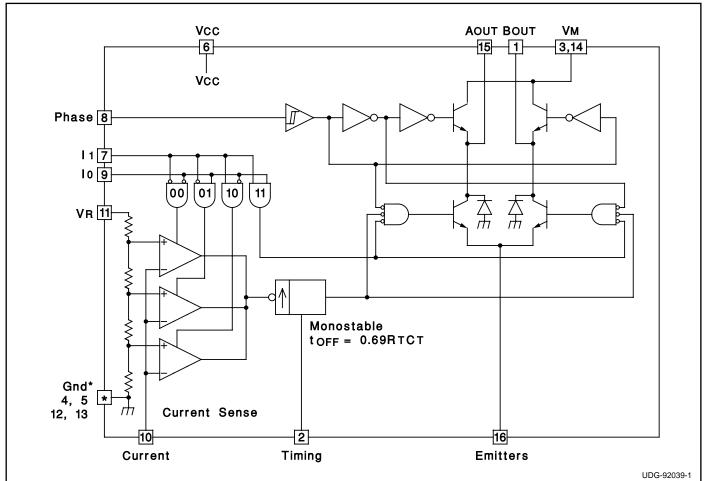


High Performance Stepper Motor Drive Circuit

FEATURES


- Full-Step, Half-Step and Micro-Step Capability.
- Bipolar Output Current up to 2A.
- Wide Range of Motor Supply Voltage: 10–50V
- Low Saturation Voltage
- Wide Range of Current Control: 5mA–2A.
- Current Levels Selected in Steps or Varied Continuously.
- Thermal Protection and Soft Intervention.

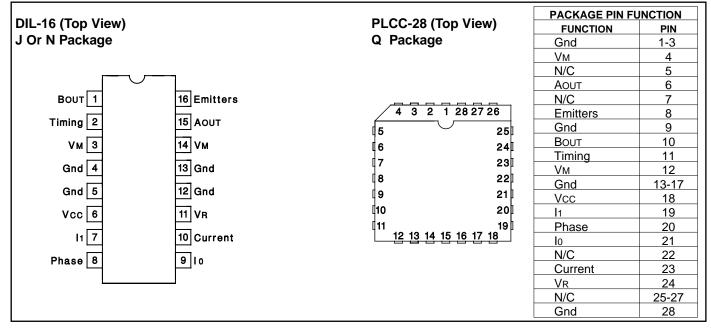
DESCRIPTION

The UC3770A and UC3770B are high-performance full bridge drivers that offer higher current and lower saturation voltage than the UC3717 and the UC3770. Included in these devices are LS-TTL compatible logic inputs, current sense, monostable, thermal shutdown, and a power H-bridge output stage. Two UC3770As or UC3770Bs and a few external components form a complete microprocessor-controllable stepper motor power system.

Unlike the UC3717, the UC3770A and the UC3770B require external high-side clamp diodes. The UC3770A and UC3770B are identical in all regards except for the current sense thresholds. Thresholds for the UC3770A are identical to those of the older UC3717 permitting drop-in replacement in applications where high-side diodes are not required. Thresholds for the UC3770B are tailored for half stepping applications where 50%, 71%, and 100% current levels are desirable.

The UC3770A and UC3770B are specified for operation from 0°C to 70°C ambient.

BLOCK DIAGRAM


ABSOLUTE MAXIMUM RATINGS

Logic Supply Voltage, Vcc7V
Output Supply Voltage, VMM
Logic Input Voltage (Pins 7, 8, 9) 6V
Analog Input Voltage (Pin 10) Vcc
Reference Input Voltage (Pin 11)
Logic Input Current (Pins 7, 8, 9)–10mA
Analog Input Current (Pins 10, 11)–10mA
Output Current (Pins 1, 15) ± 2A
Junction Temperature, TJ+150°C

Note 1: All voltages are with respect to Gnd (DIL Pins 4, 5, 12, 13); all currents are positive into, negative out of the specified terminal. Note 2: Consult Unitrode Integrated Circuits databook for thermal limitations and

Note 2: Consult Unitrode Integrated Circuits databook for thermal limitations and considerations of packages.

