

Using the TPS92660EVM

Abstract

		Contents	
1	Introc	Juction	2
2	Desc	ription	2
	2.1	Typical Applications	2
	2.2	TPS92660 Features	2
3	Elect	rical Performance Specifications	2
4	Sche	matic	4
5	Test	Setup	5
	5.1	Recommended Test Equipment	5
	5.2	Recommended Test Set Up	5
	5.3	List of Test Points	
	5.4	Trim LED Current Using I ² C Adapter	6
6	Perfo	rmance Data and Typical Characteristic Curves	
	6.1	Efficiency	8
	6.2	Line Regulation	9
	6.3	Switch Node Voltage and LED Current Ripple Waveforms	10
	6.4	Analog to PWM Dimming Waveforms	10
	6.5	Start-Up and Shut-down Waveforms	12
7	TPS9	2660EVM PCB Layout 1	13
8	Bill of	f Materials (BOM)	14
		List of Figures	

List of Figures

1	TPS92660EVM Schematic	4
2	TPS92660EVM Recommended Test Set Up	5
3	USB Interface Adapter GUI	7
4	TPS92660EVM Efficiency with 10 LEDs	8
5	TPS92660EVM Buck Converter Current Line Regulation with 8 LEDs	9
6	TPS92660EVM Linear Regulator Current Line Regulation with 4 LEDs	9
7	TPS92660EVM Buck Converter Switching Voltage and LED Current	10
8	TPS92660EVM Buck Converter PWM Dimming, SADJ = 1.25 V	10
9	TPS92660EVM Buck Converter PWM Dimming, SADJ = 0.25 V	11
10	TPS92660EVM Linear Regulator PWM Dimming, LADJ = 1.25 V	11
11	Buck Converter Start-Up Waveform	12
12	Buck Converter Shut-Down Waveform	12
13	TPS92660EVM Top Layer and Top Overlay (Top View)	13
14	TPS92660EVM Bottom Layer and Bottom Overlay (Bottom View)	13

List of Tables

1	TPS92660EVM Buck Converter Electrical Performance Specifications	2
2	TPS92660EVM Linear Regulator Electrical Performance Specifications	3
3	Test Points Functions	5

1

Introduction

4	Buck Converter Current Trim Values	7
5	Linear Regulator Current Trim Values	8
6	TPS92660EVM Bill of Materials	14

1 Introduction

The TPS92660EVM evaluation module (EVM) is a DC LED driver which can drive two strings of LEDs. The LED currents can be trimmed through an I²C interface in the IC.

2 Description

The EVM consists of one non-synchronous constant current buck converter with input voltage up to 80 VDC and one constant current linear regulator with input voltage up to 60 VDC. The buck converter uses the constant on time control scheme to control the average LED current. The linear regulator regulates the LED current by adjusting the drain to source voltage drop across a MOSFET. Both LED currents can be trimmed by the I²C interface. LED current PWM dimming is achieved by applying analog voltage or PWM signal on the SADJ and LADJ pins. Reference to the TPS92660 data sheet for details (<u>SLUSBC2</u>).

2.1 Typical Applications

- Professional lighting
- Industrial and commercial lighting
- General illumination

2.2 TPS92660 Features

- Drive two strings of LEDs for color mixing
- I²C LED current trim to adjust the LED brightness
- Analog to PWM dimming and PWM to PWM dimming
- Output overvoltage protection
- MOSFET short protection
- Input undervoltage lockout
- 3.0 V reference voltage
- Enable on and off
- Thermal shutdown

3 Electrical Performance Specifications

Table 1 and Table 2 present the electrical performance specifications of the TPS92660 EVM.

Table 1. TPS92660EVM Buck Converter Electrical Performance Specifications

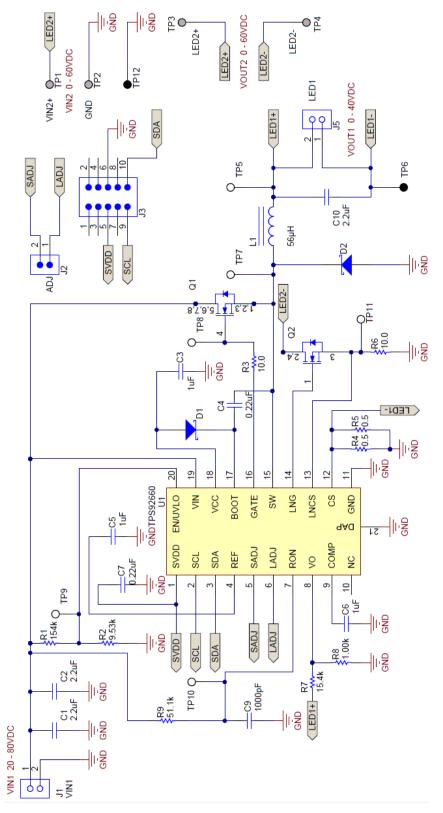
Parameter	Test Conditions	MIN	TYP	MAX	UNITS
Input Characteristic	S			l.	
Voltage range		20	48	80	V
Input current			0.55		А
No-load input current			6		mA
Output Characterist	ics			L.	1
Output voltage, V _{OUT}	10 LEDs	30	33	36	V
Output load current, I _{out}		760	808	840	mA
Output current ripple	At $V_{IN} = 48 V$		20		mApp
Output overvoltage			40		V
Systems Characteri	stics			L.	1

Parameter	Test Conditions	MIN	ТҮР	MAX	UNITS
Switching frequency			330		kHz
Full load efficiency			95		%

Table 1. TPS92660EVM Buck Converter Electrical Performance Specifications (continued)

Table 2. TPS92660EVM Linear Regulator Electrical Performance Specifications

Parameter	Test Conditions	MIN	TYP	MAX	UNITS
Input Characteristics	5		ŀ		
Voltage range		0	30	60	V
Input current			20		mA
No-load input current			0		mA
Output Characteristi	cs	L	L		
Output voltage, V _{OUT}	8 to 10 LEDs	20	24	28	V
Output load current, I _{out}		19	20	21	mA
Systems Characteris	stics				
Full load efficiency			80		%



Schematic

www.ti.com

4 Schematic

Figure 1 is the EVM schematic.

5 Test Setup

5.1 Recommended Test Equipment

Voltage Source:	Two DC power supplies with an output voltage range of up to 80 VDC
Multimeters:	Three digital multimeters
Output Load1:	4 to 10 LEDs in series (Each LED is capable of handling up to 1A current)
Output Load2:	4 to 10 LEDs in series (Each LED is capable of handling up to 100mA current)
I ² C Adapter:	Texas Instruments USB-to-GPIO interface adapter EVM (http://www.ti.com/tool/usb-to-gpio.)
Computer:	Personal Computer (Windows XP with .NET version 1.1)

5.2 Recommended Test Set Up

See Figure 2

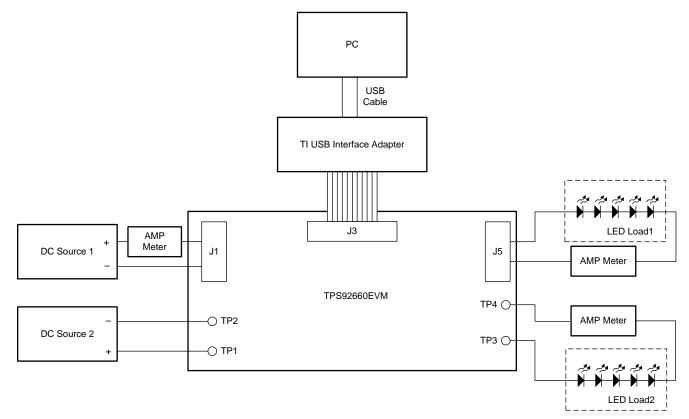


Figure 2. TPS92660EVM Recommended Test Set Up

5.3 List of Test Points

Table 3 contains the test points, their names, and a description of each.

Table	3.	Test	Points	Functions
-------	----	------	--------	-----------

Test Points	Name	Description
J1-1	VIN1	Input voltage #1 positive-side connection
J1-2	GND	Input voltage #1 negative-side connection
J2-1	LADJ	Linear regulator current-adjust connection

Test Points	Name	Description
J2-2	SADJ	Buck converter current-adjust connection
J3		I ² C interface connection
J5	LED1	LED string #1 connection
TP1	VIN2+	Input voltage #2 positive-side connection
TP2	GND	Input voltage #2 negative-side connection
TP3	LED2+	LED string #2 anode connection
TP4	LED2–	LED string #2 cathode connection
TP5	LED1+	LED string #1 anode test point
TP6	LED1-	LED string #1 cathode test point
TP7		Buck converter switch-node test point
TP8		Buck converter gate-drive test point
TP9		Input voltage #1 UVLO test point
TP10		Constant ON time timing capacitor test point
TP11		Linear regulator current sense test point
TP12	GND	Ground test point

Table 3. Test Points Functions (continued)

5.4 Trim LED Current Using *f*C Adapter

Download the USB Interface Adapter GUI software from http://www.ti.com/tool/usb-to-gpio.

Open the file USB SAA GUI.exe. The USB Interface Adapter GUI window as shown in Figure 3 appears on the PC.

Enter 40 in the Device Address field.

Trim the buck converter current by entering 01 in the Cmd field and by entering hex number 00 to 3F to trim current. See Table 4 for the trim range.

Trim the linear regulator current by entering 02 in the Cmd field and by entering hex number 00 to 0F to trim current. See Table 5 for the trim range.

I2C	Device Address	Length	Cmd Data		ACK/NACK	
I2C Write	40		01 h 00	h	n/a	
C I2C Read	1 7	01	01 h XXa		n/a	Send
SMBus			1			
	Device Address	Command	Data		ACK/NACK	
Send Byte	1 :		00 h		n/a	
🔍 Write Byte	1 +	oo h	oo h		n/a	
Write Word	1 -	oo h	oo h oo h	_	n/a	
C Write Block	1 -	00 h	00	h	n/a	
C Receive Byte	1 _		XXh		n/a	
Read Byte	1 +	oo h	XXh		n/a	
C Read Word	1 +	oo h	XXh XXh		n/a	
C Read Block	1 -	oo h	XXh		n/a	
C Process Call	1 🐳	00 h	h 00 h XXIn XXIn		n/a	
Rd Block/ Wr Block/ Process Call	1 -	00 h	00 XXB XXh	h	n/a	Send
PMBus						
Group Command	1 🛨	00 h	C Last Segment	h	n/a	Send
	PMBus A	LERT	PMBus CONTROL (1-5)			
		asserted) Get	Γ 1 Γ 2 Γ 3 Γ 4 Γ 5		iet Set	

Figure 3. USB Interface Adapter GUI

Cmd	Current Change	Cmd	Current Change	Cmd	Current Change	Cmd	Current Change
3f	-20.0%	2f	-10.0%	1f	0%	Of	10.0%
3e	-19.4%	2e	-9.38%	1e	0.625%	0e	10.6%
3d	-18.8%	2d	-8.75%	1d	1.25%	0d	11.3%
3c	-18.1%	2c	-8.13%	1c	1.88%	0c	11.9%
3b	-17.5%	2b	-7.50%	1b	2.50%	0b	12.5%
3a	-16.9%	2a	-6.88%	1a	3.13%	0a	13.1%
39	-16.3%	29	-6.25%	19	3.75%	09	13.8%
38	-15.6%	28	-5.63%	18	4.38%	08	14.4%
37	-15.0%	27	-5.00%	17	5.00%	07	15.0%
36	-14.4%	26	-4.38%	16	5.63%	06	15.6%

Table 4. Buck Converter Current Trim Values

Performance Data and Typical Characteristic Curves

www.ti.com

					•		
35	-13.8%	25	-3.75%	15	6.25%	05	16.3%
34	-13.1%	24	-3.13%	14	6.88%	04	16.9%
33	-12.5%	23	-2.50%	13	7.50%	03	17.5%
32	-11.9%	22	-1.88%	12	8.13%	02	18.1%
31	-11.3%	21	-1.25%	11	8.75%	01	18.8%
30	-10.6%	20	-0.625%	10	9.38%	00	19.4%

Table 4. Buck Converter Current Trim Values (continued)

Table 5. Linear Regulator Current Trim Values

Cmd	Current Change	Cmd	Current Change	Cmd	Current Change	Cmd	Current Change
Of	-25.0%	0b	-12.5%	07	0%	03	12.5%
0e	-21.9%	0a	-9.38%	06	3.13%	02	15.6%
0d	-18.9%	09	-6.25%	05	6.25%	01	18.9%
0c	-15.6%	08	-3.13%	04	9.38%	00	21.9%

6 Performance Data and Typical Characteristic Curves

Figure 4 through Figure 12 present typical performance curves for TPS92660EVM.

6.1 Efficiency

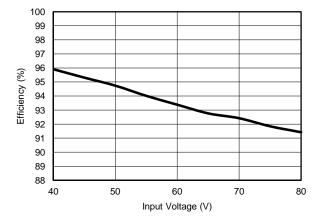
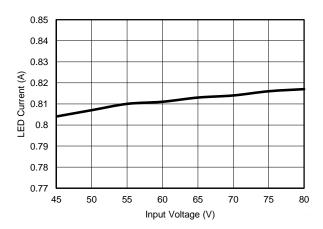



Figure 4. TPS92660EVM Efficiency with 10 LEDs

6.2 Line Regulation

Performance Data and Typical Characteristic Curves

Figure 5. TPS92660EVM Buck Converter Current Line Regulation with 8 LEDs

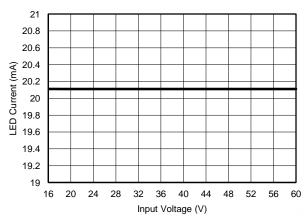
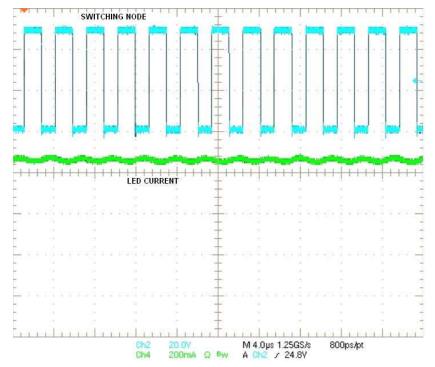
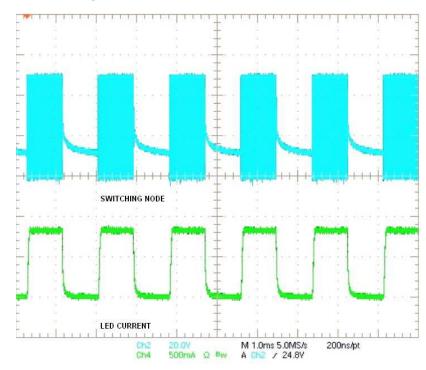


Figure 6. TPS92660EVM Linear Regulator Current Line Regulation with 4 LEDs



Performance Data and Typical Characteristic Curves


Switch Node Voltage and LED Current Ripple Waveforms

6.3

www.ti.com

Figure 7. TPS92660EVM Buck Converter Switching Voltage and LED Current

6.4 Analog to PWM Dimming Waveforms

Figure 8. TPS92660EVM Buck Converter PWM Dimming, SADJ = 1.25 V

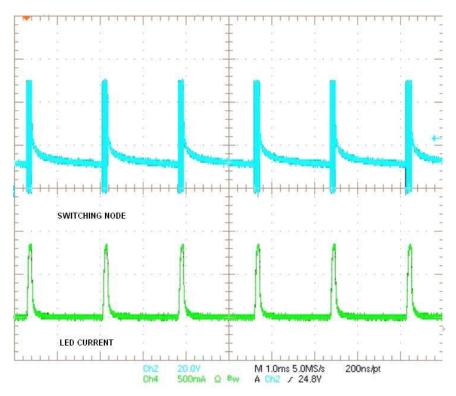


Figure 9. TPS92660EVM Buck Converter PWM Dimming, SADJ = 0.25 V

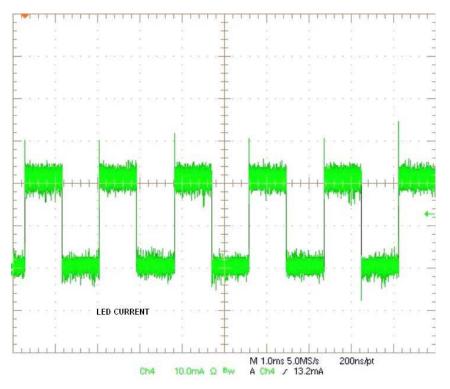


Figure 10. TPS92660EVM Linear Regulator PWM Dimming, LADJ = 1.25 V

Performance Data and Typical Characteristic Curves

www.ti.com

6.5 Start-Up and Shut-down Waveforms

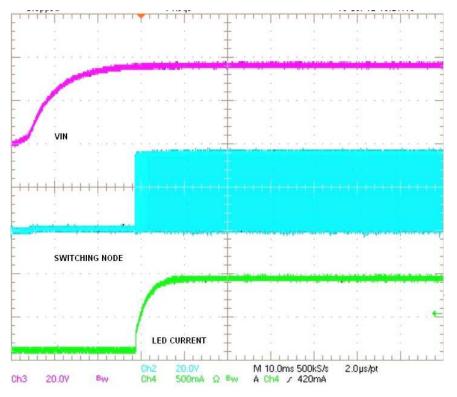
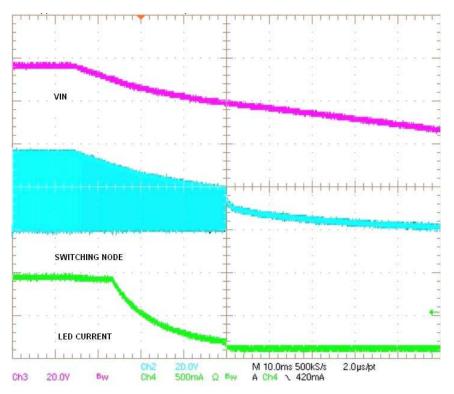



Figure 11. Buck Converter Start-Up Waveform

7 TPS92660EVM PCB Layout

Figure 13 and Figure 14 show the TPS92660EVM printed-circuit board

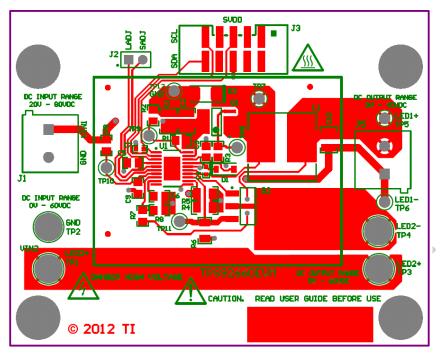


Figure 13. TPS92660EVM Top Layer and Top Overlay (Top View)

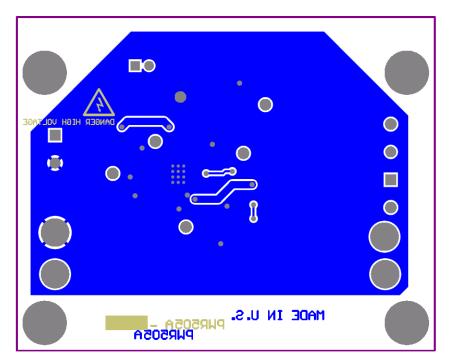


Figure 14. TPS92660EVM Bottom Layer and Bottom Overlay (Bottom View)

8 Bill of Materials (BOM)

Table 6 is the BOM according to the schematic shown in Figure 1.

QTY REFDES Description MFR Part Number 3 C1. C2. C10 CAP, CERM, 2.2uF, 100V, +/-10%, X7R, 1210 STD STD 3 C3, C5, C6 CAP, CERM, 1uF, 16V, +/-10%, X7R, 0805 STD STD 2 C4, C7 CAP, CERM, 0.22uF, 16V, +/-10%, X7R, 0603 STD STD 1 C9 CAP, CERM, 1000pF, 100V, +/-10%, X7R, 0805 STD STD 1 D1 Diode, Schottky, 100V, 150mA, SOD-123 Diodes Inc BAT46W-7-F 1 D2 Diode, Schottky, 150V, 2A, SMA **STMicroelectronics** STPS2150A 1 L1 Inductor, Shielded Drum Core, Ferrite, 56uH, 2.7A, 0.0802 Coilcraft MSS1278Tohm, SMD 563MLB 1 Q1 MOSFET, N-CH, 100V, 4.5A, SOIC-8 Fairchild FDS3692 Semiconductor MOSFET, N-CH, 100V, 1.7A, SOT223 ZXMN10A11GTA 1 Q2 **Diodes Inc** 1 R1 RES, 154k ohm, 1%, 0.125W, 0805 STD STD 1 R2 RES, 9.53k ohm, 1%, 0.125W, 0805 STD STD 1 R3 RES, 10.0 ohm, 1%, 0.125W, 0805 STD STD 2 RES, 0.50 ohm, 1%, 0.5W, 1206 STD R4,R5 STD 1 R6 RES, 10.0 ohm, 1%, 0.25W, 1206 STD STD 1 R7 RES, 15.4k ohm, 1%, 0.125W, 0805 STD STD 1 R8 RES, 1.00k ohm, 1%, 0.125W, 0805 STD STD RES, 51.1k ohm, 1%, 0.125W, 0805 1 R9 STD STD 1 U1 Two String LED Driver with I²C Current Trim **Texas Instruments** TPS92660PWP

Table 6. TPS92660EVM Bill of Materials

EVALUATION BOARD/KIT/MODULE (EVM) ADDITIONAL TERMS

Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs **not** subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this evaluation module. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur.

[Important Notice for Users of this Product in Japan]

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

- Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
- 3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】

本開発キットは技術基準適合証明を受けておりません。

本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp

EVALUATION BOARD/KIT/MODULE (EVM) WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

- 1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.
- 2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.
- 3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.
- 4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated