6L6GC Single Tube Amp KXit TU=8200
 Assembly Instruction Manual

This is a single power amplifier using natural sounding and powerful 6L6GC tubes. Below are the features of this power amplifier.

- Most of the circuit components are mounted on the PCB and the PCB units are connected by cords with connectors so that even beginners can solder and assemble without difficulty.
- 3 types of amplifier modes, Ultra linear, Triode, and Pentode, can be selected simply by moving the jumper plugs on the PCB.
- Other than 6L6GC, it supports wide range of power tubes, such as KT88(=6550), KT90, KT66, EL34(6CA7), etc. A newly developed "Active automatic bias adjustment function" automatically adjusts the bias for the optimal condition for each tube.
- INPUT1/INPUT2 on the back panel,and a headphone jack on the front panel
- FET ripple filter on board for power B for both right and left channels.
- Overcurrent protection circuit on board
- World-wide power transformer to support 4 different voltage environments: $100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}$ and 230 V (select upon assembly).
- Fiberglass PCB with $70 \mu \mathrm{~m}$ thick copper is used to increase eletrical conductivity and dissipate heat.

- Contents

Cautions upon assembly ---- 1
Necessary tools ------------ 1

1. Part list ----------------- 2
2. PCB assembly ----------- 3
3. Body assembly --------- 10
4. Safety precautions and safety check before and after powering up the amplifier ---- 14
5. Operation check-----------------------15
6. Troubleshooting --------------------------15
7. Connection------------------------------ 16
8. Enjoy TU-8200 to the fullest ---.---- 17
9. What attracts people about vacuum tubes?-18
10. Technical data----------------------18
11. Warranty-----------------------------20 20

CAUTIONS UPON ASSEMBLY

For your own safety, please read this "Assembly Instruction Manual" carefully before you begin assembling the amplifier. Please follow the instructions step by step for correct assembly and operation. Keep this manual always close by.
Do not work near any source of water or allow any components to get wet which may cause machine failure, fire and electrick shock. Also, do not put containers with water on the work table such as vases, cups, cosmetics and drugs. Spilling water on components may cause fire and electrical shock.
Be careful when handling tools, such as a soldering iron, diagonal cutter, pen knife, and other sharp tools in particular to prevent breakage and injury. Use a pair of gloves and protective glasses according to need.
Some essential pieces in this kit include small and sharp objects that are made of glass or metal. Be extremely careful when handling.
-Please discard packing waste and any waste from assembling the kit according to local standards for safety and protection of the environment.

- Do not work, keep or place the product near young children due to safety concerns. Children must not play with tools, plastic bags, and electronic parts as they may cause harm. In case a child swallows a part, immediately consut with a doctor.
- The specifications, forms and contents of this product are subject to change for improvement without prior notice.

Necessary tools

Solder (for electronic parts) (diameter 0.8-1.2mm)
(diameter 0.8-1.

Philips screwdriver
(No. 1 and No.2)

Hexagonal wrench (1.5 mm)

Scotch tape

Multimeter
Optional voltage and connection check is suggested.

* Both analog and digital are OK

2. PCB assembly FFollow the instructions step by step. Put a check in the box after each component has been soldered.

Before soldering

(1)Before soldering, follow the cut lines (grooved lines) on the PCB to break it into 8 pieces.

Use an edge of a desk to break the PCB easily.
(2)Use a sandpaper or file to make the broken surface smooth to avoid injury.

There will be 8pcs of PCBs, but only 7pcs (UNIT1-7) are used for the assembly.

\triangle
Mount components on correct side of the PCB.
Mount the parts on SIDE-A when there is no indication about the side for mounting parts.
There are some parts that need to be mounted on SIDE-B, and they are indicated as [MOUNT ON SIDE B!].
IMPORTANT! . Mount components on correct direction
[No direction specific] No polarity, and the part can be mounted in either direction.
[Check the direction!] By the shape of the part allows you to mount it in either direction. However, the part has a polarity and you need to check it before mounting it on the PCB. Follow the direction, or the product may not function. For some parts, a dangerous situation could happen.
[Direction specific] There is a polarity but since the shape does not allow you to mount it in a wrong way, so no special attention is called.

In this kit, the components on the right and left channels are assigned even and odd numbers, respectively. For example, R1 and C1 are Left channel, and R2 and C2 are Right channel. Most of the components on UNIT-1 PCB are located symmetrically on the board for ease of locating and installing the components upon assembly.

1	Resistor [Non direction specific]

$1 / 2 \mathrm{~W}$ resistor

$\square R 17180 \Omega$ (BRN-GRY-BRN-GLD) $\square R 2710 \mathrm{k} \Omega$ (BRN-BLK-ORN-GLD)
$\square R 18180 \Omega$ (BRN-GRY-BRN-GLD) $\square R 28$ 10k Ω (BRN-BLK-ORN-GLD)
$\square R 65180 \Omega$ (BRN-GRY-BRN-GLD) $\square R 31$ 10k Ω (BRN-BLK-ORN-GLD)
$\square R 66180 \Omega$ (BRN-GRY-BRN-GLD) $\square R 32$ 10k Ω (BRN-BLK-ORN-GLD)
$\square R 2522 \mathrm{k} \Omega$ (RED-RED-ORN-GLD) $\square R 62$ 10k Ω (BRN-BLK-ORN-GLD)
$\square R 2622 \mathrm{k} \Omega$ (RED-RED-ORN-GLD) $\square \mathrm{R} 9330 \mathrm{k} \Omega$ (ORN-ORN-YEL-GLD)
Color indication
\longrightarrow ——— $\square R 2922 \mathrm{k} \Omega$ (RED-RED-ORN-GLD) $\square \mathrm{R} 10330 \mathrm{k} \Omega$ (ORN-ORN-YEL-GLD)
$\square R 3322 \mathrm{k} \Omega$ (RED-RED-ORN-GLD) $\square R 58$ 330k Ω (ORN-ORN-YEL-GLD) $\square R 3422 \mathrm{k} \Omega$ (RED-RED-ORN-GLD) $\square R 640.47 \Omega$ (YEL-VIO-SIL-GLD) 1W resistor
$\square R 727 \mathrm{k} \Omega$ (RED-VIO-ORN-GLD or indicated as $27 \mathrm{k} \Omega$ or 273)
$\square R 827 \mathrm{k} \Omega$ (RED-VIO-ORN-GLD or indicated as $27 \mathrm{k} \Omega$ or 273)
$\square R 1327 \mathrm{k} \Omega$ (RED-VIO-ORN-GLD or indicated as $27 \mathrm{k} \Omega$ or 273) $\square R 1427 \mathrm{k} \Omega$ (RED-VIO-ORN-GLD or indicated as $27 \mathrm{k} \Omega$ or 273)

*Attention: For 12Ω and $1 \mathrm{k} \Omega$ all same colors are used but in different order. Make sure not to mix them up.
$\square R 1$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 312 \Omega$ (BRN-RED-BLK-GLD)* $\square R 2$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 412 \Omega$ (BRN-RED-BLK-GLD)* $\square R 15$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 1912 \Omega$ (BRN-RED-BLK-GLD)* $\square R 16$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 2012 \Omega$ (BRN-RED-BLK-GLD)* $\square R 47$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 2112 \Omega$ (BRN-RED-BLK-GLD)* $\square R 48$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 2212 \Omega$ (BRN-RED-BLK-GLD)* $\square R 49$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 6112 \Omega$ (BRN-RED-BLK-GLD)* $\square R 50100 \mathrm{k} \Omega$ (BRN-BLK-YEL-GLD) $\square R 51$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 52$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 55$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 56$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 59$ 100k Ω (BRN-BLK-YEL-GLD) $\square R 60$ 100k Ω (BRN-BLK-YEL-GLD)

* If unsure of a resistor value, it is recommended to use a multimeter to verify the $\square R 631 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* correct resistor before soldering to the PCB. $\square R 671 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)*
$\square R 51 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 61 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 111 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 121 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 231 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 241 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 531 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)* $\square R 541 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)*

10

Insert the socket from SIDE B and solder on SIDE A. Make sure the socket is fully seated and flat against the PCB before soldering.
Sodering tip: Just solder 1 pin first, check if the socket is set at correct position, and solder the remainig pins.
For 8 -pin socket, check the setting direction as well. Check the hole shape at the center, and match it with the indication on the PCB.

$\square \mathrm{V} 1$ 9-pin (black)
$\square \mathrm{V} 2$ 9-pin (black)
$\square \mathrm{V} 3$ 8-pin (white)
$\square \mathrm{V} 4$ 8-pin (white)

11

PTC
[Non direction specific]

-PTC
(Mustard, indicated as X10)

12	$\begin{array}{l}\text { Film capacitor } \\ \text { [Non direction specific] }\end{array}$

$\square \mathrm{C} 3 \quad 0.1 \mu \mathrm{~F}(400 \mathrm{~V})($ Brown, indicated as 104)
$\square \mathrm{C} 4 \quad 0.1 \mu \mathrm{~F}(400 \mathrm{~V})$ (Brown, indicated as 104) $\square \mathrm{C} 9 \quad 0.1 \mu \mathrm{~F}(400 \mathrm{~V})($ Brown, indicated as 104) \square C10 $\quad 0.1 \mu \mathrm{~F}(400 \mathrm{~V})$ (Brown, indicated as 104)
Mark on PCB

There are 6 holes.
Insert the leads to the 2 holes at the center and solder.

