31ZX Smart Video Application Processor **DATA SHEET** ### **Important Notice** This document and its content are believed to be correct at time of writing. Integrated Silicon Solution Inc. ("ISSI") reserves the right to make changes to this document, its content or any ISSI products, at its discretion, any time without notice. The text and graphics are for the purpose of illustration and reference only. Please confirm that you have the most current documentation. No part of this document shall be deemed to be part of any contract or warranty unless specifically incorporated by reference into such contract or warranty. This document, its content and any products including without limitation any ISSI products or any product you create using the information contained herein ("Products"), are provided "AS IS" without warranties of any kind, express or implied, including but not limited to, any implied warranties of merchantability, satisfactory quality, fitness for a particular purpose or non-infringement. ISSI makes no warranties regarding any standard compliance or as to the accuracy, completeness or reliability of this document, its content, or Products, or that the operation of any Products will be uninterrupted or error-free. No advice or information, whether oral or written, obtained by you using this document may be relied upon, or shall create any warranty. Any use of this document and the information contained herein or obtained through the use of this document, or any Product, is done at your sole risk and responsibility. Unless otherwise agreed, ISSI shall not be liable for any damage or loss arising as a result of or in connection with the use of this document, its content or any Product, including without limitation, consequential, punitive, indirect or direct damages. This document, its content and any Products contain proprietary and confidential material of ISSI, its affiliates or licensors, and may also be covered under a separate non-disclosure agreement between ISSI and you. Do not copy, use or disclose this document, its content or any Products unless and to the extent you have been given specific written authorization from ISSI. Any unauthorized reproduction, use or disclosure of this document, its content, or any part thereof, or any Product will result in economic loss and is strictly prohibited. Any references in this document to third party products or material are provided for convenience only, and do not in any manner serve as an endorsement of that third party products or material, and ISSI has no liability therefor. The information contained herein is merely descriptive in nature, and does not constitute or imply a promise or intention, to make any offer for the sale or license of any Products, or otherwise to enter into any other business and/or any legal relationship. All company and brand products and service names are trademarks or registered trademarks of their respective holders. The use of any third party trademarks or company names does not imply an endorsement by those third parties, or any commercial relationship between ISSI and such third parties. Copyright © 2011 Integrated Silicon Solution Inc. All rights reserved. # History | Version | Date | Author | Description | | |---------|------|--------|-------------|--| | Rev 1.0 | | | Initial | ### **Table of Contents** ### Contents List of Figures......6 Introduction 6 1 Overview.......8 1.2 Features 8 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 System Control 22 DDR power/ground 23 2.5.8 Analog - SARADC 24 2.5.11 # LUMISSIL MICROSYSTEMS # T31 ZX | 3 | Ele | ectri | cal Specifications | 26 | |---|-----|-------|-------------------------------|----| | | 3.1 | Abs | solute Maximum Ratings | 26 | | | 3.2 | Rec | ommended operating conditions | 26 | | | 3.3 | Aud | dio codec | 27 | | | 