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS: (All tests apply with VM = 36V, VCC = 5V, VR = 5V, No Load, and $0^{\circ}C < TA < 70^{\circ}C$, unless otherwise stated, TA = TJ.)

		i	JC3770/	770A UC3770B				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS
Supply Voltage Vм (Pins 3, 14)		10		45	10		45	V
Logic Supply Voltage Vcc (Pin 6)		4.75	5	5.3	4.75	5	5.3	V
Logic Supply Current Icc (Pin 6)	IO = I1 = H, IM = 0		15	25		15	25	mA
	IO = I1 = L, IM = 0		18	28		18	28	mA
	IO = I1 = H, IM = 1.3A		33	40		33	40	mA
Thermal Shutdown Temperature			+170			+170		°C
Logic Threshold (Pins 7, 8, 9)		0.8		2.0	0.8		2.0	V
Input Current Low (Pin 8)	VI = 0.4V			-100			-100	μA
Input Current Low (Pins 7, 9)	VI = 0.4V			-400			-400	μA
Input Current High (Pins 7, 8, 9)	VI = 2.4V			10			10	μA
Comparator Threshold (Pin 10)	VR = 5V, I0 = L, I1 = L	400	415	430	400	415	430	mV
	VR = 5V, I0 = H, I1 = L	240	255	265	290	300	315	mV
	VR = 5V, I0 = L, I1 = H	70	80	90	195	210	225	mV
Comparator Input Current (Pin 10)				±20			±20	μA
Off Time	RT = 56k, CT = 820pF	25	30	35	25	30	35	ms

UC3770A UC3770B

ELECTRICAL CHARACTERISTICS (cont.): (All tests apply with VM = 36V, VCC = 5V, VR = 5V, No Load, and $0^{\circ}C < TA < 70^{\circ}C$, unless otherwise stated, TA = TJ.)

		l	UC3770	A	ι	JC3770	С3770В			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNITS		
Turn Off Delay				2			2	ms		
Sink Driver Saturation Voltage	IM = 1.0A			0.8			0.8	V		
	IM = 1.3A			1.3			1.3	V		
Source Driver Saturation Voltage	IM = 1.0A			1.3			1.3	V		
	IM = 1.3A			1.6			1.6	V		
Output Leakage Current	VM = 45V			100			100	μA		

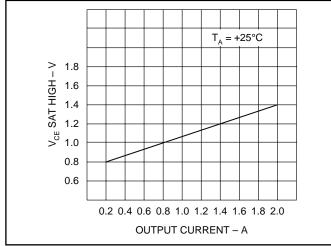


Figure 1. Typical source saturation voltages vs. load current

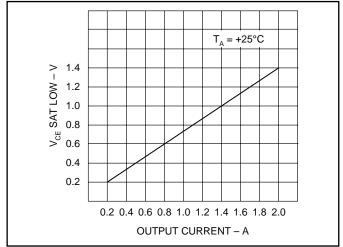


Figure 2. Typical sink saturation voltages vs. load current

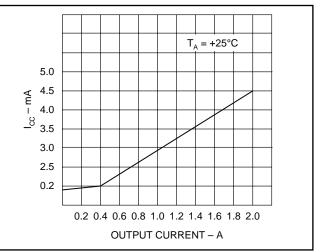


Figure 3. Typical supply current vs. load current.

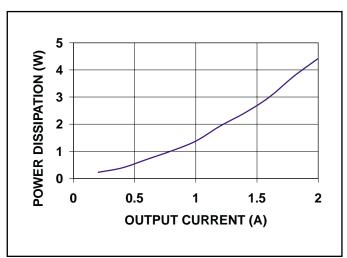


Figure 4. Typical power dissipation vs. output current.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
UC3770AN	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	UC3770AN	Samples
UC3770ANG4	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	UC3770AN	Samples
UC3770BN	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	UC3770BN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

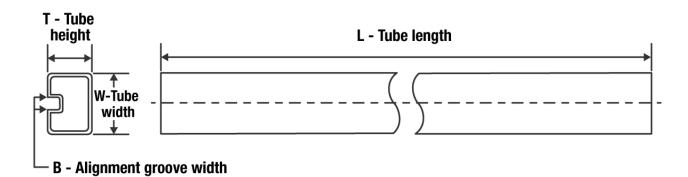
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

PACKAGE OPTION ADDENDUM


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
UC3770AN	N	PDIP	16	25	506	13.97	11230	4.32
UC3770ANG4	N	PDIP	16	25	506	13.97	11230	4.32
UC3770BN	Ν	PDIP	16	25	506	13.97	11230	4.32

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated