activity	1 = No 100BASE-FX or 1000BASE-X activity present. Blink or pulse-stretch $=100 \mathrm{BASE}-\mathrm{FX}$ or 1000BASE-X activity present (becomes $R X$ activity present if register bit 30.14 is set to 1).
12	Auto-Negotiation Fault	$1=$ No auto-negotiation fault present. $0=$ Auto-negotiation fault occurred.
13	Serial Mode	Serial stream = See Serial LED Mode, page 20. Only relevant on PHY port 0 and reserved in others.
14	Force LED Off	1 = De-asserts the LED.
15	Force LED On	0 = Asserts the LED.

1. Link/Activity can be configured to only display copper link and disable fiber link status by setting register bits 30.15 to 1 .

4.14.2 LED Behavior

Several LED behaviors can be programmed into the VSC8658 device. Use the settings in register 30 to program LED behavior, which includes the following:

LED Combine Enables an LED to display the status for a combination of primary and secondary modes. This can be enabled or disabled for each LED pin. For example, a copper link running in 1000BASE-T mode and activity present can be displayed with one LED by configuring an LED pin to Link1000/Activity mode. The LED asserts when linked to a 1000BASE-T partner and also blinks or performs pulse-stretch when activity is either transmitted by the PHY or received by the Link Partner. When disabled, the combine feature only provides status of the selected primary function. In this example, only Link1000 asserts the LED, and the secondary mode, activity, does not display if the combine feature is disabled.

LED Blink or Pulse-Stretch This behavior is used for activity and collision indication. This can be uniquely configured for each LED pin. Activity and collision events can occur randomly and intermittently throughout the link-up period. Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED pin. Pulse-stretch guarantees that an LED is asserted and de-asserted for a specific period of time when activity is either present or not present. These rates can also be configured using a register setting.

Rate of LED Blink or Pulse-Stretch This behavior controls the LED blink rate or pulse-stretch length when blink/pulse-stretch is enabled on an LED pin. The blink rate, which alternates between a high and low voltage level at a 50% duty cycle, can be set to $2.5 \mathrm{~Hz}, 5 \mathrm{~Hz}, 10 \mathrm{~Hz}$, or 20 Hz . For pulse-stretch, the rate can be set to $50 \mathrm{~ms}, 100 \mathrm{~ms}, 200 \mathrm{~ms}$, or 400 ms .

LED Pulsing Enable To provide additional power savings, the LEDs (when asserted) can be pulsed at $5 \mathrm{kHz}, 20 \%$ duty cycle.
Fiber LED Disable This bit controls whether the LEDs indicate the Fiber and Copper status (default) or the Copper status only.

4.14.3 Serial LED Mode

Optionally, the VSC8658 device can be configured so that access to all its LED signals is available through two pins. This option is enabled by setting LEDO on PHYO to Serial LED mode. When the mode is enabled on PHYO, the device LED[0] pin becomes the serial data pin and the LED[1] pin becomes the serial clock pin. All other LED pins can still be configured normally. The Serial LED mode clocks the 96 LED status bits on the rising edge of the serial clock.

The LED behavior settings (in device register 30) can also be used in Serial LED Mode. The controls are used on a per-PHY basis, where the LED combine and LED blink or pulse-stretch setting of LEDO_n for each PHY is used to control the behavior of each bit of the serial LED stream for each corresponding PHY.

The serial bitstream outputs, 1 through 96, of each LED signal are shown in the following table beginning with PHY port 0 and ending with PHY port 7 . The individual signals can be clocked in the order shown.

Table 6 - LED Serial Stream Order

PHY0	PHY1	PHY2	PHY3	PHY4	PHY5	PHY6	PHY7
Bit 1.	Bit 13.	Bit 25.	Bit 37.	Bit 49.	Bit 61.	Bit 73.	Bit 85.
Link/Activity							
Bit 2.	Bit 14.	Bit 26.	Bit 38.	Bit 50.	Bit 62.	Bit 74.	Bit 86.
Link1000/							
Activity							
Bit 3.	Bit 15.	Bit 27.	Bit 39.	Bit 51.	Bit 63.	Bit 75.	Bit 87.
Link100/							
Activity							
Bit 4. Link10/	Bit 16.	Bit 28.	Bit 40.	Bit 52.	Bit 64.	Bit 76.	Bit 88.
Activity	Link10/						
	Activity						
Bit 5.	Bit 17.	Bit 29.	Bit 41.	Bit 53.	Bit 65.	Bit 77.	Bit 89.
Reserved							
Bit 6. Duplex/	Bit 18.	Bit 30.	Bit 42.	Bit 54.	Bit 66.	Bit 78.	Bit 90.
Collision	Duplex/						
	Collision						
Bit 7.	Bit 19.	Bit 31.	Bit 43.	Bit 55.	Bit 67.	Bit 79.	Bit 91.
Collision							
Bit 8. Activity	Bit 20.	Bit 32.	Bit 44.	Bit 56.	Bit 68.	Bit 80.	Bit 92.
	Activity						

Table 6-LED Serial Stream Order (continued)

PHY0	PHY1	PHY2	PHY3	PHY4	PHY5	PHY6	PHY7
Bit 9.	Bit 21.	Bit 33.	Bit 45.	Bit 57.	Bit 69.	Bit 81.	Bit 93.
Reserved							
Bit 10. TX	Bit 22. TX	Bit 34. TX	Bit 46. TX	Bit 58. TX	Bit 70. TX	Bit 82. TX	Bit 94. TX
Activity							
Bit 11. RX	Bit 23. RX	Bit 35. RX	Bit 47. RX	Bit 59. RX	Bit 71. RX	Bit 83. RX	Bit 95. RX
Activity							
Bit 12. Auto-	Bit 24. Auto-	Bit 36. Auto-	Bit 48. Auto-	Bit 60. Auto-	Bit 72. Auto-	Bit 84. Auto-	Bit 96. Auto-
Negotiation							
Fault							

4.15 GPIO Pins

The VSC8658 provides up to 8 dedicated general-purpose input/output (GPIO) pins. In addition, the eight device SIGDET pins can also be configured as eight GPIO pins, resulting in a total of 16 GPIO pins.

All device GPIO pins and their behavior are controlled using registers. For more information, see General-Purpose I/O Registers, page 52.

4.16 Testing Features

The VSC8658 device includes several testing features designed to make it easier to perform systemlevel debugging and in-system production testing. This section describes the available features.

4.16.1 Ethernet Packet Generator (EPG)

The device EPG can be used at each of the 10/100/1000BASE-T speed settings for Copper Cat5 media to isolate problems between the MAC and the VSC8658 device, or between a locally connected PHY and its remote link partner. Enabling the EPG feature effectively disables all MAC interface transmit pins and selects the EPG as the source for all data transmitted onto the twisted pair interface.

Important The EPG is intended for use with laboratory or in-system testing equipment only. Do not use the EPG testing feature when the VSC8658 device is connected to a live network.

To enable the VSC8658 device EPG feature, set the device register bit 29E. 15 to 1.
When the EPG is enabled, packet loss occurs during transmission of packets from the MAC to the PHY. However, the PHY receive output pins to the MAC are still active when the EPG is enabled. If it is necessary to disable the MAC receive pins as well, set the register bit 0.10 to 1 .

When the device register bit 29E. 14 is set to 1 , the PHY begins transmitting Ethernet packets based on the settings in registers 29E and 30E. These registers set:

- Source and destination addresses for each packet
- Packet size
- Inter-packet gap
- FCS state
- Transmit duration
- Payload pattern

If register bit 29E. 13 is set to 0, register bit 29E. 14 is cleared automatically after 30,000,000 packets are transmitted.

4.16.2 CRC Counters

Two separate cyclical redundancy checking (CRC) counters are available on all PHYs in the VSC8658 device. There is a 14 -bit good CRC counter available in register bits 18E.13:0 and a separate 8 -bit counter available in register bits 23E.7:0.

The device CRC counters operate in the 100BASE-FX/1000BASE-X over SerDes mode as well as in the 10/100/1000BASE-T mode testing as follows:

- After receiving a packet on the media interface, register bit 18 E .15 is set and cleared after being read. The packet then is counted by either the good CRC counter or the bad CRC counter. Both CRC counters are also automatically cleared when read.
- The good CRC counter's highest value is 10,000 packets. After it reaches this value, the counter clears and continues to count additional packets beyond that value. The bad CRC counter stops counting when it reaches its maximum counter limit of 255 packets.

4.16.3 Far-End Loopback

The far-end loopback testing feature is enabled by setting register bit 23.3 to 1 . When enabled, it forces incoming data from a link partner on the current media interface to be retransmitted back to the link partner on the media interface as shown in the following illustration. In addition, the incoming data also appears on the receive data pins of the MAC interface. Data present on the transmit data pins of the MAC interface is ignored when using this testing feature.

Figure 13• Far-End Loopback Diagram

4.16.4 Near-End Loopback

When the near-end loopback testing feature is enabled (by setting the device register bit 0.14 to 1), data on the transmit data pins (TXD) is looped back onto the device receive data pins (RXD), as shown in the following figure. When using this testing feature, no data is transmitted over the network.

Figure 14 • Near-End Loopback Diagram

4.16.5 Connector Loopback

The connector loopback testing feature allows the twisted pair interface to be looped back externally. When using this feature, the PHY must be connected to a loopback connector or a loopback cable. Pair A should be connected to pair B, and pair C to pair D, as shown in the following figure. The connector loopback feature functions at all available interface speeds.

Figure 15 • Connector Loopback Diagram

When using the connector loopback testing feature, the device auto-negotiation, speed, and duplex configuration is set using device registers 0, 4, and 9. For 1000BASE-T connector loopback, only the following additional writes are required. Execute the additional writes in the following order:

1. Enable the 1000BASE-T connector loopback. Set register bit 24.0 to 1.
2. Disable pair swap correction. Set register bit 18.5 to 1 .

4.16.6 VeriPHY Cable Diagnostics

The VSC8658 device includes a comprehensive suite of cable diagnostic functions that are available using SMI reads and writes. These functions enable a variety of cable operating conditions and status to be accessed and checked. The VeriPHY ${ }^{\circledR}$ suite has the ability to identify the cable length and operating conditions and to isolate a variety of common faults that can occur on the Cat5 twisted pair cabling.

Note: If a link is established on the twisted pair interface in the 1000BASE-T mode, VeriPHY can run without disrupting the link or disrupting any data transfer. However, if a link is established in 100BASE-TX or 10BASE-T, VeriPHY causes the link to drop while the diagnostics are running. After the diagnostics are finished, the link is re-established.

The following diagnostic functions are part of the VeriPHY suite:

- Detecting coupling between cable pairs
- Detecting cable pair termination
- Determining cable length

Coupling Between Cable Pairs Shorted wires, improper termination, or high crosstalk resulting from an incorrect wire map can cause error conditions, such as anomalous coupling between cable pairs. All these conditions can prevent the device from establishing a link in any speed.

Cable Pair Termination Proper termination of Cat5 cable requires a 100Ω differential impedance between the positive and negative cable terminals. The IEEE standard 802.3 allows for a termination of as high as 115Ω or as low as 85Ω. If the termination falls outside of this range, it is reported by the VeriPHY diagnostics as an anomalous termination. The diagnostics can also determine the presence of an open or shorted cable pair.
Cable Length When the Cat5 cable in an installation is properly terminated, VeriPHY reports the approximate cable length in meters.

4.16.7 IEEE 1149.1 JTAG Boundary Scan

The VSC8658 device supports the Test Access Port (TAP) and Boundary Scan Architecture described in the IEEE standard 1149.1. The device includes an IEEE 1149.1-compliant test interface, often referred to as a "JTAG TAP Interface."

The JTAG boundary scan logic on the VSC8658 device, accessed using its TAP interface, consists of a boundary scan register and other logic control blocks. The TAP controller includes all IEEE-required signals (TMS, TCK, TDI, and TDO), in addition to the optional asynchronous reset signal NTRST.

The following illustration shows the TAP and Boundary Scan Architecture.

Figure 16• Test Access Port and Boundary Scan Architecture Diagram

After a TAP reset, the device identification register is serially connected between TDI and TDO by default. The TAP instruction register is loaded either from a shift register (when a new instruction is shifted in) or, if there is no new instruction in the shift register, a default value of 0110 (IDCODE) is loaded. Using this method, there is always a valid code in the instruction register, and the problem of toggling instruction bits during a shift is avoided. Unused codes are mapped to the BYPASS instruction.

4.16.8 JTAG Instruction Codes

The VSC8658 device supports the following instruction codes:
EXTEST Allows tests of the off-chip circuitry and board-level interconnections by sampling input pins and loading data onto output pins. Outputs are driven by the contents of the boundary-scan cells, which have to be updated with valid values (with the PRELOAD instruction) prior to the EXTEST instruction.

SAMPLE/PRELOAD Allows a snapshot of inputs and outputs during normal system operation to be taken and examined. It also allows data values to be loaded into the boundary-scan cells prior to the selection of other boundary-scan test instructions.

IDCODE Provides the version number (bits 31:28), part number (bits 27:12), and the manufacturer identity (bits 11:1) to be serially read from the device.

The following table provides information about the meaning of IDCODE binary values stored in the device JTAG registers.

Table 7•JTAG Device Identification Register Description

Description	Device Version Number	Model Number	Manufacturing Identity	LSB
Bit field	31 through 28	27 through 12	11 through 1	0
Binary value	0000	1000011001011000	00110011000	1

CLAMP Allows the state of the signals driven from the component pins to be determined from the boundary scan register while the bypass register is selected as the serial path between TDI and TDO. While the CLAMP instruction is selected, the signals driven from the component pins do not change.
HIGHZ Places the component in a state in which all of its system logic outputs are placed in a highimpedance state. In this state, an in-circuit test system may drive signals onto the connections normally driven by a component output without incurring a risk of damage to the component. This makes it possible to use a board where not all of the components are compatible with the IEEE 1149.1 standard.
BYPASS The bypass register contains a single shift-register stage and is used to provide a minimumlength serial path (one TCK clock period) between TDI and TDO to bypass the device when no test operation is required.

The following table provides more information about the location and IEEE compliance of the JTAG instruction codes used in the VSC8658. For more information about these IEEE specifications, visit the IEEE Web site at www.IEEE.org.

Table 8 • JTAG Interface Instruction Codes

| Instruction | Code | Selected Register | Register
 Width | IEEE 1149.1
 Specification | IEEE 1149.6
 Specification |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EXTEST | 0000 | Boundary-Scan | 244 | Mandatory | |
| SAMPLE/PRELOA 0001 Boundary-Scan 244 Mandatory
 D 0110 Device Identification 32 Optional
 IDCODE 0010 Bypass Register 1 Optional
 CLAMP 0011 Bypass Register 1 Optional
 HIGHZ 1111 Bypass Register 1 Mandatory
 BYPASS 0100 Boundary-Scan Register 244
 EXTEST_PULSE Boundary-Scan Register 244 Mandatory
 EXTEST_TRAIN 0101
 RESERVED 0111,
 1000 through | | | | | |

4.16.9 Boundary Scan Register Cell Order

All inputs and outputs are observed in the boundary scan register cells. All outputs are additionally driven by the contents of boundary scan register cells. Bidirectional pins have all three related boundary scan register cells: input, output, and control.
The complete boundary scan cell order is available as a BSDL file format on the Microsemi Web site at www.microsemi.com.

4.17 IEEE 1149.6 AC-JTAG Boundary Scan Interface

The IEEE 1149.6 AC-JTAG solution integrated on all SerDes ports of the VSC8658 device extends the capability of IEEE 1149.1 boundary scan for robust board-level testing. This interface is backwardcompatible to the IEEE 1149.1 standard.

5 Configuration

The VSC8658 device can be configured using three different methods:

- Setting internal memory registers using the management interface
- Setting a combination of CMODE pins and registers
- Loading a configuration into an external EEPROM and connecting that device so that it writes configuration information at system startup

5.1 Registers

This section provides information about how to configure the VSC8658 device using its internal memory registers and the management interface. For information about configuring the device using the CMODE pins, see CMODE, page 55 . For information about setting up an external EEPROM to perform startup configuration, see EEPROM, page 58.

The VSC8658 device uses three types of registers:

- IEEE standard and main device registers with addresses from 0 to 31
- Extended registers with addresses from 16E through 30E
- General-purpose input and output (GPIO) registers with addresses from 0G to 30G

The following illustration shows the relationship between the device registers and their address spaces.
Figure 17• Register Space Diagram

5.1.1 Reserved Registers

For main registers 16 through 31, extended registers 16E through 30E, and GPIO registers $0 G$ through 30G, any bits marked as "Reserved" should be processed as read only and their states as undefined.

5.1.2 Reserved Bits

In writing to registers with reserved bits, use a "read-modify-then-write" technique, where the entire register is read but only the intended bits to be changed are modified. Reserved bits cannot be changed and their read state cannot be considered static or unchanging.

5.2 IEEE Standard and Main Registers

In the VSC8658 device, the page space of the standard registers consists of the IEEE standard registers and the Microsemi standard registers. The following table lists the names of the registers associated with the addresses as dictated by the IEEE standard.