3.3 | 3.1 | Microphone input | 27 | | | | | ALC | | | | 3.3 | 3.3 | Headphone output | 28 | | | 3.3 | | Microphone bias | | | | 3.4 | Po | ower On, Reset and BOOT | 28 | | | 3.4 | 4.1 | Power-On Timing | 28 | | | 3.4 | 4.2 | Reset procedure | 29 | | | 3.4 | 4.3 | BOOT | 29 | ### **List of Figures** | Figure 1-1 T31ZX Diagram | Q | |--|----| | | | | Figure 2-1 T31ZX package outline drawing | | | Figure 2-2 T31ZX pin to ball assignment | 17 | | Figure 3-1 Power-On Timing Diagram | 29 | | Figure 3-2 Boot sequence diagram of T31X | 30 | ### **List of Tables** | Table 1 | | |---------|------------------------------| | Table 2 | Error! Bookmark not defined. | | Table 3 | Error! Bookmark not defined. | Right Click on above list so it turns grey > Update Field > Update entire table to add new tables (see page 7 for further instructions on how to automate populating list) ### Introduction T31ZX is a smart video application processor targeting for video devices like mobile camera, security survey, video talking, video analysis and so on. This SoC introduces a kind of innovative architecture to fulfill both high performance computing and high quality image and video encoding requirements addressed by video devices. T31ZX provides high-speed CPU computing power, excellent image signal process, fluent 2048x2048 resolution video recording. The CPU (Central Processing Unit) core, equipped with 32kB instruction and 32kB data L1 cache, and 128kB L2 cache, operating at 1.5GHz, and full feature MMU function performs OS related tasks. At the heart of the CPU core is XBurst® processor engine. XBurst® is an industry leading microprocessor core which delivers superior high performance and best-in-class low power consumption. A hardware floating-point unit which compatible with IEEE754 is also included. **T31 ZX** The VPU (Video Processing Unit) core is a video encoder engine designed to process video streams using the HEVC(ISO/IEC 23008-2 High Efficiency Video Coding) and AVC(ISO/IEC 14496-10 Advanced Video Coding) standards. It also supports still picture encoding using the JPEG standard(ITU T.81). Together with the on chip video accelerating engine and post image processing unit, T31ZX delivers high video performance. The maximum resolution of 2592x2048 in the format of AVC are supported in encoding. up to 40Mbit/s, 2592x1920@25fps. The ISP (Image signal processor) core supports excellent image process with the image from raw sensors. It supports DVP,BT and MIPI interface. With the functions, such as 3A, 2D and 3D denoise, WDR/HDR, lens shading, it can supply maximum resolution 2592x2048 resolution image for view or encoding to store or transfer. For more quickly and easily to use T31ZX, 1G bit DDR2 is integrated on chip. On-chip modules such as audio CODEC, multi-channel SAR-ADC controller and camera interface offer designers a economical suite of peripherals for video application. WLAN, Bluetooth and expansion options are supported through high-speed SPI and MMC/SD/SDIO host controllers. Other peripherals such as USB OTG, MAC, UART and SPI as well as general system resources provide enough computing and connectivity capability for many applications. ### 1 Overview #### 1.1 Block Diagram Figure 0-1 T31ZX Diagram #### 1.2 Features #### 1.2.1 CPU - XBurst®-1 core - XBurst[®] FPU instruction set supporting both single and double floating point format which are IEEE754 compatible - XBurst[®] 9-stage pipeline micro-architecture, the operating frequency is 1.5GHz - MMU - 32-entry joint-TLB - 8 entry instruction TLB - 8 entry data TLB - L1 Cache - 32kB instruction cache - 32kB data cache - Hardware debug support - 16kB tight coupled memory - L2 Cache - 128kB unify cache #### 1.2.2 Video Processor Unit - Support DVT HEVC/AVC/JPEG Encoder - Support HEVC up to 20Mbit/s and AVC up to 40Mbit/s, maximum frame rate is 1920x1080@60fps or 2592x1900@25fps - maximum size up to 2592x4096 resolution ### 1.2.3 Image Signal Processor - Dynamic/Static Defect Pixel Correction - Green Equalization - Black Level Correction - Lens Shading Correction - 3A(Auto Exposure/Auto White Balance/Auto Focus) - Support Statistical Information Output(3A) - Adaptive Dynamic Range Compression - Demosaic - Sharpen - Bayer Denoise - 2D/3D Denosie - Color Noise Suppression - Lens Distortion Correction - 2D Color Correction - 3D Color Correction - Gamma Correction - Defog, WDR - 3 Independent Image Scaler and Output - Crop, Mirror and Flip - Support Maximum Resolution:2592x2048 #### 1.2.4 Smart LCD Controller - Basic Features - Display size up to 800x600@60Hz,24BPP - Smart LCD interface 6800(type A) and 8080(type B) - Colors Supports - Support up to 16,777,216 (16M) colors - Panel Supports - transmit 565 by two cycle via SLCD 8bit data interface - transmit 888 by three cycle via SLCD 8bit data interface - Supports different size of display panel - Supports internal DMA operation and direct write register operation #### 1.2.5 Video input - Support 8/10/12 bit RGB Bayer input - Support DVP, BT1120(serial mode)/BT656/BT601 and MIPI CSI(2 lane, up to 1.5Gbps) - Support maximum: 2592x1900@25fps - Support single-sensor input ### 1.2.6 Audio System - Integrated Audio codec - 24 bits DAC with 93dB SNR - 24 bits ADC with 92dB SNR - Support signal-ended and differential microphone input and line input - Automatic Level Control (ALC) for smooth audio recording - Pure logic process: no need for mixed signal layers and less mask cost - Programmable input and output analog gains - Digital interpolation and decimation filter integrated - Sampling rate 8K/12K/16K/24K/32/44.1K/48K/96K - Low power DMIC Controller - 16bit data interface and 20bit precision internal controller - SNR:90dB,THD:-90dB@FS -20dB - Linear high pass filter include. Attenuation:-2.9dB@100Hz,22dB@27Hz,-36dB@10Hz - Low power voice trigger when waiting to start talking - 1/2/3/4 channel digital MIC support - Support voice data pre-fetch when trigger enable and the data interface disable, but do not increase the power dissipation - Sample frequency supported:8k,16k -
I2S Interface - Support standard interface protocol ### 1.2.7 Memory Interface - Integrated 1G bit DDR2 on chip - Static memory interface - Support 6 external chip selection CS6~1#. Each bank can be configured separately - The size and base address of static memory banks are programmable - Direct interface to 8-bit bus width external memory interface devices or external static memory to each bank. Read/Write strobe setup time and hold time periods can be programmed and inserted in an access cycle to enable connection to low-speed memory - Wait insertion by WAIT pin - Automatic wait cycle insertion to prevent data bus collisions in case of consecutive memory accesses to different banks, or a read access followed by a write access to the same bank #### 1.2.8 System Functions - Clock generation and power management - On-chip 12/24/48MHZ oscillator circuit - One three-chip phase-locked loops (PLL) with programmable multiplier - CCLK, HHCLK, H2CLK, PCLK, H0CLK, DDR_CLK, VPU_CLK frequency can be changed separately for software by setting registers - SSI clock supports 50M clock - MSC clock supports 100M clock - Functional-unit clock gating - Shut down power supply for P0, ISP, VPU, IPU - Timer and counter unit with PWM output and/or input edge counter - Provide eight separate channels, six of them have input signal transition edge counter - 16-bit A counter and 16-bit B counter with auto-reload function every channel - Support interrupt generation when the A counter underflow - Three clock sources: RTCLK (real time clock), EXCLK (external clock input), PCLK (APB Bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected - Every channel has PWM output - OS timer controller - 64-bit counter and 32-bit compare register - Support interrupt generation when the counter matches the compare register - Two clock sources: RTCLK (real time clock), HCLK (system bus clock) selected with 1, 4, 16, 64, 256 and 1024 clock dividing selected - Interrupt controller - Total 64 interrupt sources - Each interrupt source can be independently enabled - Priority mechanism to indicate highest priority interrupt - All the registers are accessed by CPU - Unmasked interrupts can wake up the chip in sleep mode - Another set of source, mask and pending registers to serve for PDMA - Watchdog timer - Generates WDT reset - A 16-bit Data register and a 16-bit counter - Counter clock uses the input clock selected by software - PCLK, EXTAL and RTCCLK can be used as the clock for counter - The division ratio of the clock can be set to 1, 4, 16, 64, 256 and 1024 by software - Direct memory access controllers - Support up to 32 independent DMA channels - Descriptor or No-Descriptor Transfer mode compatible with previous JZ SoC - Transfer data units: 1-byte, 2-byte, 4-byte, 16-byte, 32-byte, 64-byte, 128-byte - Transfer number of data unit: $1 \sim 2^{24}$ 1 - Independent source and destination port width: 8-bit, 16-bit, 32-bit - Fixed three priorities of channel groups: 0~3, highest; 4~11: mid; 12~31: lowest - An extra INTC IRQ can be bound to one programmable DMA channel - SAR A/D Controller - 1 Channels - Resolution: 10-bit - Integral nonlinearity: ±1 LSB - Differential nonlinearity: ±0.5 LSB - Resolution/speed: up to 2MSPS - Max Frequency: 24MHz - Low power dissipation: 1.5mW(worst) - Support multi-touch detect - Support write control command by software - Single-end and Differential Conversion Mode - Support external touch screen controller - Pin Description - OTP Slave Interface - Total 1024 bits. Lower 192bits are read only, other higher bits are read-able and write-able #### 1.2.9 Peripherals - General-Purpose I/O ports - Each port can be configured as an input, an output or an alternate function port - Each port can be configured as an interrupt source of low/high level or rising/falling edge triggering. Every interrupt source can be masked independently - Each port has an internal pull-up or pull-down resistor connected. The pull-up/down resistor can be disabled - GPIO output 3 interrupts, each interrupt corresponds to the group, to INTC - SMB Controller - Two-wire SMB serial interface consists of a serial data line (SDA) and a serial clock (SCL) - Two speeds - Standard mode (100 Kb/s) - Fast mode (400 Kb/s) - Device clock is identical with pclk - Programmable SCL generator - Master or slave SMB operation - 7-bit addressing/10-bit addressing - 16-level transmit and receive FIFOs - Interrupt operation - The number of devices that you can connect to the same SMB-bus is limited only by the maximum bus capacitance of 400pF - APB interface - 2 independent SMB channels (SMB0, SMB1) - One High Speed Synchronous serial interfaces (SFC) - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI - transmit-only or receive-only operation - MSB first for command and data transfer, and LSB first for address transfer - 64 entries x 32 bits wide data FIFO - one device select - Configurable sampling point for reception - Configurable timing parameters: t_{SLCH}, t_{CHSH} and t_{SHSL} - Configurable flash address wide are supported - transfer formats: Standard SPI only - two data transfer mode: slave mode and DMA mode - Configurable 6 phases for software flow - Normal Speed Synchronous serial interfaces (SSI1) - 3 protocols support: National's Microwire, TI's SSP, and Motorola's SPI - Full-duplex or transmit-only or receive-only operation - Programmable transfer order: MSB first or LSB first - 128 entries deep x 32 bits wide transmit and receive data FIFOs - Configurable normal transfer mode or Interval transfer mode - Programmable clock phase and polarity for Motorola's SSI format - Back-to-back character transmission/reception mode - Loop back mode for testing - Three UARTs (UART0, UART1, UART2) - Full-duplex operation - 5-, 6-, 7- or 8-bit characters with optional no parity or even or odd parity and with 1, 1½, or 2 stop bits - 64x8 bit transmit FIFO and 64x11bit receive FIFO - Independently controlled transmit, receive (data ready or timeout), line status interrupts - Internal diagnostic capability Loopback control and break, parity, overrun and framing-error is provided - Separate DMA requests for transmit and receive data services in FIFO mode - Supports modem flow control by software or hardware - Slow infrared asynchronous interface that conforms to IrDA specification - Two MMC/SD/SDIO controllers (MSC0, MSC1) - Fully compatible with the MMC System Specification version 4.2 - Support SD Specification 3.0 - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels - Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1) - Maximum data rate is 50MBps - Support MMC data width 1bit ,4bit and 8bit - Built-in programmable frequency divider for MMC/SD bus - Built-in Special Descriptor DMA - Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status - 128 x 32 built-in data FIFO - Multi-SD function support including multiple I/O and combined I/O and memory - IRQ supported enable card to interrupt MMC/SD controller - Single or multi block access to the card including erase operation - Stream access to the MMC card - Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access - Supports CE-ATA digital protocol commands - Support Command Completion Signal and interrupt to CPU - Command Completion Signal disable feature - The maximum block length is 4096bytes #### • USB 2.0 OTG interface - Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification - Operates either as the function controller of a high-/full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions - Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) - UTMI+ Level 3 Transceiver Interface - Soft connect/disconnect - 16 Endpoints - Dedicate FIFO - Supports control, interrupt, ISO and bulk transfer - Ethernet Media Access controller and interface - 10, 100Mbps data transfer rates with the following PHY interfaces: - RMII interface to communicate with an external Fast Ethernet PHY - Full-duplex operation: - IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input de-assertion - forwarding of received Pause frames to the user application - Half-duplex operation: - CSMA/CD Protocol support - Frame bursting and frame extension in 100 Mbps half-duplex operation - Preamble and start of frame data (SFD) insertion in Transmit path - Preamble and SFD deletion in the Receive path - Automatic CRC and pad generation controllable on a per-frame basis - Automatic Pad and CRC Stripping options for receive frames - Flexible address filtering modes, such as: - Up to 31 additional 48-bit perfect (DA) address filters with masks for each byte - 64-bit Hash filter for multicast and unicast (DA) addresses - Option to pass all multicast addressed frames - Promiscuous mode to pass all frames without any filtering for network monitoring - Pass all incoming packets (as per filter) with a status report - Support Standard or Jumbo Ethernet frames with up to 2 KB of size - IEEE 802.1Q VLAN tag detection for reception frames - MDIO master interface for PHY device configuration and management - CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement, and deletion in transmitted frames with per-frame control - Programmable watchdog timeout limit in the receive path - Detect remote wake-up frames and AMD magic packets - Digital True Random Number Generator (DTRNG) - Pure digital logic circuits - True random number - Interrupt mode and no interrupt mode - Two MMC/SD/SDIO controllers (MSC0, MSC1) - Fully compatible with the MMC System Specification version 4.2 - Support SD Specification 3.0 - Support SD I/O Specification 1.0 with 1 command channel and 4 data channels - Consumer Electronics
Advanced Transport Architecture (CE-ATA version 1.1) - Maximum data rate is 50MBps - Support MMC data width 1bit,4bit and 8bit - Built-in programmable frequency divider for MMC/SD bus - Built-in Special Descriptor DMA - Maskable hardware interrupt for SDIO interrupt, internal status and FIFO status - 128 x 32 built-in data FIFO - Multi-SD function support including multiple I/O and combined I/O and memory - IRQ supported enable card to interrupt MMC/SD controller - Single or multi block access to the card including erase operation - Stream access to the MMC card - Supports SDIO read wait, interrupt detection during 1-bit or 4-bit access - Supports CE-ATA digital protocol commands - Support Command Completion Signal and interrupt to CPU - Command Completion Signal disable feature - The maximum block length is 4096bytes - USB 2.0 OTG interface - Complies with the USB 2.0 standard for high-speed (480 Mbps) functions and with the On-The-Go supplement to the USB 2.0 specification - Operates either as the function controller of a high-/full-speed USB peripheral or as the host/peripheral in point-to-point or multi-point communications with other USB functions - Supports Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) - UTMI+ Level 3 Transceiver Interface - Soft connect/disconnect - 16 Endpoints - Dedicate FIFO - Supports control, interrupt, ISO and bulk transfer - Ethernet Media Access controller and interface - 10, 100Mbps data transfer rates with the following PHY interfaces: - RMII interface to communicate with an external Fast Ethernet PHY - Full-duplex operation: - IEEE 802.3x flow control automatic transmission of zero-quanta Pause frame on flow control input de-assertion - forwarding of received Pause frames to the user application - Half-duplex operation: - CSMA/CD Protocol support - Frame bursting and frame extension in 100 Mbps half-duplex operation - Preamble and start of frame data (SFD) insertion in Transmit path - Preamble and SFD deletion in the Receive path - Automatic CRC and pad generation controllable on a per-frame basis - Automatic Pad and CRC Stripping options for receive frames - Flexible address filtering modes, such as: - Up to 31 additional 48-bit perfect (DA) address filters with masks for each byte - 64-bit Hash filter for multicast and unicast (DA) addresses - Option to pass all multicast addressed frames - Promiscuous mode to pass all frames without any filtering for network monitoring - Pass all incoming packets (as per filter) with a status report - Support Standard or Jumbo Ethernet frames with up to 2 KB of size - IEEE 802.1Q VLAN tag detection for reception frames - MDIO master interface for PHY device configuration and management - CRC replacement, Source Address field insertion or replacement, and VLAN insertion, replacement, and deletion in transmitted frames with per-frame control - Programmable watchdog timeout limit in the receive path - Detect remote wake-up frames and AMD magic packets - Digital True Random Number Generator (DTRNG) - Pure digital logic circuits - True random number - Interrupt mode and no interrupt mode #### 1.2.10 **Bootrom** 16kB Boot ROM memory #### 1.3 Characteristic | Item | Characteristic | |----------------------|--| | Process Technology | 22nm CMOS low power | | Power supply voltage | General purpose I/O: 1.5~3.6V | | | DDR I/O: $1.8V(DDR2) \pm 0.1V$ | | | EFUSE programming: 1.8V ± 10% | | | Analog power supply 1: $1.8V \pm 10\%$ | | | Analog power supply 2: $3.3V \pm 10\%$ | | | Core: $0.8V \pm 0.1V$ | | Package | QFN 88 | | Operating frequency | 1.5GHz | # 2 Packaging and Pinout Information #### 2.1 Overview T31ZX processor is offered in QFN88, show in **Error! Reference source not found.**. The T31ZX pin to ball assignment is show in **Error! Reference source not found.**. The detailed pin description is listed in Table 0-1 ~ **Error! Reference source not found.**. #### 2.2 Solder Process T31ZX package is lead-free. It's reflow profile follows the IPC/JEDEC lead-free reflow profile as contained in J-STD-020C. ### 2.3 Moisture Sensitivity Level T31ZX package moisture sensitivity is level 3. ### 2.4 T31ZX Package | | | SYMBOL | MIN | NOM | MAX | |--------------------|------------|--------|----------|-----------|------| | TOTAL THICKNESS | | Α | 8 | 0.85 | 0.9 | | STAND OFF | | A1 | 0 | 0.02 | 0.05 | | MOLD THICKNESS | | A2 | | 0.65 | | | L/F THICKNESS | | A3 | | 0.203 REF | | | LEAD WIDTH | 8 | b | 0.13 | 0.18 | 0.23 | | BODY SIZE | X | D | 9 BSC | | | | BODT SIZE | Y | E | 9 BSC | | | | LEAD PITCH | | e | 0.35 BSC | | | | EP SIZE | X | D2 | 5.6 | 5.7 | 5.8 | | EP SIZE | Y | E2 | 5.6 | 5.7 | 5.8 | | LEAD LENGTH | 25 | L | 0.3 | 0.4 | 0.5 | | LEAD TIP TO EXPOSE | D PAD EDGE | К | 1.25 REF | | | | PACKAGE EDGE TOLE | RANCE | aaa | 0.1 | | | | MOLD FLATNESS | | ccc | 0.1 | | | | COPLANARITY | | eee | 0.08 | | | | LEAD OFFSET | | bbb | 0.07 | | | | EXPOSED PAD OFFSE | fff | 0.1 | | | | NOTES 1.REFER TO JEDEC MO-220: 2.COPLANARITY APPLES TO LEADS, CORNER LEADS AND DIE ATTACH PA 3.BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES; 4.FINSH: CJP 9-508-200 Figure 0-1 T31ZX package outline drawing Figure 0-2 T31ZX pin to ball assignment ### 2.5 Pin Description ### 2.5.1 Static Memory/DVP/I2Cx/UARTx/PWM/MSC1 Table 0-1 Static Memory/DVP/I2Cx/UARTx/PWM/MSC1 Pins(13) | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO
Power | |---------------------|-------------------------|------------------|--|-------------| | 11 | SA02
PA18 | 2mA | SA2: Static memory address bus bit 2
PA18: GPIO group A bit 18 | VDDIO0 | | 12 | SD7
SMB0_SCK
PA13 | | SD7: Static memory data bus bit 7
SMB0_SCK: I2C 0 serial clock
PA13: GPIO group A bit 13 | VDDIO0 | | 13 | SD6
SMB0_SDA
PA12 | 2mA
PU-rst | SD6: Static memory data bus bit 6
SMB0_SDA: I2C 0 serial data
PA12: GPIO group A bit 12 | VDDIO0 | | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO
Power | |---------------------|--|--------------------|--|-------------| | 14 | RD DVP_VSYNC SMB1_SCK MSC1_CMD PA17 | 2mA
PU-rst | RD: Static memory read signal DVP_VSYNC: DVP vertical sync SMB1_SCK: I2C 1 serial clock MSC1_CMD: MSC (MMC/SD) 1 command PA17: GPIO group A bit 17 | VDDIO0 | | 15 | CS2
DVP_HSYNC
SMB1_SDA
MSC1_CLK
PA16 | 2mA
PU-rst | CS2: Static memory chip 2 select DVP_HSYNC: DVP horizontal sync SMB1_SDA: I2C 1 serial data MSC1_CLK: MSC (MMC/SD) 1 clock output PA16: GPIO group A bit 16 | VDDIO0 | | 16 | SA1
DVP_MCLK
PA15 | 2mA
SR-rst
* | SA1: Static memory address bus bit 1 DVP_MCLK: DVP main clock output PA15: GPIO group A bit 15 | VDDI00 | | 17 | SA0
DVP_PCLK
PWM0
PA14 | 2mA | SAO: Static memory address bus bit 0 DVP_PCLK: camera sensor pixel clock input PWM0: PWM channel 0 output PA14: GPIO group A bit 14 | VDDIO0 | | 18 | SD5
DVP_D11
UART2_RXD
MSC1_D3
PA11 | 2mA
PU-rst
* | SD5: Static memory data bus bit 5 DVP_D11:DVP data in bit 11 UART2_RXD: UART2 data receive MSC1_D3: MSC (MMC/SD) 1 data bit 3 PA11: GPIO group A bit 11 | VDDIO0 | | 19 | SD4
DVP_D10
UART2_TXD
MSC1_D2
PA10 | 2mA | SD4: Static memory data bus bit 4 DVP_D10:DVP data in bit 10 UART2_TXD: UART2 data transmit MSC1_D2: MSC (MMC/SD) 1 data bit 2 PA10: GPIO group A bit 10 | VDDIO0 | | 20 | SD3
DVP_D9
UART2_RTS
MSC1_D1
PA09 | 2mA | SD3: Static memory data bus bit 3 DVP_D9:DVP data in bit 9 UART2_RTS: UART2 request-to-send handshaking MSC1_D1: MSC (MMC/SD) 1 data bit 1 PA09: GPIO group A bit 09 | VDDIO0 | | 21 | SD2