The side with white line is -
The side with white line is -.

$\square \mathrm{C} 1$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 2$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 5$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 6$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 13$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 14$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 33$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 34$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$
$\square \mathrm{C} 35$	$220 \mu \mathrm{~F}(16 \mathrm{~V})$

$\square \mathrm{C} 313300 \mu \mathrm{~F}(10 \mathrm{~V})$
$\square \mathrm{C} 323300 \mu \mathrm{~F}(10 \mathrm{~V})$

$\square \mathrm{C} 7 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 8 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 11 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 12 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 23 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 24 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 25 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 26 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 27 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 28 \quad 10 \mu \mathrm{~F}(400 \mathrm{~V})$
$\square \mathrm{C} 22180 \mu \mathrm{~F}(420 \mathrm{~V})$

Connector
Pin header (male) 8-pin [Non direction specific]

Insert the shorter side of pins to the PCB. Make sure that the pins are fully seated against the PCB before soldering.
\square CN1 Pin header (male) 8-pin

Connector
Box type VH connector [Direction specific]

Insert the connector pins in the PCB and make sure they are fully seated against the PCB before soldering.

Set them so that the protrusion fits the hole.
\square CN7 4-pin \square CN8 4-pin \square CN9 6-pin

Mark on PCB

16 Jumper plug [Non direction specific]
[Check the setting side caution !]
Simply set the jumper plugs from SIDE B. (No soldering)

\square J1 Select the output tube operation
$\square \mathrm{J} 2$ mode with the jumper plug. "UL" is the most recommended mode. For detail, please see "8. Enjoy TU-8200 to the fullest". on Page17.
Select the power indication LED color from blue and green. Green is recommended as it is brighter than blue.

1	Resistor [Non direction specific]	
	Color indication ——ा:	$\begin{aligned} & \text { Attention! } \\ & \text { The same colors as } 12 \\ & \Omega \text { are used for } 1 \mathrm{k} \Omega \end{aligned}$
1/2W resistor		but in different order.
$\square \mathrm{R} 3$	$51 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)*	Make sure not to mix
$\square \mathrm{R} 3$	$61 \mathrm{k} \Omega$ (BRN-BLK-RED-GLD)*	them up!
$\square \mathrm{R} 3$	180Ω (BRN-GRY-BRN-GLD)	
$\square \mathrm{\square} 3$	180 (BRN-GRY-BRN-GLD)	Mark on PCB
$\square \mathrm{R} 3$	180 Ω (BRN-GRY-BRN-GLD)	
$\square \mathrm{R} 4$	0180Ω (BRN-GRY-BRN-GLD)	W
$\square \mathrm{R} 4$	1180Ω (BRN-GRY-BRN-GLD)	
$\square \mathrm{R} 4$	2180Ω (BRN-GRY-BRN-GLD)	How to set
2W resistor		
$\square \mathrm{R} 4$	315Ω \} (indicated as 150 or 15Ω	П,
$\square \mathrm{R} 4$	15 3 \} or BRN-GRN-BLK-GLD	

2 Film capacitor
[Non direction specific]
Yellow
or
white
$\left.\begin{array}{l}\square \mathrm{C} 173300 \mathrm{pF} \\ \square \mathrm{C} 183300 \mathrm{pF}\end{array}\right\}$
(50V) (Indicated as 332)

Mark on PCB How to set

3

* The attached nut and washer will be used for assembly in Step8. Do not discard.
$\square V R$
Mark on PCB

Set the volume so that the shaft faces outward.
Make sure the volume is fully seated against the PCB before soldering.

Mark on PCB

* The pins may be bent.
Adjust them to match PCB holes
before mounting.

Make sure the switches are fully seated on the PCB before soldering.

* The attached nuts and washers are not used for SW1 and SW3. Please

L shaped pin header (male) 40-pin
[Check the setting side $\overline{C A U L O N!}$]
Set it on SIDE B of the PCB and solder on SIDE A.

[Check the direction

Insert the bent leads to the PCB so that the straight pins face outward.
Make sure that the header is set closely and horizontally to the PCB upon soldering. Mark on PCB

$\square \mathrm{CN} 3$

Pin socket (female) 8 -pin [Non direction specific]

8 UNIT-3 (PCB) [Check the direction CAUTION!
(1)Insert UNIT-3 from above. Make sure that the marks, and \diamond, on both PCB, are matching.

(2) Fix with a nut and a washer for volume.

Pan-head screw M2x5
(3)Insert Pan-head screw M 2×5 through UNIT-3 and L shaped metal bracket hole and

1	Resistor [Non direction specific]

Color indication

- Oin $=$
$1 / 2 \mathrm{~W}$ reistor
\square R45 12Ω (BRN-RED-BLK-GLD)*
-R46 12Ω (BRN-RED-BLK-GLD)*
* Attention:

The same colors as $1 \mathrm{k} \Omega$ are used for 12Ω but in different order. Make sure not mix them up.

Mark on PCB$-M$	How to set
	®ロ边

2 Connector [Check the direction $\overline{\text { BCAUNONE] }}$
L shaped pin socket (female) L shaped VH conenctor

40-pin
3-pin

Set on the same side as the resistors.
Insert the pins on the PCB so that the slots face outward.

Make sure the connector is set closely and horizontally to the PCB upon soldering.

3
Toggle switch
[Direction specific]

■SW2 6-pin

* Remove all the attached nuts and washers. Only 1 nut will be used for assembly later.
* The pins may be bent. Adjust them to match the PCB holes before mounting.

Make sure the switches are fully seated against the PCB before soldering.

Film capacitor [Non direction specific]

$\square \mathrm{C} 190.22 \mu \mathrm{~F}$ (50V) -C20 $0.22 \mu \mathrm{~F}\}$ (Indicated

Mark on PCB How to set

UNIT-6 assembly

Set it to SIDE A so that the slot faces "GND" and "LS" side on the PCB, and solder it on the same side.

Make sure the mini jack is fully seated against the PCB before soldering

$\square J A C K 1($ WHITE) White $\square J A C K 2(R E D)$ Red $\square J A C K 3(W H I T E)$ White $\square J A C K 4(R E D)$ Red

Mark on PCB

Make sure that the jack is fully seated against the PCB before soldering.

UNIT-5 assembly

1 L shaped metal bracket
[Check the direction $\overline{\text { BCAUIONIF}}$]

(1)Insert previously assembled UNIT-4 (SIDE A up) into UNIT-5 (SIDE A) slots. Fix with the previously removed nut and secure to the toggle switch threads on SIDE B of UNIT-5.
(The washer is not needed.)
Make sure the marks, \star and $\dot{\mathcal{H}}$, printed on both PCBs, are matching.

(2)Solder the 12 joints, "G" to "R", of the 2 PCBs.

Before soldering

After soldering

UNIT-7 assembly

1 Midget fuse, fuse holder [Check the setting direction of the fuse holders 逗AUIONI
How to set
(1)Set the midget fuse to the fuse holders as shown. (No soldering)

ロFUSE

(2) Set the fuse holders to the PCB and solder. For the midget fuse, no direction specific, but for the holder, make sure the setting direction.

Mark on PCB

3 Connector
Box type VH connector 2-pin [Direction specific]

Make sure the connector is fully seated on the PCB before soldering.

In other countries...
110-120V(USA, Canada, etc)
200V(Air conditioner in Japan, etc)
220-240V(Many other countries)

Box type VH connector 7-pin [Direction specific]

* Make sure to select the correct voltage for your region when installing this connector to the PCB. Verify before soldering. In Japan, set to CN12.
$\square \mathrm{CN} 12$

5

 How to set
(1)Fix 2 pcs of hex screw spacers small (malefemale) on SIDE B of the PCB with 2pcs of M3 nuts.
(2) Set AC inlet to the spacers and fix it with 2 pcs of M 3×10 binding screws long.
(3)Solder the 3 terminals of the $A C$ inlet on SIDE A of

How to set

\square C36 RE1201 (Black)
Mark on PCB
$0-\mathrm{WH}-1-0$
4
Spark killer
[Non direction specific]

Completed PCB * Compare your PCB with below darwing and verify that the components are installed in the correct locations and the correct direction.
Note: Double check for correct direction of the electrolytic capacitors, diodes, photo coupler, IC, transistor, and vacuum tube sockets ($8-\mathrm{pin}$).
Check the PCB for missing parts, unsoldered leads or pins, and bridged solder joints between components.

UNIT-6

UNIT-2

SIDE A

SIDE B

Insert 4 speaker terminals to the holes from the back side of the bottom chassis in the order of RED-BLACK-BLACK-RED.

* There are 2 M5 flange nuts attached to each terminal. In this stage only 1 of them is used. The remaining ones will be used in later step.

* Align the terminal holes so that the speaker wires can be connected easily after assembly is complete.

Assemble UNIT-5 (with UNIT-4 and 6).
(1)Place a masking felt (black) on the front of the toggle switch so it is sandwiched between the switch and the hole in the chassis.
(2)Set UNIT-5 to the bottom chassis so that the speaker terminals fit through the holes of UNIT-5, and fix with 4pcs of binding tapping screws at the pin jacks.
(3)Fix UNIT-5 with the flange nuts at the speaker terminal screws.

3
Attach hex screw spacers - large.
4
Attach output transformers.
[Check the seting direction (wire color)

5 Attach the insulators.
 *Do not forget!
Flat countersunk screw (M3x8) 1pc
Binding screw short

7
Insert and connect screw hex spacers small and medium to UNIT-2.

Hex screw spacer - small
(M3x18 male-female) 3pcs

9 Connect 3-pin connector of the output terminals (BLK-GRN-GRY wire) to CN5 and CN6 of UNIT-4.

Connect the left side wires to the left side of connector, and the right side of wires to the right side of connector.

10

Attach the power transformer to the hex screw spacers set in Step3 and fix with 4 low-head screws.,

13

Attach UNIT-1.
(1)Connect UNIT-1 to UNIT-2. Make sure that CN1 pins are lined up correctly with the CN2 connector pin holes.
(2) Fix UNIT-1 with binding screws.

14
Install in the

15
Install the knob onto the volume shaft.

[^0]

16
Place the LED mask on the back side of the front panel.

Incorrect use or handling of the product may cause electric shock, bodily harm, and damaged to the product and other connected components. Please read the cautions below to avoid accidents.

4. CAUTION

Before closing the chassis after assembly or repair, make sure to verify that all the parts are installed correctly, there are no mistakes in wiring and soldering before turning ON the power.
Electronic components in a vacuum tube amplifier exceed several hundred volts. To prevent electrick shock, do not remove the top chassis when powered ON.

- When operating the amplifier under a direct current (DC) by necessity (as to test the device), do not touch the parts, terminals, and metal parts with bare hands. Make sure to wear a pair of gloves. Find a safe place away from others who may come into contact with the amplifier while testing. Even when the power plug is pulled out, there is electricity remaining in the capacitors. Make sure to wait at least 10 minutes after the power plug has been disconnected before touching any components inside the amplifier.
- If you find anything unusual while using the amplifier, immediately turn OFF the power and unplug the power plug from the outlet, and refer to "Troubleshooting" on page15. If you cannot solve the problem, consult your local dealer or EK JAPAN.
Do not use the amplifier under an electric environment other than the preset power supply voltages. Normal household current is Alternating Current (AC). Do not connect to a DC power supply.
- When connecting and disconnecting the amplifiere with other devices, be sure to turn OFF the power and unplug the power cord plug from the power outlet. Read the instruction manuals of the connected devices carefully and follow their instructions.
- When connecting or disconnecting the amplifier to/from other devices, make sure to have the power of all the devices turned OFF. Failing to do so may cause damage to the amplifier and connected devices.
Before turning ON, switching inputs, or plug/unplug the headphone terminal, turn the volume control to minimum in order to prevent sudden bursts of high volume that may cause auditory disorder or speaker and headphone damage.
- Adjust the sound volume slowly to an appropriate level, especially with headphones, to prevent sudden burst of high volume that may cause ear injury and auditory disorder.

During operation, the vacuum tubes become very hot (over 100 degreeC). Do not touch them with bare hands to avoid burn injury. Even after the power is OFF, it takes several minutes for the vacuum tubes to cool down. Make sure not to place the amplifier where children can reach it.

- If water or any unwanted substance gets into the main body of the amplifier, immediately turn OFF the power and unplug the AC power cord. Wait for at least 10 minutes, open the chassis and remove/wipe off the substance, and consult with your local dealer or EK JAPAN. Failing to do so may cause failure, fire, or electric shock.
-Hold onto the AC plug or connectors when unplugging. Do not unplug by yanking the AC power cord, as it may cause potential injury, fire, or electric shock.
-Do not put heavy items on or under the AC power cord. Do not place the amplifier near any source of heat, such as a heater. Doing so may damage the AC power cord and cause fire or electric shock. Do not use damaged AC power cord.
-Do not plug/unplug AC power cord with wet hands. Doing so may result in electric shock.
-Handle the amplifier gently, especially the vacuum tubes as they are made of glass.
-Place the amplifier on a stable surface to avoid a falling hazard. Place the amplifier in a location where nothing could fall onto the amplifier.
- Keep out of direct sun, extreme hot and cold, humid or dusty areas as they may cause accidents and damage. Do not allow gas or corrosive substances to come into contact with the amplifier. Failing to do so may cause damage or hazard.
- Make sure the amplifier is placed at least 10 cm away from walls, and has at least 10 cm of space above it as well, as the amplifier will radiate heat. Placing the amplifier too close with other equipment may cause a fire. Do not place the amplifier on a thick carpet, or in an enclosed space such as a drawer, or a box that will obstruct ventilation. Do not cover the amplifier with table cloths, towels, pillows or anyting that may cause fire.
Clean the amplifier regularly. If dust accumulates on the circuit board, it may cause fire or other hazards. It is recommended to clean the amplifier before the start of humid or rainy seasons.
-The amplifier is designed for home use. Do not use it in environments that it would push the amplifier beyond it's limitations.
Discard the amplifier according to the rules and standards in your region. Failing to do so may cause damage to the environment and others.

5. Operation check "Check the amplifier in the following order

- (1) Turn OFF the power (lever down) and have the sound volume to the minimum (fully to the counter-clockwise direction).
-(2)Refer to "7.Connection" on page16 and connect the sound source, speakers, and AC power cord. Connect a sound source to INPUT 2 and push the input selection switch lever down. Make sure the correct speaker impedance is selected on the back of the amplifier to match the speakers being connected.
-(3)Turn ON the power (lever up) and make sure that the pilot lamp right under the power switch turns green (or blue according to your setting).
(4)Make sure that the heaters inside all the 4 tubes slowly turn orange.
$\square(5)$ Wait for 30 minutes, and if everything is OK, play a music from the connected sound source and slowly turn up the volume (to clockwise direction).
- (6)Confirm that the sound is output normal from both right and left speakers.
\square (7) Turn the volume down (turn the knob to the counter-clockwise direction), connect a pair of headphones, and turn up the volume. Make sure that the sound output is only from the headphones and no sound is heard from the speakers.
-8)Turn OFF the power, unplug the headphones, connect a sound source to INPUT 1, push the input selection lever up, and do the above steps 3 to 7 again. (If you do not have a patch cord to connect to INPUT 1, skip.)
■(9)f all of the above operation checks are OK without any problem, operate the amplifier for 30 minutes at low/no volume to confirm the proper operation. During this period, be aware of any burning odors, unexpected noises (hums, popping, static, etc). When you face a problem, unplug immediately and use the below troubleshooting steps to resolve.

6. Troubleshooting

Please refer to the below troubleshooting steps upon use or during operation check.
If you cannot solve the problem, please consult with your local dealer or EK JAPAN.

Symptom	Check point
$\begin{array}{l}\text { (1)Will not turn ON when the power } \\ \text { SW is turned ON (The LED pilot } \\ \text { lamp and the tube heaters will not } \\ \text { turn ON either.). }\end{array}$	$\begin{array}{l}\text { - Is the AC power cord plugged on both ends securely? } \\ \text { - Is the AC power cord damaged? } \\ \text { - Is the connection of the connector inside, especially CN9 to 15, secure? } \\ \text {-Is the soldering of SW3, CN10, and inside UNIT-7 secure? } \\ \text { - Is the midget fuse blown? }\end{array}$
$\begin{array}{l}\text { (2)The LED pilot lamp turns ON but } \\ \text { a/some tube heater/s are not glowing. }\end{array}$	$\begin{array}{l}\text { - Check the soldering condition of the socket of the tube that does not turn ON. Also check the } \\ \text { soldering and setting of R64, C31 to 32, D6, and CN9. }\end{array}$
$\begin{array}{l}\text { (3)The operation is normal but the pilot } \\ \text { lamp does not turn ON (or turns ON } \\ \text { in a color other than green or blue.). }\end{array}$	$\begin{array}{l}\text { - There is a problem in the circuit just around the LED. Check for the correct orientation of the } \\ \text { LED, whether J3 is set (P4), or the soldering condition of LED and R62. }\end{array}$
$\begin{array}{l}\text { (4)Either right or left channel has a } \\ \text { problem. }\end{array}$	$\begin{array}{l}\text { - Swap right and left tubes and see if the symptom follows the tube. If so, it is attributed to tube itself. If not, } \\ \text { the problem is in the circuitry. } \\ \text { - When there is a problem in the circuitry, check all circuits in the problematic channel, except for UNIT-7. } \\ \text { Odd number components are assigned to the left channel, and even numbers for right channel. }\end{array}$
- Are the cords, such as input and speaker output, connected securely? Check the cord for broken or torn	
sheathing.	
*If the pilot lamp is red, orange, or any reddish color when there is no sound, the problem detection circuit of the	
output tubes is active. Follow the same checks listed above.	

* Cords and cables to connect speakers and any sound source device is not included.

Please use your own cords and cables for attaching to the amplifier.
! CAUTION! Make sure to turn OFF the power of all the devices before connecting/disconnecting cords.
 overcurrent occurs, the protective circuit becomes active, and shuts down the B power of the problematic circuit (there will be no sound.). Then the pilot lamp turns to

If the outlet is equipped with a terminal, connect the ground terminal to it.

8. Enjoy TU-8200 to the fullest

(1)Enjoy the difference in sound by changing the operation modes of the output tube

Triode and pentode are 2 most common configurations in audio vacuum tube amplifiers. The difference in triode and pentode modes offer the audio enthusiast 2 very different listening experiences.
Pentode mode provides high efficiency and power, but some audio enthusiasts believe triode mode surpasses pentode mode in sound quality. The TU-8200 has a jumper that can easily change the amplifier's mode from triode to pentode. In addition, an intermediate mode called "Ultra Linear" can be selected. In this UL mode, you may obtain high efficiency similar to pentode mode and sound quality of triode mode.
In this amplifier, you can select from the 3 modes, Pentode, UL, and Triode, simply by changing the jumper plug J1 and J2 on SIDE B of UNIT-1.

* The circuit around the jumper plug has high voltage and it is dangerous to touch the PCB without caution. Make sure to turn OFF the power and unplug the $A C$ power cord, then wait for at least 10 minutes before changing the jumper connection. Also, changing the connection while the power is ON could damage the tubes and the output transformers. Therefore please refrain from modifying the amplifier, such as adding a switch to change the connection.
(2) Try different brands tubes that are the same model number (tube rolling)

Various vacuum tubes manufacturers make the same model or equivalent of a tube. You can find different brands of same model tubes from various tube vedors. Although the model numbers are the same, tubes from different manufacturers will have variations in the way they sound. The ability to expreience different sounds by changing tubes is one of the real thrills of tube amplifiers.
When changing the 6L6GC power tubes, make sure the replacement 6L6GC version is the equivalent of the 6L6GC. Some 6L6 variants will not have the "GC" designation and have lower power ratings. These cannot be used in the TU-8200.
For 12AU7, it is possible to use those with additional letters at the end, such as $12 A U 7$ or $12 A U 7 W A$. ECC82 is the European model number for 12AU7, so it can be used as 12AU7. (Please note that 12AX7(ECC83) and 12AT7(ECC81) have larger property and cannot be used for TU-8200.)
(3) Try other output tubes

There are many output tubes that have similar properties and pin layouts to 6L6GC. These other output tubes all have unique and different sound qualities compared to 6L6GC in the above (2).
Traditionally, when other variations of output tubes are used, it is usually desirable to modify the circuits. However, with TU-8200, a new function "Active automatic Bias" is adopted so that the bias is automatically adjusted when the tubes are switched. You can enjoy the best performance of various tubes, such as KT88, KT66, KT90, 6550 and EL34(=6CA7), without any adjustment to the amp. (Please note that 6V6 family is unusable with TU-8200.) General attributes of output tubes;

- 6L6GC and equivalent: Very balanced, with clear highs
- KT88 and equivalent: Powerful bass, and strong midrange with clear highs
- EL34 and equivalent: Delicate, beautiful, and brilliant highs
(4)Change the capacitors in search of your favorite sound

In some instances, switching some of the components with higher grade components may improve the sound. Capacitors are one of those that affect the sound. However, switching to whatever capacitors randomly may not improve the sound, or may even cause problems. Here are some guidelines for exchanging the capacitors for better sound quality.

1. Exchanging the cathode bypass capacitors with coductive polymer aluminum solid electrolytic capacitors with low ESR is very effective. In this amplifier, the 4 capacitors of $C 1, C 2, C 5$, and $C 6$ are used as cathode bypass capacitors. By default they are $220 \mu \mathrm{~F} 16 \mathrm{~V}$ aluminum electrolytic capacitors. If you exchange, make sure the value is between 150 to $220 \mu \mathrm{~F}$, and the rated voltage is 10 V .
2. Coupling capacitors affect the sound as well. In this amplifier, the PCB is designed with some extra space around C3, C4, C9, and C10 so that users can exchange those coupling capacitors with different ones of larger size. However, those originally included are non-inductive polypropylene film capacitors that can cover high frequency. Therefore you may not hear the effect even after they are exchanged.
If replacing these capacitors, the value shall be higher than $0.1 \mu \mathrm{~F}$, and the rated voltage should be minimum of 400 V .
Please make sure to select one which can fit in the provided space on the PCB without interference with other parts.

* We are not liable or responsible for any problems/failures caused by component exchange or modifications, and kindly ask you to conduct such component exchange and modification at your own risk and responsibility.
* We do not provide the capacitors and tubes for exchange. Please purchase them from reputable electronic or vacuum tube vendors.
(5) Mount USB-DAC in TU-8200

For audiophiles who want to enjoy digital sound source, we recommend our USB-DAC module PS-3249R which can be easily mounted to TU-8200 by mounting it inside the amp and fixing it with $2 \times \mathrm{M} 3$ screws at the two holes at the back side of the amp. Use a mini stereo cord to connect between the DAC output jack and INPUT2 of TU-8200. Make sure to use Function Label C when PS-3249R is mounted.

9. What attracts people about vacuum tubes?

In former times, vacuum tube used to be adopted for every electronic circuit found in radios, TVs, communication broadcasting devices, sound amplification and computers. However, rise of semiconductors almost wiped them out in a moment. Although vacuum tubes are no longer found in most elctronic devices, they have a strong following and are popular amongst audiophiles in sound amplification. A solid state amplifier shows almost ideal measured values whereas a vacuum tube amplifier have high level of noise and distortion. From a viewpoint of measured values, a vacuum tube amplifier must be obviously inferior to a solid state amplifier. So why is it said to have a better sound quality?
The biggest factor is that the vacuum tube characteristics curve is quadratic function by which a vacuum tube produces a distortion so called second harmonic. The second harmonic is a frequency double the original sound, and an overtone factor which are abundantly produced by various musical instruments and gives depth and richness to the sound.
On the other hand, the distortion produced by a solid state amplifier is mostly the multiples of odd numbers, such as tertiary and quintic. Therefore a sound different from the original sound is produced, which is unpleasant to listeners. This is why there are various countermeasures taken for a solid state amplifier to lessen the distortion to have it close to zero as much as possible.
Although a vacuum tube amplifier may not match a solid state amplifier in terms of measured audio specifications, the quality of the sound produced by its distortion is superior to that of a solid state amplifier and attracts many audiophiles.

10. Technical data

Specifications

Product \& Model No.
Circuit configuration

Stock tube
Rated output

Rated input
Residual noise
Frequency response Speaker impedance
Headphone impedance : 8 to $1 \mathrm{k} \Omega$ (corresponds to high impedance speakers), unbalance
Output terminal : Speaker output: Gold-plated binding terminal (banana plug is also usable) Headphone output: 3-pole standard jack ($\phi 6.4 \mathrm{~mm}$)
LINE-IN terminal : RCA jack stereo 2 lines (INPUT 1, INPUT 2) 3-pole mini jack ($\phi 3.5 \mathrm{~mm}$) 1 line (INPUT 2 side, 3-pole mini jack has priority.)
Power : 100VAC, $50 / 60 \mathrm{~Hz}$ (select from $100 \mathrm{~V}, 115 \mathrm{~V}, 200 \mathrm{~V}$, and 230 V upon assembly) IEC standard $3 P$ inlet type
Power consumption : 60W (6L6GC)
85W (KT88)
Dimensions : W252 $\times \mathrm{H} 156 \times$ D285 mm (when stock tubes are mounted, including projections)
Weight : Approx.6.6kg (assembled, excluding AC cord)

The specifications, forms and contents of this product are subject to change for improvement without prior notice.

- Circuit diagram

11. Warranty

Since this is an electronic product assembled by a user, EK JAPAN cannot provide a standard warranty like those found with a regular electronic product. Instead, EK JAPAN can provide help to resolve your problems via troubleshooting support from your local EK JAPAN dealer or you can e-mail EK JAPAN directly.
If you experience problems with the assembled product, please contact an EK JAPAN dealer in your region or the store from where you purchased the product for further assistance. If you do not know who to contact, please send us an e-mail describing the problem you are facing to the e-mail address below. Throughout the instruction manual, there are many check points, and in many instances the problem can be solved if you review these points closely, and use the troubleshooting on Page 15 before consulting to your dealer or EK JAPAN.

Contact information

EK JAPAN CO.,LTD.
Tofuro-minami 2-19-30, Dazaifu-shi, Fukuoka, 818-0105, Japan
Phone: +81-92-923-8235
Fax: +81-92-923-8237
Website: http//www.elekit.co.jp
E-mail: info@elekit.co.jp

ATTENTION

[^0]: Rotate with a hex wrench (1.5 mm).