Table 9• IEEE 802.3 Standard Registers

Register Address	Register Name
0	Mode control
1	Mode status
2	PHY identifier 1
3	PHY identifier 2
4	Auto-negotiation advertisement
5	Auto-negotiation link partner ability
6	Auto-negotiation expansion
7	Auto-negotiation next-page transmit
8	Auto-negotiation link partner next-page receive
9	1000BASE-T control
10	1000BASE-T status
11	Reserved
12	Reserved
13	Reserved
14	Reserved
15	1000BASE-T status extension 1

The following table lists the names of the registers in the main page space of the device. These registers are accessible only when register address 31 is set to 0×0000.

Table 10•Main Registers

Register Address	Register Name
16	100BASE-TX status extension
17	1000BASE-T status extension 2
18	Bypass control
19	Reserved
20	Reserved
21	Reserved
22	Extended control and status
23	Extended PHY control 1
24	Extended PHY control 2

Table 10• Main Registers (continued)

Register Address	Register Name
25	Interrupt mask
26	Interrupt status
27	MAC interface auto-negotiation control and status
28	Auxiliary control and status
29	LED mode select
30	LED behavior
31	Extended register page access

5.2.1 Mode Control

The device register at memory address 0 controls several aspects of VSC8658 functionality. The following table shows the available bit settings in this register and what they control.

Table 11- Mode Control, Address 0 (0×00)

Bit	Name	Access	Description	Default
15	Software reset	R/W	This is a self-clearing bit that restores all serial management interface (SMI) registers to their default state, except for sticky and super sticky bits. 1 = Reset asserted. $0=$ Reset de-asserted. You must wait $4 \mu \mathrm{~s}$ after setting this bit to initiate another SMI register access.	0
14	Loopback	R/W	1 = Loopback enabled. 0 = Loopback disabled. When loop back is enabled, the device functions at the current speed setting and with the current duplex mode setting (bit 8 of this register).	0
13	LSB for speed selection	R/W	See bit 6 below.	0
12	Auto-negotiation enable	R/W	1 = Auto-negotiation enabled. $0=$ Auto-negotiation disabled.	1
11	Power-down	R/W	1 = Power-down enabled.	0
10	Isolate	R/W	1 = Disable MAC interface outputs and ignore MAC interface inputs.	0
9	Restart autonegotiation	R/W	This is a self-clearing bit. 1 = Restart auto-negotiation on media interface.	0
8	Duplex	R/W	$\begin{aligned} & 1 \text { = Full-duplex. } \\ & 0=\text { Half-duplex. } \end{aligned}$	0
7	Collision test enable	R/W	1 = Collision test enabled.	0
6, 13	Forced speed selection	R/W	$\begin{aligned} & \text { MSB }=\text { bit } 6, \text { LSB }=\text { bit } 13 . \\ & 00=10 \mathrm{Mbps.} \\ & 01=100 \mathrm{Mbps} . \\ & 10=1000 \mathrm{Mbps} . \\ & 11=\text { Reserved. } \end{aligned}$	10

Table 11• Mode Control, Address 0 (0×00) (continued)

Bit	Name	Access	Description
$5: 0$	Reserved		

5.2.2 Mode Status

The register at address 1 in the device main registers space allows you to read the currently enabled mode setting. The following table shows possible readouts of this register.

Table 12• Mode Status, Address 1 (0x01)

Bit	Name	Access	Description	Default
15	100BASE-T4 capability	RO	1 = 100BASE-T4 capable.	0
14	100BASE-TX FDX capability	RO	1 = 100BASE-TX FDX capable.	1
13	100BASE-TX HDX capability	RO	1 = 100BASE-TX HDX capable.	1
12	10BASE-T FDX capability	RO	1 = 10BASE-T FDX capable.	1
11	10BASE-T HDX capability	RO	1 = 10BASE-T HDX capable.	1
10	100BASE-T2 FDX capability	RO	1 = 100BASE-T2 FDX capable.	0
9	100BASE-T2 HDX capability	RO	1 = 100BASE-T2 HDX capable.	0
8	Extended status enable	RO	1 = Extended status information present in register 15.	1
7	Reserved	RO		0
6	Preamble suppression capability	RO	1 = MF preamble may be suppressed. $0=\mathrm{MF}$ always required.	1
5	Auto-negotiation complete	RO	1 = Auto-negotiation complete.	0
4	Remote fault	RO	This bit latches high. 1 = Far-end fault detected.	0
3	Auto-negotiation capability	RO	1 = Auto-negotiation capable.	1
2	Link status	RO	This bit latches low. $1=$ Link is up.	0
1	Jabber detect	RO	This bit latches high. 1 = Jabber condition detected.	0
0	Extended capability	RO	1 = Extended register capable.	1

5.2.3 Device Identification

All 16 bits in both register 2 and register 3 in the VSC8658 device are used to provide information associated with aspects of the device identification. The following tables list the readouts you can expect.

Table 13• Identifier 1, Address 2 (0×02)

Bit	Name	Access	Description	Default
$15: 0$	Organizationally unique identifier (OUI)	RO	OUI most significant bits (3:18)	0×0007

Table 14 • Identifier 2, Address 3 (0×03)

Bit	Name	Access	Description	Default
$15: 10$	OUI	RO	OUI least significant bits (19:24)	0×0001
$9: 4$	Microsemi model number	RO	VSC8658	110101
$3: 0$	Device revision number	RO		0000

5.2.4 Auto-Negotiation Advertisement

The bits in address 4 in the main registers space control the VSC8658 device ability to notify other devices of the status of its auto-negotiation feature. The following table shows the available settings and readouts.

Table 15• Device Auto-Negotiation Advertisement, Address 4 (0x04)

Bit	Name	Access	Description	Default
15	Next page transmission request	R/W	1 = Request enabled	0
14	Reserved	RO		0
13	Transmit remote fault	R/W	1 = Enabled	0
12	Reserved technologies	R/W		0
11	Advertise asymmetric pause	R/W	1 = Advertises asymmetric pause	CMODE
10	Advertise symmetric pause	R/W	1 = Advertises symmetric pause	CMODE
9	Advertise 100BASE-T4	R/W	1 = Advertises 100BASE-T4	0
8	Advertise 100BASE-TX FDX	R/W	1 = Advertise 100BASE-TX FDX	CMODE
7	Advertise 100BASE-TX HDX	R/W	1 = Advertises 100BASE-TX HDX	CMODE
6	Advertise 10BASE-T FDX	R/W	1 = Advertises 10BASE-T FDX	CMODE
5	Advertise 10BASE-T HDX	R/W	1 = Advertises 10BASE-T HDX	CMODE
$4: 0$	Advertise selector	R/W		00001

5.2.5 Link Partner Auto-Negotiation Capability

The bits in main register 5 enable you to determine if the Cat5 link partner (LP) used with the VSC8658 device is compatible with the auto-negotiation functionality.

Table 16• Auto-Negotiation Link Partner Ability, Address 5 (0x05)

Bit	Name	Access	Description	Default
15	LP next page transmission request	RO	1 = Requested	0
14	LP acknowledge	RO	1 = Acknowledge	0
13	LP remote fault	RO	1 = Remote fault	0
12	Reserved	RO		0
11	LP advertise asymmetric pause	RO	1 = Capable of asymmetric pause	0
10	LP advertise symmetric pause	RO	1 = Capable of symmetric pause	0
9	LP advertise 100BASE-T4	RO	1 = Capable of 100BASE-T4	0
8	LP advertise 100BASE-TX FDX	RO	1 = Capable of 100BASE-TX FDX	0
7	LP advertise 100BASE-TX HDX	RO	1 = Capable of 100BASE-TX HDX	0
6	LP advertise 10BASE-T FDX	RO	1 = Capable of 10BASE-T FDX	0
5	LP advertise 10BASE-T HDX	RO	1 = Capable of 10BASE-T HDX	0
4:0	LP advertise selector	RO		00000

5.2.6 Auto-Negotiation Expansion

The bits in main register 6 work together with those in register 5 to indicate the status of the LP autonegotiation functioning. The following table shows the available settings and readouts.

Table 17• Auto-Negotiation Expansion, Address 6 (0x06)

Bit	Name	Access	Description	Default
$15: 5$	Reserved	RO		00000000000
4	Parallel detection fault	RO	This bit latches high. $1=$ Parallel detection fault.	0
3	LP next page capable RO	$1=$ LP is next page capable.	0	
2	Local PHY next page capable	RO	$1=$ Local PHY is next page capable.	1
1	Page received	RO	This bit latches low. $1=$ New page is received.	0
0	LP is auto-negotiation capable	RO	$1=$ LP is capable of auto-negotiation.	0

5.2.7 Transmit Auto-Negotiation Next Page

The settings in register 7 in the main registers space provide information about the number of pages in an auto-negotiation sequence. The following table shows the settings available.

Table 18• Auto-Negotiation Next Page Transmit, Address 7 (0x07)

Bit	Name	Access	Description	Default
15	Next page	R/W	$1=$ More pages follow	0
14	Reserved	RO		0
13	Message page	R/W	$1=$ Message page $0=$ Unformatted page	1
12	Acknowledge 2	R/W	$1=$ Complies with request $0=$ Cannot comply with request	0
11	Toggle	RO	$1=$ Previous transmitted LCW $=0$ $0=$ Previous transmitted LCW $=1$	0
$10: 0$	Message /unformatted code	R/W		00000000

5.2.8 Auto-Negotiation Link Partner Next Page Receive

The bits in register 8 of the main register space work together with register 7 to determine certain aspects of the LP auto-negotiation. The following table shows the possible readouts.

Table 19• Auto-Negotiation LP Next Page Receive, Address 8 (0x08)

Bit	Name	Access	Description	Default
15	LP next page	RO	$1=$ More pages follow	0
14	Acknowledge	RO	$1=$ LP acknowledge	0
13	LP message page	RO	$1=$ Message page $0=$ Unformatted page	0
12	LP Acknowledge 2	RO	$1=$ LP complies with request	0
11	LP toggle	RO	$1=$ Previous transmitted LCW $=0$ $0=$ Previous transmitted LCW $=1$	0
$10: 0$	LP message /unformatted code	RO		00000000000

5.2.9 1000BASE-T Control

The VSC8658 device's 1000BASE-T functionality is controlled by the bits in register 9 of the main register space. The following table shows the settings and readouts available.

Table 20• 1000BASE-T Control, Address 9 (0x09)

Bit	Name	Access	Description	Default
$15: 13$	Transmitter test	R/W	000 = Normal.	000
	mode		001 = Mode 1: Transmit waveform test.	
			$010=$ Mode 2: Transmit jitter test as master.	
			$011=$ Mode 3: Transmit jitter test as slave.	
			$100=$ Mode 4: Transmitter distortion test.	
				to 111 = Reserved: Operation not defined.

Table 20•1000BASE-T Control, Address 9 (0x09) (continued)

Bit	Name	Access	Description	Default
12	Master/slave manual configuration	R/W	$1=$ Master/slave manual configuration enabled.	0
11	Master/slave value	R/W	This register is only valid when bit 9.12 is set to 1. $1=$ Configure PHY as master during negotiation. $0=$ Configure PHY as slave during negotiation.	0
10	Port type	R/W	$1=$ Multi-port device. $0=$ Single-port device.	1
9	1000BASE-T FDX capability	R/W	$1=$ PHY is 1000BASE-T FDX capable.	CMODE
8	1000BASE-T HDX capability	R/W	$1=$ PHY is 1000BASE-T HDX capable.	CMODE
$7: 0$	Reserved	R/W		0×00

Note Transmitter Test mode (bits 15:13) operates in the manner described in IEEE standard 802.3, section 40.6.1.1.2. When using any of the Transmitter Test modes, the Auto-Media Sense functionality must be disabled. For more information, see Extended PHY Control Set 1, page 37.

5.2.10 1000BASE-T Status

The bits in register 10 of the main register space allow you to read the status of the 1000BASE-T communications enabled in the device. The following table shows the readouts.

Table 21 • 1000BASE-T Status, Address 10 (0x0A)

Bit	Name	Access	Description	Default
15	Master/slave configuration fault	RO	This bit latches high. $1=$ Master/slave configuration fault detected. $0=$ No master/slave configuration fault detected.	0
14	Master/slave configuration resolution	RO	$1=$ Local PHY configuration resolved to master. $0=$ Local PHY configuration resolved to slave.	1
13	Local receiver status	RO	$1=$ Local receiver is operating normally.	0
12	Remote receiver status	RO	$1=$ Remote receiver OK.	0
11	LP 1000BASE-T FDX capability	RO	$1=$ LP 1000BASE-T FDX capable.	0
10	LP 1000BASE-T HDX capability	RO	$1=$ LP 1000BASE-T HDX capable.	0
$9: 8$	Reserved	RO		00
$7: 0$	Idle error count	RO	This is a self-clearing bit.	0×00

5.2.11 Main Registers Reserved Addresses

In the VSC8658 device main registers page space, registers 11 through 15 ($0 \times 0 \mathrm{~B}$ through $0 \times 0 \mathrm{E}$) are reserved.

5.2.12 1000BASE-T Status Extension 1

Register 15 provides additional information about the operation of the device 1000BASE-T communications. The following table shows the readouts available.

Table 22• 1000BASE-T Status Extension 1, Address 15 (0x0F)

Bit	Name	Access	Description	Default
15	1000BASE-X FDX capability	RO	$1=$ PHY is 1000BASE-X FDX capable	0
14	1000BASE-X HDX capability	RO	$1=$ PHY is 1000BASE-X HDX capable	0
13	1000BASE-T FDX capability	RO	$1=$ PHY is 1000BASE-T FDX capable	1
12	1000BASE-T HDX capability	RO	$1=$ PHY is 1000BASE-T HDX capable	1
$11: 0$	Reserved	RO		0×000

5.2.13 100BASE-TX Status Extension

Register 16 in the main registers page space of the VSC8658 device provides additional information about the status of the device's 100BASE-TX operation.

Table 23• 100BASE-TX Status Extension, Address 16 (0x10)

Bit	Name	Access	Description	Default
15	100BASE-TX Descrambler	RO	1 = Descrambler locked.	0
14	100BASE-TX lock error	RO	This is a self-clearing bit. $1=$ Lock error detected.	0
13	100BASE-TX disconnect state	RO	This is a self-clearing bit. $1=$ PHY 100BASE-TX link disconnect detected.	0
12	100BASE-TX current link status	RO	$1=$ PHY 100BASE-TX link active.	0
11	100BASE-TX receive error	RO	This is a self-clearing bit. $1=$ Receive error detected.	0
10	100BASE-TX transmit error	RO	This is a self-clearing bit. $1=$ Transmit error detected.	0
9	100BASE-TX SSD error	RO	This is a self-clearing bit. $1=$ Start-of-stream delimiter error detected.	0
8	100BASE-TX ESD error	RO	This is a self-clearing bit. $1=$ End-of-stream delimiter error detected.	0
$7: 0$	Reserved	RO		0

5.2.14 1000BASE-T Status Extension 2

The second status extension register is at address 17 in the device main registers space. It provides information about another set of parameters associated with 1000BASE-T communications. For information about the first status extension register, see Table 23, page 34.

Table 24 • 1000BASE-T Status Extension 2, Address 17 (0x11)

Bit	Name	Access	Description	Default
15	1000BASE-T descrambler	RO	1 = Descrambler locked.	0
14	1000BASE-T lock error	RO	This is a self-clearing bit. $1=$ Lock error detected.	0
13	1000BASE-T disconnect state	RO	This is a self-clearing bit. $1=$ PHY 1000BASE-T link disconnect detected.	0
12	1000BASE-T current link status	RO	$1=$ PHY 1000BASE-T link active.	0
11	1000BASE-T receive error	RO	This is a self-clearing bit. $1=$ Receive error detected.	0
10	1000BASE-T transmit error	RO	This is a self-clearing bit. $1=$ Transmit error detected.	0
9	1000BASE-T SSD error	RO	This is a self-clearing bit. $1=$ Start-of-stream delimiter error detected.	0
8	1000BASE-T ESD error	RO	This is a self-clearing bit. $1=$ End-of-stream delimiter error detected.	0
7	1000BASE-T carrier extension error	RO	This is a self-clearing bit. $1=$ Carrier extension error detected.	0
$6: 0$	Reserved	RO		0

5.2.15 Bypass Control

The bits in the Bypass Control register in the VSC8658 device control aspects of functionality in effect when the device is disabled so that traffic can bypass it in your design. The following table shows the settings available.

Table 25 • Bypass Control, Address 18 (0x12)

Bit	Name	Access	Description	Default
15	Transmit disable	R/W	$1=$ PHY transmitter disabled.	0
$14: 9$	Reserved	RO		0
8	1000BASE-T transmitter test clock	R/W	1 = Enabled.	0
7	Auto MDI-X at forced $10 / 100$	R/W	This is a sticky bit. $1=$ Disable Auto MDI-X at forced 10/100 speeds.	1
6	Reserved	RO		0
5	Disable pair swap correction	R/W	This is a sticky bit. $1=$ Disable the automatic pair swap correction.	

Table 25 • Bypass Control, Address 18 (0×12) (continued)

Bit	Name	Access	Description	Default	
4	Disable polarity correction	R/W	This is a sticky bit. $1=$ Disable polarity inversion correction on each subchannel.	0	
3	Parallel detect control R/W	This is a sticky bit. $1=$ Do not ignore advertised ability. $0=$ Ignore advertised ability.	1		
2	Reserved	RO		0	
1	Disable automatic 1000BASE-T next page exchange	R/W	This is a sticky bit. $1=$ Disable automatic 1000BASE-T next page exchanges.		
0	CLKOUT output enable	R/W	This is a sticky bit. $1=$ Enable clock output pin.	CMODE	

Note If bit 18.1 is set to 1 in this register, automatic exchange of next pages is disabled, and control is returned to the user through the SMI after the base page is exchanged. The user then must send the correct sequence of next pages to the link partner, determine the common capabilities, and force the device into the correct configuration following the successful exchange of pages.

5.2.16 Reserved Main Address Space

The bits in register 19 , register 20 , and register 21 ($0 \times 13,0 \times 14$, and 0×15, respectively) are reserved.

5.2.17 Extended Control and Status

The bits in register 22 provide additional device control and readouts. The following table shows the settings available.

Table 26 • Extended Control and Status, Address 22 (0x16)

Bit	Name	Access	Description	Default
15	Force 10BASE-T link high	R/W	This is a sticky bit. 1 = Bypass link integrity test. 0 = Enable link integrity test.	0
14	Jabber detect disable	R/W	This is a sticky bit. 1 = Disable jabber detect.	0
13	Disable 10BASE-T echo	R/W	This is a sticky bit. 1 = Disable 10BASE-T echo.	1
12	Reserved	RO		
11:10	10BASE-T squelch control	R/W	This is a sticky bit. $00=$ Normal squelch. 01 = Low squelch. $10=$ High squelch. 11 = Reserved.	00
9	Sticky reset enable	R/W	This is a super-sticky bit. 1 = Enabled.	1
8	EOF Error	RO	This bit is self-clearing. 1 = EOF error detected.	0
7	10BASE-T disconnect state	RO	This bit is self-clearing. 1 = 10BASE-T link disconnect detected.	0

Table 26 • Extended Control and Status, Address 22 (0×16) (continued)

Bit	Name	Access	Description	Default
6	10BASE-T link status	RO	$1=10 B A S E-T$ link active.	0
$5: 1$	Reserved	RO		0
0	SMI broadcast write	R/W	This is a sticky bit. $1=$ Enabled.	

The following information applies to the extended control and status bits:

- When bit 22.15 is set, the link integrity state machine is bypassed and the PHY is forced into a link pass status.
- When bits 22.11:0 are set to 00 , the squelch threshold levels are based on the IEEE standard for 10BASE-T. When set to 01, the squelch level is decreased, which may improve the bit error rate performance on long loops. When set to 10, the squelch level is increased and may improve the bit error rate in high-noise environments.
- When bit 22.9 is set, all sticky register bits retain their values during a software reset. Clearing this bit causes all sticky register bits to change to their default values upon software reset. Super-sticky bits retain their values upon software reset regardless of the setting of bit 22.9.
- When bit 22.0 is set, if a write to any PHY register (registers 0 through 31, including extended registers), the same write is broadcast to all PHYs. For example, if bit 22.0 is set to 1 and a write to PHY_0 is executed (register 0 is set to 0×1040), all PHYs' register 0s are set to 0×1040. Disabling this bit restores normal PHY write operation. Reads are still possible when this bit is set, but the value that is read corresponds only to the particular PHY being addressed.

5.2.18 Extended PHY Control Set 1

The bits in the extended control set control the MAC auto-negotiation function, the 100BASE-FX SerDes function, and report SGMII alignment errors and EEPROM status. The following table shows the settings available.

Table 27• Extended PHY Control 1, Address 23 (0x17)

Bit	Name	Access	Description	Default
15:14	Reserved	RO		
13	MAC interface auto-negotiation	R/W	This is a super-sticky bit. 1 = Enabled.	CMODE
12	MAC interface mode	R/W	This is a super-sticky bit. $\begin{aligned} & 1=1000 \text { BASE-X. } \\ & 0=\text { SGMII. } \end{aligned}$	0
11	AMS preference	R/W	This is a super-sticky bit. 1 = Cat5 copper preferred. $0=$ SerDes fiber/SFP preferred.	0

Table 27- Extended PHY Control 1, Address 23 (0×17) (continued)

Bit	Name	Access	Description	Default
10:8	Media operating mode	R/W	This is a super-sticky bit. $000=$ Cat5 copper only. 001 = SerDes fiber/SFP pass-through mode only. No auto-negotiation performed in the PHY. $010=1000 B A S E-X$ fiber/SFP media only with auto-negotiation performed by the PHY. $011=100 B A S E-X$ fiber/SFP on the fiber media pins only 101 = Auto-Media Sense with Cat5 media or SerDes fiber/SFP pass-through mode. $110=$ Auto-Media Sense with Cat5 media or 1000BASE-X fiber/SFP media with autonegotiation performed by PHY. 111 = Auto-Media Sense with Cat5 media or 100BASE-FX fiber/SFP media. 100 = Reserved.	CMODE
7:6	Force AMS override	R/W	```00 = Normal auto-media selection (AMS). 01 = Force AMS to select SerDes media only. 10 = Force AMS to select copper media only. 11 = Reserved.```	00
5:4	Reserved	RO		
3	Far-end loopback mode	R/W	1 = Enabled.	0
2	Reserved	RO		
1	SGMII alignment error status	RO	This is a self-clearing bit. 1 = Alignment error detected since last read.	0
0	EEPROM status	RO	1 = EEPROM present on EECLK and EEDAT pins.	0

Note After configuring bits 13:8 of the extended PHY control register set 1, a software reset (register 0, bit 15) must be written to change the device operating mode.

5.2.19 Extended PHY Control Set 2

The second set of extended controls is located in register 24 in the main register space for the device. The following table shows the settings and readouts available.

Table 28 • Extended PHY Control 2, Address 24 (0x18)

Bit	Name	Access	Description	Default
$15: 13$	100BASE-TX edge	R/W	This is a sticky bit.	110
	rate control		$011=+5$ Edge rate (slowest).	
			$010=+4$ Edge rate.	
		$001=+3$ Edge rate.		
		$000=+2$ Edge rate.		
		$111=+1$ Edge rate.		
		$110=$ Default edge rate.		
		$101=-1$ Edge rate.		
		$100=-2$ Edge rate (fastest).		
12	PICMG 2.16 reduced	R/W	This is a sticky bit.	0
	power mode		$1=$ Enabled.	

Table 28- Extended PHY Control 2, Address 24 (0×18) (continued)

Bit	Name	Access	Description	Default
11:9	Reserved	RO		
8:7	SGMII input preamble	R/W	This is a sticky bit. $00=$ No SGMII preamble required. 01 = One-byte SGMII preamble required. 10 = Two-byte SGMII preamble required. 11 = Reserved.	00
6	SGMII output preamble	R/W	This is a sticky bit. $0=$ No SGMII preamble. 1 = Two-byte SGMII preamble.	1
5:4	Jumbo packet mode	R/W	This is a sticky bit. $00=$ Normal IEEE 1.5 kB packet length. $01=9 \mathrm{kB}$ jumbo packet length (12 kB with 60 ppm or better reference clock). $10=12 \mathrm{kB}$ jumbo packet length (16 kB with 70 ppm or better reference clock). 11 = Reserved.	00
3:1	100BASE-TX transmitter amplitude control	R/W	$011=+3$ Amplitude setting (largest). $010=+2$ Amplitude setting. $001=+1$ Amplitude setting. $000=$ Default amplitude. $111=-1$ Amplitude setting. $110=-2$ Amplitude setting. $101=-3$ Amplitude setting. $100=-4$ Amplitude setting (smallest).	000
0	1000BASE-T connector loopback	R/W	1 = Enabled.	0

Note When bits 5:4 are set to Jumbo Packet mode, the default maximum packet values are based on 100 ppm driven reference clock to the device. Controlling the ppm offset between the MAC and the PHY as specified in the bit description results in a higher Jumbo packet length.

5.2.20 Interrupt Mask

The bits in register 25 control the device interrupt mask. The following table shows the settings available.
Table 29• Interrupt Mask, Address 25 (0×19)

Bit	Name	Access	Description	Default
15	MDINT interrupt status enable	R/W	This is a sticky bit. $1=$ Enabled.	0
14	Speed state change mask	R/W	This is a sticky bit. $1=$ Enabled.	0
13	Link state change mask	R/W	This is a sticky bit. $1=$ Enabled.	0
12	FDX state change mask	R/W	This is a sticky bit. $1=$ Enabled.	0
11	Auto-negotiation error mask	R/W	$1=$ Enabled.	0
10	Auto-negotiation complete mask	R/W	This is a sticky bit. $1=$ Enabled.	0

Table 29• Interrupt Mask, Address 25 (0×19) (continued)

Bit	Name	Access	Description	Default
9	Inline powered device (PoE) detect mask	R/W	This is a sticky bit. $1=$ Enabled.	0
$8: 5$	Reserved	RO		
4	AMS media changed mask	R/W	This is a sticky bit. $1=$ Enabled.	0
3	Reserved	RO		
2	Link speed downshift detect mask	R/W	This is a sticky bit. $1=$ Enabled.	0
1	Master/Slave resolution error mask	R/W	This is a sticky bit. $1=$ Enabled.	0
0	Reserved	RO		

Note When bit 25.15 is set, the MDINT pin is enabled. When enabled, the state of this pin reflects the state of bit 26.15. Clearing this bit only inhibits the MDINT pin from being asserted.

5.2.21 Interrupt Status

The status of interrupts already written to the device are available for reading from register 26 in the main registers space. The following table shows the readouts you can expect.

Table 30 • Interrupt Status, Address 26 (0x1A)

Bit	Name	Access	Description	Default
15	Interrupt status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0
14	Speed state change status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0
13	Link state change status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0
12	FDX state change status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0
11	Auto-negotiation error status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	
10	Auto-negotiation complete status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0
9	Inline powered device detect status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0
$8: 5$	Reserved	RO	RO	This is a self-clearing bit. $1=$ Interrupt pending.
4	AMS media changed status		RO	0
3	Reserved	Rink speed downshift detect status	RO	This is a self-clearing bit. $1=$ Interrupt pending.
2	Master/Slave resolution error status	RO	This is a self-clearing bit. $1=$ Interrupt pending.	0

The following information applies to the interrupt status bits:

- All set bits in this register are cleared after being read (self-clearing). If bit 26.15 is set, the cause of the interrupt can be read by reading bits 26.14:0.
- For bits 26.14 and 26.12 , bit 0.12 must be set for this interrupt to assert.
- For bit 26.2, bits $4.8: 5$ must be set for this interrupt to assert.

5.2.22 MAC Interface Auto-Negotiation Control and Status

Device auto-negotiation for the MAC interface is controlled in register 27. The same register is used to check the status of those parameters. The following table shows the settings available.

Table 31 • MAC Auto-Negotiation Control and Status, Address 27 (0x1B)

Bit	Name	Access	Description	Default
15	MAC or media interlock	R/W	This is a sticky bit. 1 = MAC interface disabled when media link down. $0=$ MAC interface not suppressed by media link status.	0
14	MAC or media restart auto-negotiation interlock	R/W	This is a sticky bit. 1 = MAC interface restarts its auto-negotiation if the media link changes. $0=$ MAC interface does not automatically change if media link changes.	0
13	MAC interface auto-negotiation auto-sense	R/W	This is a sticky bit. $1=$ If MAC auto-negotiation is enabled, this allows the MAC interface to be able to link to MACs with auto-negotiation enabled and disabled. $0=$ Normal MAC auto-negotiation behavior.	0
12	MAC interface auto-negotiation restart	R/W	This is a self-clearing bit. 1 = Restart auto-negotiation.	0
11:10	Reserved	RO		
9:8	Remote fault detected from MAC	RO	Corresponds to the remote fault bits sent by the MAC during auto-negotiation.	00
7	Asymmetric pause advertised by the MAC	RO	Corresponds to the asymmetric pause bit sent by the MAC during auto-negotiation.	0
6	Symmetric pause advertised by the MAC	RO	Corresponds to the symmetric pause bit sent by the MAC during auto-negotiation.	0
5	Full-duplex advertised by the MAC	RO	Corresponds to the full-duplex bit sent by the MAC during auto-negotiation.	0
4	Half-duplex advertised by the MAC	RO	Corresponds to the half-duplex bit sent by the MAC during auto-negotiation.	0
3	MAC auto-negotiation capable	RO	1 = MAC is auto-negotiation capable.	0
2	MAC interface link status	RO	1 = The MAC interface is actively linked.	0

Table 31 • MAC Auto-Negotiation Control and Status, Address 27 ($0 \times 1 B$) (continued)

Bit	Name	Access	Description	Default
1	MAC interface auto-negotiation complete	RO	$1=$ The MAC interface auto-negotiation is complete.	0
0	Reserved	RO		

5.2.23 Device Auxiliary Control and Status

Register 28 provides control and status information for several device functions not controlled or monitored by other device registers. The following table shows the settings available and the readouts you can expect.

Table 32• Auxiliary Control and Status, Address 28 (0x1C)

Bit	Name	Access	Description	Default
15	Auto-negotiation complete	RO	Duplicate of bit 1.5.	0
14	Auto-negotiation disabled	RO	Inverted duplicate of bit 0.12.	0
13	MDI/MDI-X crossover indication	RO	1 = MDI/MDI-X crossover performed internally.	0
12	CD pair swap	RO	1 = CD pairs are swapped.	0
11	A polarity inversion	RO	1 = Polarity swap on pair A.	0
10	B polarity inversion	RO	1 = Polarity swap on pair B.	0
9	C polarity inversion	RO	1 = Polarity swap on pair C.	0
8	D polarity inversion	RO	1 = Polarity swap on pair D.	0
7	ActiPHY link status time-out control [1]	R/W	This is a sticky bit. Bits 7 and 2 are part of the ActiPHY Link Status time-out control. Bit 7 is the MSB. $00=1$ second. $01=2$ seconds. $10=3$ seconds. $11=4$ seconds.	CMODE
6	ActiPHY mode enable	R/W	This is a sticky bit. 1 = Enabled.	0
5	FDX status	RO	$\begin{aligned} & 1 \text { = Full-duplex. } \\ & 0=\text { Half-duplex. } \end{aligned}$	00
4:3	Speed status	RO	```00 = Speed is 10BASE-T. 01 = Speed is 100BASE-TX or 100BASE-FX. 10 = Speed is 1000BASE-T or 1000BASE-X. 11 = Reserved.```	0
2	ActiPHY link status time-out control [0]	R/W	This is a sticky bit. Bits 7 and 2 are part of the ActiPHY Link Status time-out control. Bit 7 is the MSB. $00=1$ second. $01=2$ seconds. $10=3$ seconds. $11=4$ seconds.	0

Table 32 • Auxiliary Control and Status, Address 28 ($0 \times 1 \mathrm{C}$) (continued)

Bit	Name	Access	Description	Default
$1: 0$	Reserved	RO		

5.2.24 LED Mode Select

The device LED outputs are controlled using the bits in register 29 of the main register space. The following table shows the information you need to access the functionality of each of the outputs. For information about the LED modes referenced in the table, see Table 34, page 43.

Table 33 • LED Mode Select, Address 29 (0x1D)

Bit	Name	Access	Description	Default
15:12	LED3 mode select	R/W	This is a sticky bit. Select from LED modes 0 through 15.	CMODE
$11: 8$	LED2 mode select	R/W	This is a sticky bit. Select from LED modes 0 through 15.	CMODE
$7: 4$	LED1 mode select	R/W	This is a sticky bit. Select from LED modes 0 through 15.	CMODE
$3: 0$	LED0 mode select	R/W	This is a sticky bit. Select from LED modes 0 through 15.	CMODE

The following table shows the LED functional modes that can be programmed into any of the device's LED outputs. For more information about accessing or reading the status of the outputs, see Table 33, page 43.

Table 34 • Available LED Mode Settings

Bit Setting	LED Indicates
0000	Link/activity, Mode 0
0001	Link1000/activity, Mode 1
0010	Link100/activity, Mode 2
0011	Link10/activity, Mode 3
0100	Link100/1000/activity, Mode 4
0101	Link10/1000/activity, Mode 5
0110	Link10/100/activity, Mode 6
0111	Link100BASE-FX/1000BASE-X/activity, Mode 7
1000	Duplex/collision, Mode 8
1001	Collision, Mode 9
1010	Activity, Mode 10
1011	100BASE-FX/1000BASE-X/fiber activity, Mode 11
1100	Auto-negotiation fault, Mode 12
1101	Serial mode (on LED0 and LED1 on PHY0 only), Mode 13
1110	Force LED off, Mode 14
1111	Force LED on, Mode 15

5.2.25 LED Behavior

The bits in register 30 control and enable you to read the status of the pulse or blink rate of the device LEDs. The following table shows the settings you can write to the register or read from the register.

Table 35 • LED Behavior, Address 30 ($0 \times 1 \mathrm{E}$)
$\left.\begin{array}{lllll}\hline \text { Bit } & \text { Name } & \text { Access } & \text { Description } & \text { Default } \\ \hline 15 & \begin{array}{l}\text { Copper and fiber LED } \\ \text { combine disable }\end{array} & \text { R/W } & \begin{array}{l}\text { This is a sticky bit. } \\ \text { 0 = Combine enabled } \\ \text { (Copper/Fiber on } \\ \text { Link/LinkXXXX/Activity LED). } \\ 1=\text { Disable combination } \\ \text { (Link/LinkXXXX/Activity LED } \\ \text { indicates copper only). }\end{array} & \\ & & & & \begin{array}{l}\text { This is a sticky bit. } \\ 1=\text { Activity LED becomes } \\ \text { TX_Activity and fiber activity LED } \\ \text { becomes RX_Activity. }\end{array} \\ & & & & 0=\text { TX and RX activity both } \\ & & & \text { Risplayed on activity LEDs. }\end{array}\right]$

Table 35 • LED Behavior, Address 30 (0x1E) (continued)

Bit	Name	Access	Description	Default
3	LED3 combine feature disable	R/W	This is a sticky bit. 0 = Combine enabled (link/activity, duplex/collision). 1 = Disable combination (link only, duplex only).	CMODE
2	LED2 combine feature disable	R/W	This is a sticky bit. 0 = Combine enabled (link/activity, duplex/collision). 1 = Disable combination (link only, duplex only).	CMODE
1	LED1 combine feature disable	R/W	This is a sticky bit. 0 = Combine enabled (link/activity, duplex/collision). 1 = Disable combination (link only, duplex only).	CMODE
0	LED0 combine feature disable	R/W	This is a sticky bit. 0 = Combine enabled (link/activity, duplex/collision). 1 = Disable combination (link only, duplex only).	CMODE

Note: Bits 29.11:10 are controlled only by port 0 and affect the behavior of all ports.

5.3 Extended Page Registers

To provide functionality beyond the IEEE802.3-specified 32 registers and main device registers, the VSC8658 device includes an extended set of registers that provide an additional 15 register spaces.

To access the extended page registers (16E through 30E), enable extended register access by writing $0 x 0001$ to register 31. For more information, see Table 37, page 46.

When extended page register access is enabled, reads and writes to registers 16 through 30 affect the extended registers 16E through 30E instead of those same registers in the IEEE-specified register space. Registers 0 through 15 are not affected by the state of the extended page register access.

Writing 0×0000 to register 31 restores the main register access.
The following table lists the addresses and register names in the extended register page space. These registers are accessible only when the device register 31 is set to 0×0001.

Table 36 • Extended Registers Page Space

Register Address	Register Name
16 E	SerDes Media control
17 E	SerDes MAC/Media control
18 E	CRC good counter
19 E	SIGDET polarity control
20 E	Extended PHY control 3 (ActiPHY)
21 E	EEPROM interface status and control
22 E	EEPROM data read or write
23 E	Extended PHY control 4 (PoE and CRC error counter)
24 E	VeriPHY 1

Table 36 • Extended Registers Page Space (continued)

Register Address	Register Name
25 E	VeriPHY 2
26 E	VeriPHY 3
27 E	Reserved
28 E	Reserved
29 E	Ethernet packet generator (EPG) 1
30 E	EPG 2

5.3.1 Extended Page Access

The register at address 31 controls the access to both the extended and GPIO registers for the VSC8658 device. Accessing the GPIO page register space is similar to accessing the extended page registers. The following table shows the settings available.

Table 37 • Extended Page Access, Address 31 (0x1F)

Bit	Name	Access	Description	Default
15:0	Extended/GPIO page register access	R/W	$0 \times 0000=$ Register 16 through 30 accesses main register space 0×0001 = Register 16 through 30 accesses extended register space $0 \times 0010=$ Register 0 through 30 accesses GPIO register space	0x0000

5.3.2 SerDes Media Control

Register 16E, which is accessible only when extended register access is enabled, controls the SerDes media interface. The following table shows the settings available.

Table 38 • SerDes Media Auto-Negotiation Control/Status, Address 16E (0x10)

Bit	Name	Access	Description	Default
15:14	Transmit remote fault	R/W	Remote fault indication sent to link partner (LP).	00
13:12	Link partner (LP) remote fault	RO	Remote fault bits sent by LP during auto- negotiation.	00
11	Parallel detect	R/W	1 = Enables parallel detect of auto- negotiation enabled and disabled devices.	0
10	SerDes media signal detect	RO	Signal detect indication on media interface.	0
$9: 0$	Reserved	RO		

5.3.3 SerDes MAC/Media Control

Register 17E, which is accessible only when extended register access is enabled, controls the transmitter and receiver of the VSC8658 device SerDes MAC/Media. The following table shows the settings available.

Table 39 • SerDes MAC Control, Address 17E (0x11)

Bit	Name	Access	Description	Default
$15: 8$	Reserved	RO		
$7: 5$	SerDes media output	R/W	This is a sticky bit.	100
	swing control		$000=400 \mathrm{mV}$ (peak-to-peak).	
			$001=600 \mathrm{mV}$ (peak-to-peak).	
		$010=800 \mathrm{mV}$ (peak-to-peak).		
		$011=1000 \mathrm{mV}$ (peak-to-peak).		
		$100=1200 \mathrm{mV}$ (peak-to-peak).		
$4: 2$	SerDes MAC output	R/W	This is a sticky bit.	
	swing control		$000=400 \mathrm{mV}$ (peak-to-peak).	100
			$001=600 \mathrm{mV}$ (peak-to-peak).	
			$010=800 \mathrm{mV}$ (peak-to-peak).	
			$011=1000 \mathrm{mV}$ (peak-to-peak).	
			$100=1200 \mathrm{mV}$ (peak-to-peak).	
			$101=1400 \mathrm{mV}$ (peak-to-peak).	

| 1:0 | Reserved |
| :--- | :--- | :--- |

5.3.4 CRC Good Counter

Register 18E makes it possible to read the contents of the CRC good counter; the number of CRC routines that have executed successfully. The following table shows the readouts you can expect.

Table 40 - CRC Good Counter, Address 18E (0x12)

Bit	Name	Access	Description	Default
15	Packet since last read RO	This is a self-clearing bit. 1 = Packet received since last read.	0	
14	Reserved	RO		0×000
$13: 0$	CRC good counter contents	RO	This is a self-clearing bit. Counter containing the number of packets with valid CRCs; this counter does not saturate and will roll over.	

5.3.5 SIGDET Polarity Control

Register 19E controls the SIGDET pin polarity. The following table shows the settings available.
Table 41 • SIGDET Polarity Control, Address 19E (0x13)

Bit	Name	Access	Description	Default
$15: 1$	Reserved	RO		
0	SIGDET pin polarity	R/W	1 = Active low.	
			0 = Active high.	CMODE

5.3.6 ActiPHY Control

Register 20E controls the device ActiPHY sleep timer, its wake-up timer, the frequency of the CLKOUT signal, and its link speed downshifting feature. The following table shows the settings available.

Table 42• Extended PHY Control 3, Address 20E (0x14)

Bit	Name	Access	Description	Default
15	Disable carrier extension	R/W	$1=$ Disable.	0
$14: 13$	ActiPHY sleep timer	R/W	This is a sticky bit. $00=1$ second.	01
			$01=2$ seconds. $10=3$ seconds. 	
$11=4$ seconds.				

12:11 ActiPHY wake-up timer R/W This is a sticky bit.
$00=160 \mathrm{~ms}$.
$01=400 \mathrm{~ms}$.
$10=800 \mathrm{~ms}$.
$11=2$ seconds.

$10: 9$	Reserved	RO		
8	CLKOUT frequency ${ }^{(1)}$	R/W	This is a sticky bit. $1=156.25 \mathrm{MHz}$. $0=125 \mathrm{MHz}$.	CMODE
			$00=$ No media selected.	
$7: 6$	Media mode status	RO	$01=$ Copper media selected.	
			$10=$ SerDes media selected.	
		$11=$ Reserved.		

5	Reserved	RO		
4	Enable link speed autodownshift feature		This is a sticky bit. 1 = Enable auto link speed downshift from 1000BASE-T.	CMODE
3:2	Link speed auto-downshift control	R/W	This is a sticky bit. $00=$ Downshift after 2 failed 1000BASE-T auto-negotiation attempts. 01 = Downshift after 3 failed 1000BASE-T auto-negotiation attempts. $10=$ Downshift after 4 failed 1000BASE-T auto-negotiation attempts. 11 = Downshift after 5 failed 1000BASE-T auto-negotiation attempts.	01
1	Link speed auto-downshift status	RO	$0=$ No downshift. 1 = Downshift is required or has occurred.	0
0	Reserved	RO		

1. Bit 8 is valid only on PHY_0.

5.3.7 EEPROM Interface Status and Control

Register 21E is used to affect control over device function when you have incorporated a startup EEPROM into your design.

Table 43 • EEPROM Interface Status and Control, Address 21E (0x15)

Bit	Name	Access	Description	Default
15	Reserved	RO		0
14	Re-read EEPROM after software reset	R/W	This is a super-sticky bit. $1=$ Contents of EEPROM to be re-read after software reset.	
13	Enable EEPROM	R/W	This is a self-clearing bit. access	
		$1=$ Execute read or write EEPROM based on the settings of register bit $21 E .12$.	0	
12	EEPROM read or	R/W	$1=$ Read from EEPROM. write	Write to EEPROM.

5.3.8 EEPROM Data Read/Write

Register 22E in the extended register space enables access to the contents of the external EEPROM in your design. The following table shows the writes needed to obtain the data from the external device.

Table 44 • EEPROM Read or Write, Address 22E (0x16)

Bit	Name	Access	Description	Default
15:8	EEPROM read data	RO	Eight-bit data read from EEPROM; requires setting register 21E, bit 13.	0×00
$7: 0$	EEPROM write data	R/W	Eight-bit data to be written to EEPROM.	0×00

5.3.9 PoE and Miscellaneous Functionality

The register at address 23E controls various aspects of inline powering and the CRC error counter in the VSC8658.

Table 45 • Extended PHY Control 4, Address 23E (0x17)

Bit	Name	Access	Description	Default
$15: 11$	PHY address	RO	PHY address; latched on reset.	CMODE
10	Inline powered device	R/W	This is a sticky bit.	0
	detection		$1=$ Enabled.	
$9: 8$	Inline powered device	RO	$00=$ Searching for devices.	00
	detection status		$01=$ Device found; requires inline power. 	
		power.		
		$11=$ Reserved.		

Table 45 • Extended PHY Control 4, Address 23E (0x17) (continued)

Bit	Name	Access	Description	Default
$7: 0$	CRC error counter	RO	This is a self-clearing bit.	CRC error counter for the Ethernet packet
		generator. The value saturates at 0xFF and subsequently clears when read and restarts count.		

Note: Bits 9:8 are only valid if bit 10 is set.

5.3.10 VeriPHY Control 1

Register 24E in the extended register space provides control over the device VeriPHY diagnostics features. There are three separate VeriPHY control registers. The following table shows the settings available and describes the readouts you can expect.

Table 46 • VeriPHY Control Register 1, Address 24E (0x18)

Bit	Name	Access	Description	Default
15	VeriPHY trigger	R/W	This is a self-clearing bit. $1=$ Triggers the VeriPHY algorithm and clears when VeriPHY has completed. Settings in registers 24E through 26E become valid after this bit clears.	0
14	VeriPHY valid	RO	$1=$ VeriPHY results in registers 24E through 26E are valid.	0
$13: 8$	Pair A (1-2) distance	RO	Loop length or distance to anomaly for pair A (1-2).	0×00
$7: 6$	Reserved	RO		
$5: 0$	Pair B (3-6) distance	RO	Loop length or distance to anomaly for pair B $(3-6)$.	0×00

Note: The resolution of the 6-bit length field is 3 meters.

5.3.11 VeriPHY Control 2

The register at address 25 E consists of the second of the three device registers that provide control over VeriPHY diagnostics features. The following table shows the readouts you can expect.

Table 47• VeriPHY Control Register 2, Address 25E (0x19)

Bit	Name	Access	Description	Default
$15: 14$	Reserved	RO		
$13: 8$	Pair C (4-5) distance	RO	Loop length or distance to anomaly for pair C (4 and 5)	0×00
$7: 6$	Reserved	RO		0×00
$5: 0$	Pair D (7-8) distance	RO	Loop length or distance to anomaly for pair D (7 and 8)	

Note: The resolution of the 6-bit length field is 3 meters.

5.3.12 VeriPHY Control 3

The register at address 26E consists of the third of the three device registers that provide control over VeriPHY diagnostics features. Specifically, this register provides information about the termination status (fault condition) for all four link partner pairs. The following table shows the readouts you can expect.

Table 48 • VeriPHY Control Register 3, Address 26E (0x1A)

Bit	Name	Access	Description	Default
15:12	Pair A (1 and 2) termination status	RO	Termination fault for pair A (1 and 2)	0×00
11:8	Pair B (3 and 6) termination status	RO	Termination fault for pair B (3 and 4)	0×00
$7: 4$	Pair C (4 and 5) termination status	RO	Termination fault for pair C (4 and 5)	0×00
3:0	Pair D (7 and 8) termination status	RO	Termination fault for pair D (7 and 8)	0×00

The following table shows the meanings for the various fault codes.
Table 49• VeriPHY Control Register 3 Fault Codes

Code	Denotes
0000	Correctly terminated pair
0001	Open pair
0010	Shorted pair
0100	Abnormal termination
1000	Cross-pair short to pair A
1001	Cross-pair short to pair B
1010	Cross-pair short to pair C
1011	Cross-pair short to pair D
1100	Abnormal cross-pair coupling with pair A
1101	Abnormal cross-pair coupling with pair B
1110	Abnormal cross-pair coupling with pair C
1111	Abnormal cross-pair coupling with pair D

5.3.13 Reserved Extended Address Space

The bits in the extended register page space at address $27 \mathrm{E}(0 \times 1 \mathrm{~B})$ and $28 \mathrm{E}(0 \times 1 \mathrm{C})$ are reserved.

5.3.14 Ethernet Packet Generator Control 1

The EPG control register provides access to and control of various aspects of the EPG testing feature. There are two, separate EPG control registers. The following table shows the setting available in the first register.

Table 50• EPG Control Register 1, Address 29E (0x1D)

Bit	Name	Access	Description	Default
15	EPG enable	R/W	1 = Enable EPG	0
14	EPG run or stop	R/W	1 = Run EPG	0

Table 50• EPG Control Register 1, Address 29E (0x1D) (continued)

Bit	Name	Access	Description	Default
13	Transmission duration	R/W	1 = Continuous (sends in 10,000-packet increments) $0=$ Send $30,000,000$ packets and stop	0
12:11	Packet length	R/W	$\begin{aligned} & \hline 00=125 \text { bytes } \\ & 01=64 \text { bytes } \\ & 10=1518 \text { bytes } \\ & 11=10,000 \text { bytes (Jumbo packet) } \end{aligned}$	0
10	Inter-packet gap	R/W	$\begin{aligned} & 1=8,192 \mathrm{~ns} \\ & 0=96 \mathrm{~ns} \end{aligned}$	0
9:6	Destination address	R/W	Lowest nibble of the 6-byte destination address	0001
5:2	Source address	R/W	Lowest nibble of the 6-byte destination address	0000
1	Payload type	R/W	1 = Randomly generated payload pattern $0=$ Fixed based on payload pattern	0
0	Bad frame check sequence (FCS) generation	R/W	1 = Generate packets with bad FCS $0=$ Generate packets with good FCS	0

The following information applies to the EPG control number 1:

- Do not run the EPG when the VSC8658 device is connected to a live network.
- Bit 29E. 13 (Continuous EPG mode control): When enabled, this mode causes the device to send continuous packets. When disabled, the device continues to send packets only until it reaches the next 10,000-packet increment mark. It then ceases to send packets.
- The six-byte destination address in bits 9:6 is assigned one of 16 addresses in the range of 0xFF FF FF FF FF F0 through 0xFF FF FF FF FF FF.
- The six-byte source address in bits 5:2 is assigned one of 16 addresses in the range of $0 x F F$ FF FF FF FF F0 through 0xFF FF FF FF FF FF.
- If any of bits $13: 0$ are changed while the EPG is running (bit 14 is set to 1), bit 14 must be cleared and then set back to 1 for the change to take effect and to restart the EPG.

5.3.15 Ethernet Packet Generator Control 2

The register at address 30E consists of the second of bits that provide access to and control over various aspects of the EPG testing feature. For information about the first set of EPG control bits, see Table 50, page 51 . The following table shows the settings available.

Table 51• EPG Control Register 2, Address 30E (0x1E)

Bit	Name	Access	Description	Default
15:0	EPG packet payload	R/W	Data pattern repeated in the payload of packets generated by the EPG	0×00

Note: If any of bits $15: 0$ in this register are changed while the EPG is running (bit 14 of register 29E is set to 1), that bit (29E.14) must first be cleared and then set back to 1 for the change to take effect and to restart the EPG.

5.4 General-Purpose I/O Registers

Accessing the GPIO page register space is similar to accessing the extended page registers. Set register 31 to 0×0010. This sets all 32 registers to the GPIO page register space.

To restore main register page access, write 0×0000 to register 31 .

The following table lists the addresses and register names in the GPIO register page space. These registers are accessible only when the device register 31 is set to 0×0010.

Table 52• General-Purpose Registers Page Space

Register Address	Register Name
0G through 12G	Reserved
13G	SIGDET vs GPIO control
14G	Reserved
15G	GPIO input
16G	GPIO output
17G	GPIO output enable
18G	100BASE-FX control
19 G through 30G	Reserved

5.4.1 Reserved GPIO Address Space

The bits in registers 0 G to 12 G , and 14G of the GPIO register page space are reserved.

5.4.2 SIGDET vs GPIO Control

The SIGDET control register configures GPIO pins 7:0 to be either SIGDET pins for each port or to be GPIO pins. The following table shows the values that can be written.

Table 53 • SIGDET vs GPIO Control, Address 13G (0x0D)

Bit	Name	Access	Description	Default
15:14	SIGDET7 control	R/W	$00=$ Normal SIGDET operation 01, $10=$ Reserved 11 = Controlled by MII registers 15G to 17G	0x00
13:12	SIGDET6 control	R/W	$00=$ Normal SIGDET operation 01, $10=$ Reserved 11 = Controlled by MII registers 15G to 17G	0x00
11:10	SIGDET5 control	R/W	$00=$ Normal SIGDET operation 01, 10 = Reserved 11 = Controlled by MII registers 15 G to 17G	0x00
9:8	SIGDET4 control	R/W	$00=$ Normal SIGDET operation 01, 10 = Reserved 11 = Controlled by MII registers 15G to 17G	0x00
7:6	SIGDET3 control	R/W	$\begin{aligned} & \hline 00=\text { Normal SIGDET operation } \\ & 01,10=\text { Reserved } \\ & 11=\text { Controlled by MII registers } 15 \mathrm{G} \text { to } 17 \mathrm{G} \end{aligned}$	0x00
5:4	SIGDET2 control	R/W	$00=$ Normal SIGDET operation 01, 10 = Reserved 11 = Controlled by MII registers 15G to 17G	0x00
3:2	SIGDET1 control	R/W	$00=$ Normal SIGDET operation 01, 10 = Reserved 11 = Controlled by MII registers 15G to 17G	0x00
1:0	SIGDETO control	R/W	$00=$ Normal SIGDET operation 01, 10 = Reserved 11 = Controlled by MII registers 15G to 17G	0x00

5.4.3 GPIO Input

The input register contains information about the input to the device GPIO pins. Read from this register to access the data on the device GPIO pins. The following table shows the readout you can expect.

Table 54• GPIO Input, Address 15G (0x0F)

Bit	Name	Access	Description	Default
15:0	GPIO [15:0] input	RO	Data read from the GPIO pins	0×00

5.4.4 GPIO Output

The output register allows you to access and control the output from the device GPIO pins. The following table shows the values you can write.

Table 55 • GPIO Output, Address 16G (0x10)

Bit	Name	Access	Description	Default
15:0	GPIO [15:0] output	R/W	Data written to the GPIO pins	0×00

5.4.5 GPIO Pin Configuration

Register 17G in the GPIO register space controls whether a particular GPIO pin functions as an input or an output. The following table shows the settings available.

Table 56 • GPIO Input/Output Configuration, Address 17G (0x11)

Bit	Name	Access	Description	Default
$15: 0$	GPIO [15:0] input or output enable	R/W	$1=$ Pin is configured as an output. $0=$ Pin is configured as an input.	0×00

5.4.6 100BASE-FX Control

The 100BASE-FX control register can configure each PHY within the device to be in 100BASE-FX mode. The following table shows the values that can be written.

Table 57• 100BASE-FX Control, Address 18G (0x12)

Bit	Name	Access	Description	Default
15	Activate 100BASE-FX	R/W	$0=$ No action $1=$ Activate 100BASE-FX based on bits $11: 0$	0
			RO	
$14: 12$	Reserved	R/W	$0=$ No 100BASE-FX on all PHYs $1=$ Configure 100BASE-FX on all PHYs	0
11	100BASE-FX on all		PHYs	
$10: 8$	Individual 100BASE-FX	R/W	PHY number to be configured for 100BASE-FX mode	000
	setting	R/W	0x00 = No 100BASE-FX $0 \times 01=100 B A S E-F X ~ m o d e ~$	
$7: 0$	100BASE-FX mode		0×02 to 0xFF = Reserved	0×00

Example 1 To configure all PHYs to 100BASE-FX mode, first ensure bit $15=0$, then set bit $11=1$ and bits 7:0 $=0 \times 01$, and then reset bit $15=1$.

Example 2 To configure an individual PHY to 100BASE-FX mode, first ensure that bit $15=0$, then set bits 10:8 to the correct PHY number to be configured for 100BASE-FX, then set bits 7:0 $=0 \times 01$, and finally reset bit $15=1$. Repeat these steps for each individual PHY.

5.5 CMODE

The information in this section provides a detailed description of the methods you can use to configure the VSC8658 device using its CMODE pins. It includes descriptions of the registers that work together with the CMODE pins to control the device function.

There are eight configuration mode (CMODE) pins on the VSC8658 device. For more information about the physical location of the CMODE pins, see Pin Descriptions, page 72. Each of the CMODE pins maps to four configuration bits, which means that each pin controls 16 possible settings for the device.

5.5.1 CMODE Pins and Related Functions

The following table lists the pin numbers and device functionality that are controlled by each configuration bit.

Table 58- CMODE Configuration Pins and Device Functions

CMODE Pin	Bit 3 (MSB) Control	Bit 2 Controls	Bit 1 Controls	Bit 0 (LSB) Controls
7	Reserved Always set to logic 0	Link speed downshift	Speed and duplex [1]	Speed and duplex [0]
6	MAC auto-negotiation	ActiPHY	Advertise asymmetric pause	Advertise symmetric pause
5	Media interface [2]	SIGDET polarity	Clock speed 125 MHz or 156 MHz selection	CLKOUT enable
4	Media interface [1]	LED fiber/copper combine	LED blink or pulse stretch [1]	LED blink or pulse stretch [0]
3	Media interface [0]	LED3 combine or separate	LED3 [1]	LED3 [0]
2	PHY address reversal	LED2 combine or separate	LED2 [1]	LED2 [0]
1	PHY address [4]	LED1 combine or separate	LED1 [1]	LED1 [0]
0	PHY address [3]	LED0 combine or separate	LED0 [1]	LED0 [0]

5.5.2 Functions and Related CMODE Pins

The following table lists the pin and bit settings according to the device function and CMODE pin used to configure them.

Table 59• Device Functions and Associated CMODE Pins

Function	Sets MII Register	$\begin{aligned} & \text { CMODE } \\ & \text { Pin } \end{aligned}$	Bit	Description
Link speed downshift	Register 20E, bit 4	7	2	$0=$ Link only according to the auto-negotiation resolution. 1 = Enable link speed downshift feature.
Speed and duplex	Register 4, bits $8: 5$ and register 9, bits 9:8	7	1 and 0	```00=10/100/1000BASE-T FDX/HDX. 1000BASE-X FDX/HDX. 01 = 10/100/1000BASE-T FDX; 10/100BASE-T HDX. 1000BASE-X FDX. 10 = 1000BASE-T FDX only. 11 = 10/100BASE-T FDX/HDX.```

Table 59 • Device Functions and Associated CMODE Pins (continued)

	Sets MII Register	CMODE Pin	Bit	Description
Function	Register 23,	6	3	0 $=$ Disabled. l
MAC Enabled.				

Table 59 • Device Functions and Associated CMODE Pins (continued)

Function	Sets MII Register	CMODE Pin	Bit	Description
Address reversal		2	3	$0=$ Normal functioning. PHY address 0:7 = Port 0:7. 1 = Reversed functioning. PHY address 7:0 $=$ Port 0:7.
LED_2 indication function	Register 29, bits 11:8	2	1 and 0	$00=$ Link or activity. 01 = Duplex or collision. $10=$ Fiber_Activity. 11 = Link10 or activity.
PHY address [4:3]		1 and 0	3	Sets the two MSBs of the PHY address.
LED_1 indication function	Register 29, bits 7:4	1	1 and 0	$\begin{aligned} & \hline 00=\text { Link100 or activity. } \\ & 01=\text { Link100/1000 or activity. } \\ & 10=\text { Link } 10 / 100 \text { or activity. } \\ & 11=\text { Fiber_Link/Fiber_Activity. } \end{aligned}$
LED_0 indication function	Register 29, bits 3:0	0	1 and 0	$\begin{aligned} & 00=\text { Link1000 or activity. } \\ & 01=\text { Link100/1000 or activity. } \\ & 10=\text { Activity. } \\ & 11=\text { Link or activity. } \end{aligned}$

Note: The MAC auto-negotiation, LED_0, LED_1, LED_2, and LED_3 settings available using the CMODE pins and configuration bits is limited. For full functionality, use the registers. For more information about using the registers for these and other functions, see Registers, page 26.

5.5.3 CMODE Resistor Values

To affect an aspect of the VSC8658 device configuration, find the parameter in Table 58, page 55 or in Table 59, page 55, and connect the associated pin to the resistor specified in the following table. This sets the bits as shown.

Table 60• CMODE Resistor Values and Resultant Bit Settings

With CMODE Pin Tied To	With 1\% Resistor Value	Set Bit 3 (MSB) to:	Set Bit 2 to:	Set Bit 1 to:	Set Bit 0 (LSB) to:
VSS	0	0	0	0	0
VSS	$2.26 \mathrm{k} \Omega$	0	0	0	1
VSS	$4.02 \mathrm{k} \Omega$	0	0	1	0
VSS	$5.90 \mathrm{k} \Omega$	0	0	1	1
VSS	$8.25 \mathrm{k} \Omega$	0	1	0	0
VSS	$12.1 \mathrm{k} \Omega$	0	1	0	1
VSS	$16.9 \mathrm{k} \Omega$	0	1	1	0
VSS	$22.6 \mathrm{k} \Omega$	0	1	1	1
VDD33	0	1	0	0	0
VDD33	$2.26 \mathrm{k} \Omega$	1	0	0	1
VDD33	$4.02 \mathrm{k} \Omega$	1	0	1	0
VDD33	$5.90 \mathrm{k} \Omega$	1	1	0	0
VDD33	$8.25 \mathrm{k} \Omega$	1	1	0	1
VDD33	$12.1 \mathrm{k} \Omega$	1		0	0

Table 60• CMODE Resistor Values and Resultant Bit Settings (continued)

With CMODE Pin Tied To	With 1\% Resistor Value	Set Bit 3 (MSB) to:	Set Bit 2 to:	Set Bit $\mathbf{1}$ to:	Set Bit 0 (LSB) to:
VDD33	$16.9 \mathrm{k} \Omega$	1	1	1	0
VDD33	$22.6 \mathrm{k} \Omega$	1	1	1	1

Using resistors with the CMODE pins can be optional in designs that access the device's MDC/MDIO pins. In designs that do this, all configurations otherwise affected on the device by using the CMODE pins can be changed using the regular device register settings, and all the CMODE pins can be pulled to VSS (ground). However, in this case, the PHYADDR [4:3] and the PHYADD_REVERSAL settings still require CMODE configuration. This configuration can be set by connecting these pins to either the VDD33 or VSS pins.

5.6 EEPROM

The VSC8658 device EEPROM interface makes it possible for you to set up the device to self-configure its internal registers based on the information programmed into and stored in an external device. To accomplish this, the EEPROM is read on power-up or de-assertion of the NRESET bit. For field configurability, the EEPROM can also be accessed using VSC8658 device registers 21E and 22E.

The EEPROM you use to interface to the VSC8658 device must have a two-wire interface. A device such as the Atmel part AT24CXXX is suggested.
As defined by the interface, data is clocked from the VSC8658 device on the falling edge of EECLK. The device determines that an external EEPROM is present if EEDAT is connected to a $4.7-\mathrm{k} \Omega$ external pullup resistor. The EEDAT pin can be left floating or grounded to indicate that no EEPROM is present.

5.6.1 EEPROM Contents Description

When an EEPROM is present, the VSC8658 device looks for the command header, 0xBDBD at address 0 and 1 of the EEPROM. The address is incremented by 256 until the header is found. If the header is not found or no EEPROM is connected, the VSC8658 device bypasses the EEPROM read step.

When an EEPROM is present, the VSC8658 device waits for an acknowledgement for approximately three seconds (in accordance with the ATMEL EEPROM protocol). If there is no acknowledgement for three seconds, the VSC8658 device aborts its attempt to connect to the EEPROM and reverts to its otherwise normal operating mode.

After the header value is found, the two-byte address value shown in the following table indicates the EEPROM word address where the configuration contents for the device are located. At the base address location, the next set of bytes indicates where the configuration data contents to be programmed into the VSC8658 device are located. The first address points to the data common to all PHYs. Each subsequent address location points to each individual PHY's configuration contents. At each programming location, the two bytes represent the total number of bytes (11 bits, with MSB first) where the Total_Number_Bytes[10:0] is equal to the number of SMI writes multiplied by 3 (one byte for SMI port and register address and two bytes for data). Data is read from the EEPROM sequentially until all SMI write commands are completed.

Table 61 • EEPROM Configuration Contents

10-bit Address	Content (Bits 7:0)
0	$0 \times B D$
1	0xBD
2	PHY_ADDR[4:2], 00, Base_Address_Location[10:8]
3	Base_Address_Location[7:0] (K)
	Address length not specified
K	00000, Common_Config_Base_Address[10:8]

Table 61 • EEPROM Configuration Contents (continued)

10-bit Address	Content (Bits 7:0)
K+1	Common_Config_Base_Address[7:0] (X)
K+2	00000, PHYO_Specific_Config_Base_Address[10:8]
K+3	PHY0_Specific_Config_Base_Address[7:0] (Y)
K+4	00000, PHY1_Specific_Config_Base_Address[10:8]
K+5	PHY1_Specific_Config_Base_Address[7:0]
K+6	00000, PHY2_Specific_Config_Base_Address[10:8]
K+7	PHY2_Specific_Config_Base_Address[7:0]
	Address length not specified
K+16	00000, PHY7_Specific_Config_Base_Address[10:8]
K+17	PHY7_Specific_Config_Base_Address[7:0]
	Address length not specified
X	00000, Total_Number_Bytes[10:8]
X+1	Total_Number_Bytes [7:0] (M)
$x+2$	Register address a
$x+3$	Data[15:8] to be written to register address a
X+4	Data[7:0] to be written to register address a
X+5	Register address b
X+6	Data[15:8] to be written to register Address b
X+7	Data[7:0] to be written to register address b
	Address length not specified
$\overline{X+(M-2)}$	Register address x
X+(M-1)	Data[15:8] to be written to register address x
X+M	Data[7:0] to be written to register address x
	Address length not specified
Y	00000, Total_Number_Bytes[10:8]
Y+1	Total_Number_Bytes [7:0] (N)
Y+2	Register address a
Y+3	Data[15:8] to be written to register address a
$\underline{\mathrm{Y}+4}$	Data[7:0] to be written to register address a
	Address length not specified
Y+(N-2)	Register address x
Y+(N-1)	Data[15:8] to be written to register address x
Y+N	Data[7:0] to be written to register address x
	Address length not specified
Max Address	

5.6.2 Read/Write Access to the EEPROM

The VSC8658 device also has the ability to read from and write to an EEPROM such as an ATMEL AT24CXXX that is directly connected to its EECLK and EEDAT pins. If it is required to be able to write to
the EEPROM, refer to the EEPROM's specific datasheet to ensure that write protection on the EEPROM is not set.

The following illustration shows the interaction of the VSC8658 device and the EEPROM.

Figure 18• EEPROM Read and Write Register Flow

To read a value from a specific address of the EEPROM:

1. Read the VSC8658 device register bit 21E.11, and ensure that it is set.
2. Write the EEPROM address to be read to register bits 21E.10:0.
3. Set both register bits 21E. 12 and 21E. 13 to 1.
4. When register bit 21E. 11 changes to 1 , read the 8 -bit data value found at register bits 22E.15:8. This is the contents of the address just read by the PHY.

To write a value to a specific address of the EEPROM:

1. Read the VSC8658 device register bit 21E. 11 and ensure that it is set.
2. Write the address to be written to register bits 21E.10:0.
3. Set register bit 21E. 12 to 0 .
4. Set register bits 22E.7:0 with the 8-bit value to be written to the EEPROM.
5. Set register bit 21E. 13 to 1 .

To avoid collisions during read and write transactions, always wait until register bit 21E. 11 changes to 1 before performing another EEPROM read or write operation.

6 Electrical Specifications

This section provides the DC characteristics, AC characteristics, recommended operating conditions, and stress ratings for the VSC8658 device. It includes information on the various timing functions of the device.

6.1 DC Characteristics

In addition to any parameter-specific conditions, the specifications listed in the following tables may be considered valid only in the environment characterized by the specifications listed as recommended operating conditions for the VSC8658 device. For more information about the recommended operating conditions, see Operating Conditions, page 70.

6.1.1 VDDIO at 3.3 V

In addition to any parameter-specific conditions, the specifications listed in the following table may be considered valid only when:

- $\mathrm{V}_{\mathrm{DDIO}}$ is 3.3 V
- $\mathrm{V}_{\mathrm{DD} 33}$ is 3.3 V
- $\mathrm{V}_{\mathrm{DD} 12}$ is 1.2 V
- $\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}$ is 1.2 V

Table 62 • DC Characteristics for Pins Referenced to VDDIO at 3.3 V

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output high voltage	V_{OH}	2.4	3.6	V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Output low voltage	V_{OL}	0	0.5	V	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$
Input high voltage	V_{IH}	2.1	3.6	V	
Input low voltage	V_{IL}	-0.3	0.9	V	
Input leakage current	$\mathrm{I}_{\mathrm{ILEAK}}$	-42	42	$\mu \mathrm{~A}$	Internal resistor included
Output leakage current	$\mathrm{I}_{\mathrm{OLEAK}}$	-42	42	$\mu \mathrm{~A}$	Internal resistor included
Output low current drive strength	I_{OL}		8	mA	
Output high current drive strength	I_{OH}	-8	mA		

6.1.2 VDDIO at 2.5 V

In addition to any parameter-specific conditions, the specifications listed in the following table may be considered valid only when:

- $\mathrm{V}_{\text {DDIO }}$ is 2.5 V
- $\mathrm{V}_{\mathrm{DD} 33}$ is 3.3 V
- $V_{D D 12}$ is 1.2 V
- $\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}$ is 1.2 V

Table 63 • DC Characteristics for Pins Referenced to VDDIO at 2.5 V

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output high voltage	V_{OH}	2.0	2.8	V	$\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$
Output low voltage	V_{OL}	-0.3	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$

Table 63• DC Characteristics for Pins Referenced to VDDIO at 2.5 V (continued)

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Input high voltage	V_{IH}	1.7	3.0	V	
Input low voltage	V_{IL}	-0.3	0.7	V	
Input leakage current	$\mathrm{I}_{\text {ILEAK }}$	-32	32	$\mu \mathrm{~A}$	Internal resistor included
Output leakage current	$\mathrm{I}_{\text {OLEAK }}$	-32	32	$\mu \mathrm{~A}$	Internal resistor included
Output low current drive strength	I_{OL}		6	mA	
Output high current drive strength	I_{OH}	-6	mA		

6.1.3 VDDIO at 1.8 V

In addition to any parameter-specific conditions, the specifications listed in the following table may be considered valid only when:

- $\mathrm{V}_{\text {DDIO }}$ is 1.8 V
- $\mathrm{V}_{\text {DD33 }}$ is 3.3 V
- $\mathrm{V}_{\mathrm{DD} 12}$ is 1.2 V
- $\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}$ is 1.2 V

Table 64 - DC Characteristics for Pins Referenced to VDDIO at 1.8 V

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output high voltage	V_{OH}	1.4	2.1	V	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$
Output low voltage	V_{OL}		0.3	V	$\mathrm{I}_{\mathrm{OL}}=0.5 \mathrm{~mA}$
Input high voltage	V_{IH}	1.2	2.1	V	
Input low voltage	V_{IL}		0.6	V	
Input leakage current	$\mathrm{I}_{\text {ILEAK }}$	-23	23	$\mu \mathrm{~A}$	Internal resistor included
Output leakage current	$\mathrm{I}_{\mathrm{OLEAK}}$	-23	23	$\mu \mathrm{~A}$	Internal resistor included
Output low current drive strength	I_{OL}		4.0	mA	
Output high current drive strength	I_{OH}	-4.0		mA	

6.1.4 VDD at 3.3 V

In addition to any parameter-specific conditions, the specifications listed in the following table may be considered valid only when:

- $\mathrm{V}_{\mathrm{DDIO}}$ is 3.3 V
- $V_{\text {DD33 }}$ is 3.3 V
- $V_{D D 12}$ is 1.2 V
- $\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}$ is 1.2 V

Table 65 - DC Characteristics for Pins Referenced to VDD33 at 3.30 V

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output high voltage	V_{OH}	2.4	3.6	V	$\mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$
Output low voltage	V_{OL}	0	0.5	V	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$

Table 65 - DC Characteristics for Pins Referenced to VDD33 at 3.30 V (continued)

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Input high voltage	$\mathrm{V}_{\text {IH }}$	2.1	3.6	V	
Input low voltage	$\mathrm{V}_{\text {IL }}$	-0.3	0.9	V	
Input leakage current	$\mathrm{I}_{\text {ILEAK }}$	-42	42	$\mu \mathrm{~A}$	Internal resistor included
Output leakage current	$\mathrm{I}_{\text {OLEAK }}$	-42	42	$\mu \mathrm{~A}$	Internal resistor included
Output low current drive strength	I_{OL}		8	mA	
Output high current drive strength	I_{OH}	-8	mA		

6.1.5 MAC and SerDes Outputs

For more information about the number and physical location of the MAC and SerDes output pins on the VSC8658 device, see Pin Descriptions, page 72.

Table 66• DC Characteristics for MAC_RDP/N_n and SER_DOP/N_n Pins

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
Frequency lock time	TLOCK		500		$\mu \mathrm{s}$	
Output differential voltage	$\mathrm{V}_{\text {ODIFF }}$	700	1000	1200	mV	Measured peak-topeak. Based on 100Ω differential load.
Output commonmode voltage	$\mathrm{V}_{\text {OCM }}$	480	540	610	mV	$\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}=1.20 \mathrm{~V}$.
Output rise time and fall time (20% to 80\%)	$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$			300	ps	
Total jitter	T_{J}		185	260	ps	Measured peak-topeak. Uses K28.5 test pattern. Bit error rate $(B E R)=10^{-12}$.
Output low current drive strength	I_{OL}			8	mA	
Output high current drive strength	IOH	-8			mA	
Output driver impedance per pin	Z_{0}		50		Ω	

6.1.6 MAC and SerDes Inputs

For more information about the number and physical location of the MAC and SerDes input pins on the VSC8658 device, see Pin Descriptions, page 72.

Table 67• DC Characteristics for MAC_TDP/N_n and SER_DIP/N_n Pins

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Input differential voltage	$V_{\text {IDIFF }}$	120	2400	mV	Measured peak-to-peak. Based on 100Ω differential load.

Table 67• DC Characteristics for MAC_TDP/N_n and SER_DIP/N_n Pins (continued)

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Input common mode voltage	$\mathrm{V}_{\mathrm{ICM}}$	0.4	1.3	V	$\mathrm{~V}_{\mathrm{DD} 12 \mathrm{~A}}=1.20 \mathrm{~V}$.
Total receive jitter tolerance	J_{RX} Total	450	550	ps	Measured peak-to-peak. 1000BASE-X mode.
	$\mathrm{J}_{\mathrm{RX} \text { Total }}$	5870	6500	ps	Measured peak-to-peak. 100BASE-FX mode.

6.1.7 LED Pins

In addition to any parameter-specific conditions, the specifications listed in the following table may be considered valid only when:

- $\mathrm{V}_{\text {DDIO }}$ is 3.30 V
- $\mathrm{V}_{\mathrm{DD} 33}$ is 3.30 V
- $V_{D D 12}$ is 1.20 V
- $\mathrm{V}_{\mathrm{DD12A}}$ is 1.20 V

Table 68 - DC Characteristics for LED[3:0]_n Pins

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output high voltage	V_{OH}	2.4	3.6	V	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$
Output low voltage	V_{OL}	0	0.5	V	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$
Output leakage current	$\mathrm{I}_{\mathrm{OLEAK}}$	-10	10	$\mu \mathrm{~A}$	
Output low current drive strength	I_{OL}		8.0	mA	
Output high current drive strength	I_{OH}	-8.0		mA	

6.1.8 JTAG Pins

In addition to any parameter-specific conditions, the specifications listed in the following table may be considered valid only when:

- $\mathrm{V}_{\text {DDIO }}$ is 3.30 V
- $\mathrm{V}_{\mathrm{DD} 33}$ is 3.30 V
- $\mathrm{V}_{\mathrm{DD} 12}$ is 1.20 V
- $\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}$ is 1.20 V

Table 69•DC Characteristics for JTAG Pins

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Output high voltage	V_{OH}	2.4	3.6	V	$\mathrm{I}_{\mathrm{OH}}=-1.5 \mathrm{~mA}$
Output low voltage	V_{OL}	0	0.5	V	$\mathrm{I}_{\mathrm{OL}}=1.5 \mathrm{~mA}$
Input high voltage	V_{IH}	2.1	3.6	V	
Input low voltage	V_{IL}	-0.3	0.9	V	
Input leakage current	$\mathrm{I}_{\text {ILEAK }}$	-42	42	$\mu \mathrm{~A}$	Internal resistor included
Output leakage current	$\mathrm{I}_{\mathrm{OLEAK}}$	-42	42	$\mu \mathrm{~A}$	Internal resistor included
Output low current drive strength	I_{OL}		8	mA	
Output high current drive strength	I_{OH}	-8		mA	

6.2 Current Consumption

There are three sets of current consumption values:

- Typical current consumption
- Current consumption in SerDes/SGMII to 1000BASE-X mode
- Current consumption in SerDes/SGMII to 100BASE-FX mode or SerDes pass-through mode The typical current consumption values are based on nominal voltages with all ports operating at 1000BASE-T speeds with full-duplex enabled and a 64-bit random data pattern at 100% utilization.

Table 70• Typical Current Consumption

Parameter	Symbol	Typical	Maximum	Unit
Worst-case power consumption	P_{D}		5.91	W
Current with $\mathrm{V}_{\text {DDIO }}$ at 1.8 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DDIO }}$ at 2.5 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DDIO }}$ at 3.3 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DD33 }}$ at 3.3 V	$\mathrm{I}_{\text {VDD33 }}$	852	mA	
Current with $\mathrm{V}_{\mathrm{DD12}}$ at 1.2 V	$\mathrm{I}_{\text {VDD12 }}$	1488	mA	
Current with $\mathrm{V}_{\mathrm{DD12A}}$ at 1.2 V	$\mathrm{I}_{\text {VDD12A }}$	490	mA	

If all eight ports are running in SerDes/SGMII to 1000BASE-X mode, the current consumption values are shown in the following table.

Table 71 • Current Consumption in SerDes/SGMII to 1000BASE-X Mode

Parameter	Symbol	Typical	Maximum	Unit
Worst-case power consumption	P_{D}		1.05	W
Current with $\mathrm{V}_{\text {DDIO }}$ at 1.8 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DDIO }}$ at 2.5 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DDIO }}$ at 3.3 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DD33 }}$ at 3.3 V	$\mathrm{I}_{\text {VDD33 }}$	68.6	mA	
Current with $\mathrm{V}_{\text {DD12 }}$ at 1.2 V	$\mathrm{I}_{\text {VDD12 }}$	134.2	mA	
Current with $\mathrm{V}_{\text {DD12A }}$ at 1.2 V	$\mathrm{I}_{\text {VDD12A }}$	448.6	mA	

If all eight ports are running in SerDes/SGMII to 100BASE-FX mode or SerDes pass-through mode, the current consumption values are as shown in the following table.

Table 72 • Consumption in SerDes/SGMII to 100BASE-FX or SerDes Pass-Through Mode

Parameter	Symbol	Typical	Maximum	Unit
Worst-case power consumption	P_{D}		1.09	W
Current with $\mathrm{V}_{\text {DDIO }}$ at 1.8 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DDIO }}$ at 2.5 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DDIO }}$ at 3.3 V	$\mathrm{I}_{\text {VDDIO }}$	1	mA	
Current with $\mathrm{V}_{\text {DD33 }}$	$\mathrm{I}_{\text {VDD33 }}$	64	mA	
Current with $\mathrm{V}_{\text {DD12 }}$	$\mathrm{I}_{\text {VDD12 }}$	146	mA	
Current with $\mathrm{V}_{\text {DD12A }}$	$\mathrm{I}_{\text {VDD12A }}$	444	mA	

6.3 AC Characteristics

The AC specifications are grouped according to specific device pins and associated timing characteristics.

6.3.1 Reference Clock Input

The following table shows the specifications for the reference clock input frequency including various frequencies, duty cycle, and accuracy.

Table 73• AC Characteristics for REFCLK Input

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Frequency with 25 MHz input	$\mathrm{f}_{\text {CLK25 }}$		25		MHz
Frequency with 125 MHz input	$\mathrm{f}_{\text {CLK125 }}$		125		MHz
Frequency accuracy	$\mathrm{f}_{\text {TOL }}$			100	ppm
Duty cycle	\% DUTY	40		60	\%
Rise time with 25 MHz input (20\% to 80\%)	$\mathrm{t}_{\mathrm{R} 25}$			4	ns
Rise time with 125 MHz input (20\% to 80\%)	$\mathrm{t}_{\mathrm{R} 125}$			1	ns
Fall time with 25 MHz input (20\% to 80\%)	$\mathrm{t}_{\mathrm{R} 25}$			4	ns
Fall time with 125 MHz input (20\% to 80\%)	$\mathrm{t}_{\text {F125 }}$			1	ns

If using the 25 MHz crystal clock input option, the additional specifications in the following table are required.

Table 74•AC Characteristics for REFCLK Input with 25 MHz Clock Input

Parameter	Minimum	Typical	Maximum	Unit
Crystal parallel load capacitance	18		20	pF
Crystal equivalent series resistance		10	30	Ω
Crystal accuracy			50	ppm

6.3.2 Clock Output

The specifications in the following table show the AC characteristics for the clock output of the VSC8658 device when used in your design.

Table 75 • AC Characteristics for the CLKOUT Pin

Parameter	Symbol	Minimum	Typical	Maximum	Unit	Condition
CLKOUT frequency	$\mathrm{f}_{\text {CLK125 }}$		125.00		MHz	125 MHz output clock
		156.25			156.25 MHz output clock	
CLKOUT cycle time	$\mathrm{t}_{\mathrm{CYC}}$	8.0		ns	125 MHz output clock	
		6.4			156.25 MHz output clock	
Frequency stability	$\mathrm{f}_{\text {STABILITY }}$			100	ppm	
Duty cycle	$\%_{\text {DUTY }}$	40	50	60	$\%$	
Clock rise and fall times	t_{R} and t_{F}		1	ns		
$(20 \%$ to $80 \%)$ Total jitter $\mathrm{J}_{\text {CLK }}$ 217 491 ps	Measured peak-to-peak					

6.3.3 JTAG Interface

The following table lists the characteristics for the JTAG testing feature. The illustration provides a diagram of the timing.

Table 76•AC Characteristics for the JTAG Interface

Parameter	Symbol	Minimum	Maximum	Unit
TCK frequency	$\mathrm{f}_{\mathrm{CLK}}$		10	MHz
TCK cycle time	$\mathrm{t}_{\mathrm{CYC}}$	100		ns
TCK time high	t_{WH}	45		ns
TCK time low	t_{WL}	45		ns
Setup time to TCK rising	t_{SU}	10		ns
Hold time from TCK rising	t_{H}	10		ns
TCK to TDO valid	t_{CO}		15	ns

Figure 19• JTAG Interface Timing

6.3.4 SMI Interface

Use the information in the following table when incorporating the VSC8658 device SMI interface into your own design. The illustration provides information about SMI interface timing.

Table 77• AC Characteristics for the SMI Interface

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Condition					
MDC cycle time ${ }^{(1)}$	$\mathrm{f}_{\mathrm{CLK}}$	$\mathrm{t}_{\mathrm{CYC}}$	80	2.5	12.5
MHz					
MDC time high	t_{WH}	20	400		ns
MDC time low	t_{WL}	20	50	ns	
Setup to MDC rising	t_{SU}	10	50	ns	
Hold from MDC rising	t_{H}	10		ns	
MDC rise time	t_{R}	100	ns		

Table 77• AC Characteristics for the SMI Interface (continued)

| Parameter | Symbol | Minimum | Typical | Maximum | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | Condition | MDC fall time | t_{F} | 100
 $\mathrm{t}_{\mathrm{CYC}} \times 10 \%{ }^{(1)}$ | |
| :--- | :--- | :--- | :--- |
| MDC to MDIO valid | t_{CO} | | 10 |

1. For $f_{C L K}$ above 1 MHz , the minimum rise time and fall time is in relation to the frequency of the MDC clock period. For example, if $\mathrm{f}_{\mathrm{CLK}}$ is 2 MHz , the minimum clock rise time and fall time is 50 ns .

Figure 20 • SMI Interface Timing

6.3.5 Device Reset

The following specifications apply to the device reset functionality. The illustration shows the reset timing.
Table 78- AC Characteristics for Device Reset

Parameter	Symbol	Minimum	Maximum	Unit	Condition
NRESET assertion time	$\mathrm{t}_{\text {RESET }}$	100		ns	
Wait time between NRESET de-assert and access of the SMI interface	$t_{\text {WAIT }}$	$\begin{aligned} & 20 \\ & 220 \end{aligned}$		$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	Register 21E. $14=0$ Register 21E. $14=1$
Soft reset (pin) assertion	$\mathrm{t}_{\text {SRESET_ASSERT }}$	4		ms	
Soft reset (pin) deassertion	$\mathrm{t}_{\text {SRESET_DEASSERT }}$	4		ms	
Wait time between soft reset pin de-assert and access of the SMI interface	$\mathrm{t}_{\text {SWAIT }}$	$\begin{aligned} & 4 \\ & 300 \\ & 200 \\ & 200 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{s}$ ms ms	$\begin{aligned} & \text { Registers } 22.9=1,21 \mathrm{E} .14=0 \\ & \text { Registers } 22.9=0,21 \mathrm{E} .14=0 \\ & \text { Registers } 22.9=0,21 \mathrm{E} .14=1 \\ & \text { Registers } 22.9=1,21 \mathrm{E} .14=1 \end{aligned}$
Soft reset MII register 0.15 assertion	tsREG_RESET	100		ns	

Table 78• AC Characteristics for Device Reset (continued)

Parameter	Symbol	Minimum	Maximum	Unit	Condition
Wait time between Soft	$\mathrm{t}_{\text {SREG_WAIT }}$	4		$\mu \mathrm{s}$	Registers $22.9=1,21 \mathrm{E} .14=0$
Reset (MII Register 0.15)		300		$\mu \mathrm{s}$	Registers $22.9=0,21 \mathrm{E} .14=0$
de-assert and access to		200		ms	Registers $22.9=0,21 \mathrm{E} .14=1$
the SMI interface		200		ms	Registers 22.9 = 1, 21E. $14=1$

Figure 21 • Reset Timing

6.3.6 Serial LEDs

The following table provides specifications for the device serial LEDs. The illustration shows the LED timing.

Table 79• AC Characteristics for Serial LEDs

Parameter	Symbol	Minimum	Maximum	Unit
LED_CLK cycle time	$\mathrm{t}_{\mathrm{CYC}}$	1		$\mu \mathrm{~s}$
Pause between LED bit sequences	$\mathrm{t}_{\text {PAUSE }}$	25		ms
LED_CLK to LED_DATA	t_{CO}		1	ns

Figure 22• Serial LED Timing

6.4 Operating Conditions

The following table shows the recommended operating conditions for the VSC8658 device.
Table 80• Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Power supply voltage for $\mathrm{V}_{\mathrm{DDIO}}$ at 1.8 V	$\mathrm{~V}_{\mathrm{DDIO}}$	1.70	1.80	1.90	V
Power supply voltage for $\mathrm{V}_{\mathrm{DDIO}}$ at 2.5 V	$\mathrm{~V}_{\mathrm{DDIO}}$	2.37	2.50	2.63	V
Power supply voltage for $\mathrm{V}_{\mathrm{DDIO}}$ at 3.3 V	$\mathrm{~V}_{\mathrm{DDIO}}$	3.13	3.30	3.47	V
Power supply voltage for $\mathrm{V}_{\mathrm{DD} 33}$	$\mathrm{~V}_{\mathrm{DD} 33}$	3.13	3.30	3.47	V
Power supply voltage for $\mathrm{V}_{\mathrm{DD12}}$	$\mathrm{~V}_{\mathrm{DD12}}$	1.14	1.20	1.26	V
Power supply voltage for $\mathrm{V}_{\mathrm{DD12A}}$	$\mathrm{~V}_{\mathrm{DD12A}}$	1.14	1.20	1.26	V
Operating temperature ${ }^{(1)}$	T	0		90	${ }^{\circ} \mathrm{C}$

1. Lower limit of specification is ambient temperature, and upper limit is case temperature.

6.5 Stress Ratings

This section contains the stress ratings for the VSC8658 device.
Warning Stresses listed in the following table may be applied to devices one at a time without causing permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended periods may affect device reliability.

Table 81• Stress Ratings

Parameter	Symbol	Minimum	Maximum	Unit
DC input voltage on $\mathrm{V}_{\mathrm{DDIO}}$ supply pin	$\mathrm{V}_{\mathrm{DDIO}}$	-0.5	4.0	V
DC input voltage on $\mathrm{V}_{\mathrm{DD} 33}$ supply pin	$\mathrm{V}_{\mathrm{DD} 33}$	-0.5	4.0	V
DC input voltage on $\mathrm{V}_{\mathrm{DD} 12}$ supply pin	$\mathrm{V}_{\mathrm{DD12}}$	-0.5	1.4	V
DC input voltage on $\mathrm{V}_{\mathrm{DD} 12 \mathrm{~A}}$ supply pin	$\mathrm{V}_{\mathrm{DD12A}}$	-0.5	1.4	V
DC input voltage on JTAG 5 V-tolerant pins	$\mathrm{V}_{\mathrm{DD}}(5 \mathrm{~V})$	-0.5	5.5	V
DC input voltage on any non-supply pin	$\mathrm{V}_{\mathrm{DD}}(\mathrm{PIN})$	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Storage temperature	T_{S}	-65	150	${ }^{\circ} \mathrm{C}$
Electrostatic discharge voltage, charged device model	$\mathrm{V}_{\text {ESD_CDM }}$	-250	250	V
Electrostatic discharge voltage, human body model $\mathrm{V}_{\text {ESD_HBM }}$	See note ${ }^{(1)}$		V	

1. This device has completed all required testing as specified in the JEDEC standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM), and complies with a Class 2 rating. The definition of Class 2 is any part that passes an ESD pulse of 2000 V , but fails an ESD pulse of 4000 V .

Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures may adversely affect reliability of the device.

$7 \quad$ Pin Descriptions

The VSC8658 device has 444 pins, which are described in this section.

7.1 Pin Diagram

The following illustrations show the pin diagram for the VSC8658 device. For clarity, the device is shown in two halves in Figure 23, page 72 and Figure 24, page 73.

Figure 23 • Pin Diagram, Left Side, Top View

	1	2	3	4	5	6	7	8	9	10	11	12	13
A		VSS	TXVPB_6	TXVPC_6	TXVPD_6	TXVPA_5	TXVPB_5	TXVPC_5	TXVPD_5	TXVPA_4	TXVPB_4	TXVPC_4	TXVPD_4
B	VSS	VSS	TXVNB_6	TXVNC_6	TXVND_6	TXVNA_5	TXVNB_5	TXVNC_5	TXVND_5	TXVNA_4	TXVNB_4	TXVNC_4	TXVND_4
c	TXVPA_6	TXVNA_6	VDD33	VDD33	VSS	NC	VDD12A	VSS	VSS	VDD33	VDD33	VDD33	VDD12A
D	TXVPD_7	TXVND_7	VDD33	VDD33	VSS	VDD12A	VDD12A	VSS	VSS	VDD33	VDD33	VDD33	VDD12A
E	TXVPC_7	TXVNC_7	VDD 12A	VDD12A									
F	TXVPB_7	TXVNB_7	VSS	REF_REXT_B									
G	TXVPA_7	TXVNA_7	NC	REF_FILT_B									
H	VSS	VSS	VSS	VSS									
J	XTAL/REFCLK	XTAL2	LED3_7	LED2_7									
K	VSS	VSS	LED1_7	LEDO_7				VDD12	VSS	Vss	Vss	Vss	Vss
L	LED3_6	LED2_6	LED3_5	LED2_5				VDD 12	VSS	VSS	VSS	VSS	VSS
M	LED1_6	LED0_6	LED1_5	LEDO_5				VDD 12	VSs	Vss	VSs	VSs	VSS
N	VDD33	VDD33	VDD33	VDD33				VDD 12	VSS	VSS	VSS	VSS	VSS
P	EECLK	EEDAT	LED3_4	LED2_4				VDD12	VSS	VSS	VSS	VSS	VSS
R	PLLM ODE	OSCEN	LED1_4	LEDO_4				VDD12	VSS	VSS	VSS	VSS	VSS
T	TMS	TCK	NTRST	TDO				VDD12	VSS	VSS	VSS	VSS	VSS
u	TDI	VDDIO	MDC	VDD33				VDD12	VDD12	VDD 12	VDD12	VDD12	VDD 12
v	CLKOUT	VDDIO	M DIO	VSS									
w	M DINT_0	M DINT_1	MDINT_2	M DINT_3									
Y	MDINT_4	MDINT_5	MDINT_6	M DINT_7									
AA	SER_DON_7	SER_DOP_7	NRESET	VSS									
AB	SER_DIN_7	SER_DIP_7	vSS	VDDIO									
AC	MAC_RDN_7	MAC_RDP_7	VSS	VDD 12A	VDD12A	VSS	VDD 12A	VDD12A	VSS	VSS	VDD 12A	VDD 12A	VDD12A
AD	MAC_TDN_7	MAC_TDP_7	VDD33	VSS	VDD33	VSS	VDD33	VDD12A	VSS	VSS	VDD33	VDD33	VSS
AE	VSS	SER_DoP_6	SER_DIP_6	MAC_RDP_6	MAC_TDP_6	SER_DoP_5	SER_DiP_5	MAC_RDP_5	MAC_TDP_5	SER_DoP_4	SER_DiP_4	MAC_RDP_4	MAC_TDP_4
AF		SER_DoN_6	SER_DIN_6	MAC_RDN_6	MAC_TDN_6	SER_DoN_5	SER_DiN_5	MAC_RDN 5	MAC_TDN_5	SER_ Don_4	SER_DiN_4	MAC_RDN_4	MAC_TDN_4
	1	2	3	4	5	6	7	8	9	10	11	12	13

Figure 24 • Pin Diagram, Right Side, Top View

14	15	16	17	18	19	20	21	22	23	24	25	26	
TXVPA_3	TXVPB_3	TXVPC_3	TXVPD_3	TXVPA_2	TXVPB_2	TXVPC_2	TXVPD_2	TXVPA_1	TXVPB_1	TXVPC_1	TXVPD_1		A
TXVNA_3	TXVNB_3	TXVNC_3	TXVND_3	TXVNA_2	TXVNB_2	TXVNC_2	TXVND_2	TXVNA_1	TXVNB_1	TXVNC_1	TXVND_1	VSS	B
VSS	VSS	VDD33	VDD33	VSS	VDD12A	VDD12A	VDD33	NC	VDD33	VSS	VDD33	VSS	C
VSS	VSS	VDD33	VDD33	VSS	VDD12A	VDD12A	VDD33	VDD33	VDD12A	VSS	TXVNA_0	TXVPA_0	D
									REF_FILT_A	VDD12A	TXVNB_0	TXVPB_0	E
									REF_REXT_A	VDD33	TXVNC_0	TXVPC_0	F
									VDD33	NC	TXVND_0	TXVPD_0	G
									VDD33	VDD33	CM ODE7	VSS	H
									VDD33	CM ODE6	CM ODE5	CMODE4	J
VSS	VSS	VSS	VSS	VSS	VDD 12				VSS	CM ODE3	CMODE2	CMODE1	K
VSS	VSS	VSS	VSS	VSS	VDD12				VSS	CM ODEO	LED1_0	LEDO_0	L
VSS	VSS	VSS	VSS	VSS	VDD 12				VDD33	VDD33	LED3_0	LED2_0	M
VSS	VSS	VSS	VSS	VSS	VDD12				LED1_2	LEDO_2	LED1_1	LEDO_1	N
VSS	VSS	VSS	VSS	VSS	VDD 12				LED3_2	LED2_2	LED3_1	LED2_1	P
VSS	VSS	VSS	VSS	VSS	VDD12				LED1_3	LEDO_3	VDD33	VDD33	R
VSS	VSS	VSS	VSs	VSS	VDD 12				LED3_3	LED2_3	GPIO14	GPIO15	T
VDD12	VDD12	VDD12	VDD 12	VDD12	VDD12				GPIO10	GPIO11	GPIO12	GPIO13	U
									GH06/ /IICEET_6		GPIO8	GPIO9	v
										Gros / /icober_3		Gros /sicoet 5	w
									Gh100 /sicietio	GHoi / SIGEET_1	VSS	VSS	Y
									VDD33	VSS	MAC_TDP _ 0	MAC_tDn_ 0	AA
									VDD33	VDD12A	MAC_RDP_0	MAC_RDN_O	AB
VSS	VDD12A	VDD12A	VSS	VDD12A	VDD12A	VDD12A	VSS	VSS	VSS	VDD12A	SER_DIP_0	SER_DIN_0	AC
VDD33	VSS	VSS	VDD33	VSS	VDD 12A	VDD33	VDD33	VSS	VSS	VSS	SER_DOP_0	SER_Don_0	AD
SER_DOP_3	SER_DIP_3	MAC_RDP_3	MAC_TDP_3	SER_DOP_2	SER_DIP_2	MAC_RDP_2	MAC_TDP_2	SER_DOP_1	SER_DIP_1	MAC_RDP_1	MAC_TDP_1	VSS	AE
SER_DON_3	SER_DIN_3	MAC_RDN_3	MAC_TDN_3	SER_DON_2	SER_DIN_2	MAC_RDN_2	MAC_TDN_2	SER_DON_1	SER_DIN_1	MAC_RDN_1	MAC_TDN_1		AF
14	15	16	17	18	19	20	21	22	23	24	25	26	

7.2 Pin Identifications

This section contains the functional pin descriptions for the VSC8658 device.

7.2.1 SerDes MAC Interface

The following table shows the pins associated with the device SerDes MAC interface.
Table 82 • SerDes MAC Interface Pins

Pin	Name	Type	Description
AD2	MAC_TDP_7	IDIFF	SerDes MAC transmitter input pair.
AE5	MAC_TDP_6		
AE9	MAC_TDP_5		
AE13	MAC_TDP_4		
AE17	MAC_TDP_3		
AE21	MAC_TDP_2		
AE25	MAC_TDP_1		
AA25	MAC_TDP_0		
AD1	MAC_TDN_7		
AF5	MAC_TDN_6		
AF9	MAC_TDN_5		
AF13	MAC_TDN_4		
AF17	MAC_TDN_3		
AF21	MAC_TDN_2		
AF25	MAC_TDN_1		
AA26	MAC_TDN_0		
AC2	MAC_RDP_7	ODIFF	SerDes MAC receiver output pair.
AE4	MAC_RDP_6		
AE8	MAC_RDP_5		
AE12	MAC_RDP_4		
AE16	MAC_RDP_3		
AE20	MAC_RDP_2		
AE24	MAC_RDP_1		
AB25	MAC_RDP_0		
AC1	MAC_RDN_7		
AF4	MAC_RDN_6		
AF8	MAC_RDN_5		
AF12	MAC_RDN_4		
AF16	MAC_RDN_3		
AF20	MAC_RDN_2		
AF24	MAC_RDN_1		
AB26	MAC_RDN_0		

7.2.2 SerDes Media Interface

The following table shows the pins associated with the device SerDes media interface.
Table 83 • SerDes Media Interface Pins

Pin	Signal Name	Type	Description

Table 83 • SerDes Media Interface Pins (continued)

AA2	SER_DOP_7	O OIFF	SerDes media transmitter output pair.
AE2	SER_DOP_6		
AE6	SER_DOP_5		
AE10	SER_DOP_4		
AE14	SER_DOP_3		
AE18	SER_DOP_2		
AE22	SER_DOP_1		
AD25	SER_DOP_0		
AA1	SER_DON_7		
AF2	SER_DON_6		
AF6	SER_DON_5		
AF10	SER_DON_4		
AF14	SER_DON_3		
AF18	SER_DON_2		
AF22	SER_DON_1		
AD26	SER_DON_0		
AB2	SER_DIP_7	I DIFF	SerDes media receiver input pair.
AE3	SER_DIP_6		
AE7	SER_DIP_5		
AE11	SER_DIP_4		
AE15	SER_DIP_3		
AE19	SER_DIP_2		
AE23	SER_DIP_1		
AC25	SER_DIP_0		
AB1	SER_DIN_7		
AF3	SER_DIN_6		
AF7	SER_DIN_5		
AF11	SER_DIN_4		
AF15	SER_DIN_3		
AF19	SER_DIN_2		
AF23	SER_DIN_1		
AC26	SER_DIN_0		

7.2.3 GPIO and SIGDET

The following table shows the pins associated with the device GPIO and SIGDET.
Table 84 • GPIO and SIGDET Pins

Pin	Name	Type	Description
T26	GPIO15	I PD $^{\prime}$ /O	General purpose input/output (GPIO). Eight Tedicated GPIO pins are provided. Additionally, the
U25	GPIO14		eight SIGDET pins can be configured to become
U25	GPIO13	GPIO12	
U24	GPIO11		
U23	GPIO10 pins if not used.		
V26	GPIO9		
V25	GPIO8		
V24	GPIO7 / SIGDET_7		
V23	GPIO6 / SIGDET_6		
W26	GPIO5 / SIGDET_5		
W25	GPIO4 / SIGDET_4		
W24	GPIO3 / SIGDET_3		
W23	GPIO2 / SIGDET_2		
Y24	GPIO1 / SIGDET_1		
Y23	GPIO0 / SIGDET_0		

7.2.4 Twisted Pair Interface

The following table lists the device pins associated with the device two-wire, twisted pair interface.
Table 85• Twisted Pair Interface Pins

Pin	Name	Type	Description
G1	TXVPA_7	$\mathrm{A}_{\text {DIFF }}$	TX/RX channel A positive signal
C1	TXVPA_6		
A6	TXVPA_5		
A10	TXVPA_4		
A14	TXVPA_3		
A18	TXVPA_2		
A22	TXVPA_1		
D26	TXVPA_0		
G2	TXVNA_7	$\mathrm{A}_{\text {DIFF }}$	TX/RX channel A negative signal
C2	TXVNA_6		
B6	TXVNA_5		
B10	TXVNA_4		
B14	TXVNA_3		
B18	TXVNA_2		
B22	TXVNA_1		
D25	TXVNA_0		
F1	TXVPB_7	$\mathrm{A}_{\text {DIFF }}$	TX/RX channel B positive signal
A3	TXVPB_6		
A7	TXVPB_5		
A11	TXVPB_4		
A15	TXVPB_3		
A19	TXVPB_2		
A23	TXVPB_1		
E26	TXVPB_0		
F2	TXVNB_7	$\mathrm{A}_{\text {DIFF }}$	TX/RX channel B negative signal
B3	TXVNB_6		
B7	TXVNB_5		
B11	TXVNB_4		
B15	TXVNB_3		
B19	TXVNB_2		
B23	TXVNB_1		
E25	TXVNB_0		
E1	TXVPC_7	$\mathrm{A}_{\text {DIFF }}$	TX/RX channel C positive signal
A4	TXVPC_6		
A8	TXVPC_5		
A12	TXVPC_4		
A16	TXVPC_3		
A20	TXVPC_2		
A24	TXVPC_1		
F26	TXVPC_0		
E2	TXVNC_7	$\mathrm{A}_{\text {DIFF }}$	TX/RX channel C negative signal
B4	TXVNC_6		
B8	TXVNC_5		
B12	TXVNC_4		
B16	TXVNC_3		
B20	TXVNC_2		
B24	TXVNC_1		
F25	TXVNC_0		

Table 85• Twisted Pair Interface Pins (continued)

Pin	Name	Type	Description
D1	TXVPD_7	A $_{\text {DIFF }}$	TX/RX channel D positive signal
A5	TXVPD_6		
A9	TXVPD_5		
A13	TXVPD_4		
A17	TXVPD_3		
A21	TXVPD_2		
A25	TXVPD_1		
G26	TXVPD_0		
D2	TXVND_7	A $_{\text {DIFF }}$	TX/RX channel D negative signal
B5	TXVND_6		
B9	TXVND_5		
B13	TXVND_4		
B17	TXVND_3		
B21	TXVND_2		
B25	TXVND_1		
G25	TXVND_0		

7.2.5 Serial Management Interface

The following table lists the device pins associated with the device serial management interface (SMI). Note that the pins in this table, except for EECLK and EEDAT, are referenced to VDDIO and can be set to a $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V power supply. The EECLK and EEDAT pins are instead referenced to VDD33.

Table 86 • SMI Pins

Pin	Name	Type	Description
U3	MDC	1	Management data clock. A 0 MHz to 12.5 MHz reference input is used to clock serial MDIO data into and out of the PHY.
V3	MDIO	OD	Management data input/output pin. Serial data is written or read from this pin bidirectionally between the PHY and Station Manager, synchronously on the positive edge of MDC. One external pull-up resistor is required at the Station Manager, and its value depends on the MDC clock frequency and the total sum of the capacitive loads from the MDIO pins.
Y4	MDINT_7	OS/OD	Management interrupt signal. Upon reset the device will
Y3	MDINT_6		configure these pins as active-low (open drain) or active-
Y2	MDINT_5		high (open source) based on the polarity of an external
Y1	MDINT_4		$10 \mathrm{k} \Omega$ resistor connection. These pins can be tied
W4	MDINT_3		together in a wired-OR configuration with only a single
W3	MDINT_2		pull-up or pull-down resistor.
W2	MDINT_1		
W1	MDINT_0		

Table 86 - SMI Pins (continued)

Pin	Name	Type	Description
P2	EEDAT	$\mathrm{I}_{\mathrm{PD}} / \mathrm{O}$	(Optional) EEPROM serial I/O data. Used to configure PHYs in a system without a Station Manager. Connect to the SDA pin of the ATMEL "AT24CXXX" serial EEPROM device family. The VSC8658 device determines that an external EEPROM is present by monitoring the EEDAT pin at power-up or when NRESET is de-asserted. If EEDAT has a $4.7 \mathrm{k} \Omega$ external pull-up resistor, the VSC8658 assumes an EEPROM is present. The EEDAT pin can be left floating or grounded to indicate no EEPROM.
P1	EECLK	0	(Optional) EEPROM serial output clock. Used to configure PHYs in a system without a station manager. Connect to the SCL pin of the ATMEL "AT24CXXX" serial EEPROM device family.

AA3	NRESET	I PUDevice reset. Active low input that powers down the device and sets the register bits to their default state.
V1	CLKOUT	O
	Clock output can be enabled or disabled and also output a reference clock frequency of 125 MHz or 156.25 MHz using CMODE or register setting. This pin is not active when NRESET is asserted. When disabled, the pin is held low.	

7.2.6 JTAG

The following table lists the pins associated with the device JTAG testing facility.
Table 87• JTAG Pins

Pin	Name	Type	Description
U1	TDI	I PU5V	JTAG test serial data input.
T4	TDO	O	JTAG test serial data output.
T1	TMS	I PU5V	JTAG test mode select.
T2	TCK	I PU5V	JTAG test clock input.
T3	NTRST	I PU5V	JTAG reset. If JTAG is not used, then tie this pin to VSS (ground) with a pull-down resistor.

7.2.7 Power Supply

The following table lists the device power supply pins.

Table 88• Power Supply Pins

Pin	Name	Type	Description
C3 C4 C10 C11 C12 C16 C17 C21 C23	VDD33	3.3 V	General 3.3 V power supply
C25 D3 D4 D10 D11 D12 D16 D17 D21			
D22 F24 G23 H23 H24 J23 M23 M24			
N1 N2 N3 N4 R25 R26 U4 AA23 AB23			
AD3 AD5 AD7 AD11 AD12 AD14 AD17			
AD20 AD21			

Table 88• Power Supply Pins (continued)

Pin	Name	Type	Description
U2 V2 AB4	VDDIO	3.3 V	I/O power supply
		2.5 V	
K8 K19 L8 L19 M8 M19 N8 N19 P8	VDD12	1.2 V	
P19 R8 R19 T8 T19 U8 U9 U10 U11		Internal digital core voltage	
U12 U13 U14 U15 U16 U17 U18 U19			
C7 C13 C19 C20 D6 D7 D13 D19 D20	VDD12A	1.2 V	1.2 V analog power requiring additional PCB power
D23 E3 E4 E24 AB24 AC4 AC5 AC7			supply filtering
AC8 AC11 AC12 AC13 AC15 AC16			
AC18 AC19 AC20 AC24 AD8 AD19			
A2 B1 B2 B26 C5 C8 C9 C14 C15 C18	VSS	0 V	General device ground
C24 C26 D5 D8 D9 D14 D15 D18 D24			
F3 H1 H2 H3 H4 H26 K1 K2 K9 K10			
K11 K12 K13 K14 K15 K16 K17 K18			
K23 L9 L10 L11 L12 L13 L14 L15 L16			
L17 L18 L23 M9 M10 M11 M12 M13			
M14 M15 M16 M17 M18 N9 N10 N11			
N12 N13 N14 N15 N16 N17 N18 P9			
P10 P11 P12 P13 P14 P15 P16 P17			
P18 R9 R10 R11 R12 R13 R14 R15			
R16 R17 R18 T9 T10 T11 T12 T13 T14			
T15 T16 T17 T18 V4 Y25 Y26 AA4			
AA24 AB3 AC3 AC6 AC9 AC10 AC14			
AC17 AC21 AC22 AC23 AD4 AD6 AD9			
AD10 AD13 AD15 AD16 AD18 AD22			
AD23 AD24 AE1 AE26			

Although certain function pins may not be used for a specific application, all power supply pins must be connected to their respective voltage input.

Table 89 • Power Supply and Associated Function Pins

Pin	Nominal Voltage	Associated Functional Pins
VDD33	3.3 V	LED[3:0]_n, GPIO[15:0], EECLK, EEDAT, JTAG (5), XTAL1, XTAL2, CMODE, TXVP_n, TXVN_n, REF_FILT, REF_REXT
VDDIO	$1.8 \mathrm{~V}, 2.5 \mathrm{~V}$,	MDC, MDIO, MDINT_n, nRESET, CLKOUT
	3.3 V	
VDD12A	1.2 V	MAC_RDP/N_n, MAC_TDP/N_n
VDD12	1.2 V	N/A (Internal Core Voltage)

7.2.8 Miscellaneous

The following table lists pins not associated with a particular interface or facility on the device.
Table 90• Miscellaneous Pins

Pin	Name	Type	Description
H25	CMODE7	I_{A}	Configuration mode (CMODE) pins. For more information, see CMODE, page 55.
J24	CMODE6		
J25	CMODE5		
J26	CMODE4		
K24	CMODE3		
K25	CMODE2		
K26	CMODE1		
L24	CMODE0		
J1	XTAL1/REFCLK		Crystal oscillator input. If OSCEN=high then a 25 MHz parallel resonant crystal with $+/-50 \mathrm{ppm}$ frequency tolerance should be connected across XTAL1 and XTAL2. A 33 pF capacitor should also tie the XTAL1 pin to ground. Reference clock input. If OSCEN=low, the clock input frequency can either be 25 MHz (PLLMODE $=0$) or 125 MHZ (PLLMODE is high).
J2	XTAL2	$\mathrm{O}_{\text {CRYST }}$	Crystal oscillator output. The crystal should be connected across XTAL1 and XTAL2. A 33 pF capacitor should also tie the XTAL2 pin to ground. If not using a crystal oscillator, this output pin can be left floating if driving XTAL1/REFCLK with a reference clock.
R2	OSCEN	$\mathrm{I}_{\text {PD }}$	Oscillator enable. This pin is sampled on the rising edge of NRESET. If HIGH, then the on-chip oscillator circuit is enabled. If low (or left floating), the oscillator circuit is disabled and the device must be supplied with a 25 MHz or 125 MHz reference clock to the REFCLK pin
R1	PLLMODE	$\mathrm{I}_{\text {PD }}$	PLL mode input select. Sampled on power-up or reset. If PLLMODE is low, then REFCLK must be 25 MHz . If PLLMODE is high, then REFCLK must be 125 MHz .
J3 J4 K3 K4	LED[3:0]_7	0	LED direct-drive outputs. All LEDs pins are active-
L1 L2 M1 M2	LED[3:0]_6		low. A serial LED stream can also be
L3 L4 M3 M4	LED[3:0]_5		implemented. For more information about LED
P3 P4 R3 R4	LED[3:0]_4		operation, see LED Mode Select, page 43.
T23 T24 R23 R24	LED[3:0]_3		
P23 P24 N23 N24	LED[3:0]_2		
P25 P26 N25 N26	LED[3:0]_1		
M25 M26 L25 L26	LED[3:0]_0		
F23	REF_REXT_A	$\mathrm{A}_{\text {BIAS }}$	Reference external connects to an external $2 \mathrm{~K} \Omega$ (1\%) resistor to analog ground.
E23	REF_FILT_A	$\mathrm{A}_{\text {BIAS }}$	Reference filter connects to an external $1 \mu \mathrm{~F}$ capacitor to analog ground.
F4	REF_REXT_B	$\mathrm{A}_{\text {BIAS }}$	Reference external connects to an external $2 \mathrm{~K} \Omega$ (1\%) resistor to analog ground.

Table 90• Miscellaneous Pins (continued)			
Pin	Name	Type	Description
G4	REF_FILT_B	A BIAS	Reference filter connects to an external $1 \mu \mathrm{~F}$ capacitor to analog ground.
G3 C6 C22 G24	NC	NC	These pins are no connects. Do not connect them together or to ground. Leave these pins unconnected (floating).

8 Package Information

The VSC8658 device is available in two package types. VSC8658HJ is a 444-pin, thermally enhanced, plastic ball grid array (BGA) with a $27 \mathrm{~mm} \times 27 \mathrm{~mm}$ body size, 1 mm pin pitch, and a 2.36 mm maximum height. The device is also available in a lead(Pb)-free package, VSC8658XHJ.

Lead (Pb)-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.

This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the VSC8658 device.

8.1 Package Drawing

The following illustration shows the package drawing for the VSC8658 device. The drawing contains the top view, bottom view, side view, dimensions, tolerances, and notes.

Figure 25 • Package Drawing

Top View

Bottom View

Note:
All dimensions are in millimeters (mm).

8.2 Thermal Specifications

Thermal specifications for this device are based on the JEDEC standard EIA/JESD51-2 and have been modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p $\mathrm{PCB})$. For more information, see the JEDEC standard.

Table 91• Thermal Resistances

			$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$		
		vs. Airflow (ft/min)			
Part Order Number	$\theta_{\text {JC }}$	$\theta_{\text {JB }}$	$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$
VSC8658HJ	4.1	7.3	13.4	13.2	13
VSC8658XHJ	4.1	7.3	13.4	13.2	13

To achieve results similar to the modeled thermal resistance measurements, the guidelines for board design described in the JEDEC standard EIA/JESD51 series must be applied. For information about specific applications, see the following:
EIA/JESD51-5, Extension of Thermal Test Board Standards for Packages with Direct Thermal Attachment Mechanisms

EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
EIA/JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
EIA/JESD51-10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements
EIA/JESD51-11, Test Boards for Through-Hole Area Array Leaded Package Thermal Measurements

8.3 Moisture Sensitivity

Moisture sensitivity level ratings for Microsemi products comply with the joint IPC and JEDEC standard IPC/JEDEC J-STD-020.

VSC8658HJ is rated moisture sensitivity level 3 or better.
VSC8658XHJ is rated moisture sensitivity level 4.
For more information, see the IPC and JEDEC standard.

9 Design Considerations

This section provides information about design issues for the VSC8658 device.

9.1 PHY Address ID (Register 23E, Bits 15 to 11)

Issue: The PHY Address ID in Register 23E does not function as intended. It can only indicate the physical PHY port numbers 0 through 7 instead of those set through the CMODE pins.

Implications: A user needs to be aware that this address only represents the physical port number as opposed to the actually PHY address on the MDC/MDIO bus.

Workaround: Software needing this feature must detect which specific device it is communicating to and add a necessary offset to the address value to process the correct address.

9.2 JTAG Input High Voltage at 2.1 V

Issue: The JTAG pins do not meet the $\mathrm{V}_{1 \mathrm{H}(\text { min })}$ requirements of the CMOS and LVTTL standards. At certain PVT corners, the minimum is 2.1 V .

Implications: None.
Workaround: None.

9.3 First SMI Write Fails After Software Reset

Issue: After applying software reset (using either register 0, bit 15 or the NSRESET pin), the first subsequent SMI write operation into register 4 (auto-negotiation advertisement) or register 9 (1000BASE-T control) does not work. This issue only occurs if the first SMI write after software reset is into register 4 or 9 . This issue does not occur if any kind of SMI transaction (either read or write) is applied to any register between the time of the software reset and the SMI write into register 4 or 9 .

Implications: The PHY may operate unexpectedly, because settings for registers 4 and 9 remain at the reset value. There are no such implications after either hardware reset or power-down events.

Workaround: Writing "0x0000" into register 31 after every software reset avoids this issue, and subsequent SMI writes into register 4 or 9 succeed.

9.4 LED3 Port 7 Coupling Issue into XTAL Clock Pin

Issue: Whenever LED3 Port 7 blinks, the resulting noise couples into the XTAL clock input pin. This causes additional noise on the transmit SerDes interface in the form of transmit jitter. In this case, transmit jitter increases to a value in the range of 360 ps to 380 ps . This behavior is not seen with other LED pins.
Implications: Using both the LED3 Port 7 and XTAL pins causes a higher level of transmit jitter on the SerDes interface of the device.

Workaround: For better performance, avoid using the LED3 Port 7 pin as an LED indication.

9.5 100BASE-FX Clock Data Recovery Improvement

Issue: It is possible to improve the overall receive data performance in 100BASE-FX media by changing the standard settings for the Clock Data Recovery (CDR) block.

Implications: While there is a low chance of seeing an issue in 100BASE-FX, it is recommended to implement this script.

Workaround: There is a software workaround for this problem that can improve the 100BASE-FX CDR. Change the CDR settings using the following script at PHY initialization time:

PhyWrite(PortNo, Register (dec), 16_bit_unsigned_data(hex)); 16_bit_unsigned_data = PhyRead(PortNo, Register (dec));

```
PhyWrite( PortNo, 31, 0x52b5 ); // Switch to internal block
PhyWrite( PortNo, 16, 0xae0e ); // Read CDR internal register
Reg18 = PhyRead( PortNo, 18 );
Reg17 = PhyRead( PortNo, 17 );
Reg17 = Reg17 & 0xffef; // Clear bit 4 of this register
PhyWrite( PortNo, 18, Reg18 );
PhyWrite( PortNo, 17, Reg17 );
PhyWrite( PortNo, 16, 0x8e0e ); // Write CDR internal register
PhyWrite( PortNo, 31, 0x0000 ); // Goto Normal Page
```


10 Ordering Information

The VSC8658 device is available in two package types. VSC8658HJ is a 444 -pin, thermally enhanced, plastic ball grid array (BGA) with a $27 \mathrm{~mm} \times 27 \mathrm{~mm}$ body size, 1 mm pin pitch, and a 2.36 mm maximum height. The device is also available in a lead (Pb)-free package, VSC8658XHJ.

Lead (Pb)-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.

The following table lists the ordering information for the VSC8658 device.
Table 92 • Ordering Information

Part Order Number	Description
VSC8658HJ	444-pin, thermally enhanced, plastic BGA with a $27 \mathrm{~mm} \times 27 \mathrm{~mm}$ body size,
	1 mm pin pitch, and a 2.36 mm maximum height
VSC8658XHJ	Lead(Pb)-free, 444-pin, thermally enhanced, plastic BGA with a $27 \mathrm{~mm} \times$
	27 mm body size, 1 mm pin pitch, and a 2.36 mm maximum height