DVP_D8
UART2_CTS
MSC1_D0
PA08 | 2mA | SD2: Static memory data bus bit 2 DVP_D8:DVP data in bit 8 UART2_CTS: UART2 clear-to-send handshaking MSC1_D0: MSC (MMC/SD) 1 data bit 0 PA08: GPIO group A bit 08 | VDDIO0 | | 22 | SD1
DVP_D7
UART1_RXD
PA07 | 2mA | SD1: Static memory data bus bit 1 DVP_D7:DVP data in bit 7 UART1_RXD: UART 1 receive data PA07: GPIO group A bit 07 | VDDIO0 | | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO
Power | |---------------------|-----------------------|------------------|--|-------------| | 23 | SD0
DVP_D6 | | SD0: Static memory data bus bit 0 DVP_D6:DVP data in bit 6 | VDDIO0 | | | UART1_TXD
PA06 | | UART1_TXD: UART1 data transmit PA06: GPIO group A bit 06 | V 2 2 100 | #### 2.5.2 SFC Table 0-2 SFC Pins(4) | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO
Power | |---------------------|-----------------------|--------------------------|---|-------------| | 45 | SFC_CE0
PA28 | 8mA
PU-rst | SFC_CEO: high speed ssi chip 0 select
PA28: GPIO group A bit 28 | VDDIO1 | | 46 | SFC_DR
PA24 | 8mA
PU-rst | SFC_DR: high speed ssi receive data PA24: GPIO group A bit 24 | VDDIO1 | | 47 | SFC_DT
PA23 | 8mA
PU-rst
SMT-rst | SFC_DT: high speed ssi transmit data
PA23: GPIO group A bit 23 | VDDIO1 | | 48 | SFC_CLK
PA27 | 8mA
PU-rst | SFC_CLK: high speed ssi clock
PA27: GPIO group A bit 27 | VDDIO1 | | 60* | SFC_CE1
PA26 | 8mA
PU-rst | SFC_CE1: high speed ssi chip 1 select
PA26: GPIO group A bit 26 | VDDIO1 | | 61* | SFC_GPC
PA25 | 8mA
PU-rst | SFC_GPC: high speed ssi general-purpose control PA25: GPIO group A bit 25 | VDDIO1 | #### NOTES Pin 60 and 61 share IO with PB15 and PB16, If need configure as this function, please fixed the another IO to GPIO input model. ### 2.5.3
MSCO/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV/JTAG/SLCD/DMIC/I2S Table 0-3 MSC0/GMAC/PWMx/UARTx/I2C1/SSI1/SSI_SLV//JTAG/SLCD/DMIC/I2S Pins (30) | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO Power | |---------------------|-------------------------------|------------------|---|----------| | 1 | PWM0
SSI1_DT
PB17 | 2mA
PD-rst | PWM0: PWM channel 0 output
SSI1_DT: normal speed ssi 1 transmit data
PB17: GPIO group B bit 17. | VDDIO1 | | 2 | PWM1
SSI1_DR
PB18 | 2mA
PD-rst | PWM1: PWM channel 1 output SSI1_DR: normal speed ssi 1 receive data PB18: GPIO group B bit 18. | VDDIO1 | | 49 | MSCO_D1
SSI_SLV_DR
PB01 | 2mA | MSCO_D1: MSC (MMC/SD) 0 data bit 1 SSI_SLV_DR: ssi slave receive data PB01: GPIO group B bit 01 | VDDIO1 | | 50 | MSC0_D0 | 2mA | MSC0_D0: MSC (MMC/SD) 0 data bit 0 | VDDIO1 | | SSI_SLV_DT PB00 SSI_SLV_DT: ssi slave transmit data PB00: GPIO group B bit 00 MSCO_CLK SSI_SLV_CLK SSI_SLV_CLK SSI_SLV_CLK: ssi slave clock PB04 MSCO_CMD SSI_SLV_CLK: ssi slave clock PB04 MSCO_CMD SSI_SLV_CLK: ssi slave clock PB05 MSCO_CMD SSI_SLV_CE0 PB05 MSCO_DA PB05 MSCO_DB PB03 MSCO_ | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO Power | |--|---------------------|---------------------------------|------------------|---|----------| | SSI_SIV_CLK PB04 | | | | | | | 52 SSI_SLV_CEO PU-rst SSI_SLV_CEO: ssi slave chip 0 select VDDI01 53 MSCO_D3 2mA MSCO_D3: MSC (MMC/SD) 0 data bit 3 VDDI01 54 MSCO_D2 2mA MSCO_D2: MSC (MMC/SD) 0 data bit 2 VDDI01 54 MSCO_D2 2mA MSCO_D2: MSC (MMC/SD) 0 data bit 2 VDDI01 57 MSC1_D1 PB02 2mA MSCO_D2: MSC (MMC/SD) 0 data bit 2 VDDI01 57 SLCD_D5 MSC1_D1: MSC (MMC/SD) 1 data bit 2 VDDI01 VDDI01 57 SLCD_D5 MSC1_D1: MSC (MMC/SD) 1 data bit 1 VDDI01 58 JSCD_D5 MSC1_D1: MSC (MMC/SD) 1 data bit 1 VDDI01 58 JSS_DTO SLCD_D4: Smart lcd data output bit 5 VDDI01 58 JSS_SDTO SLCD_D4: Smart lcd data output signal VDDI01 59 JSS_DTO SLCD_D4: Smart lcd data output bit 4 PB10 PB10 VDDI01 59 JSS_SDTI SLCD_D3: Smart lcd data input signal VDDI01 SLCD_D3: Smart lcd data output bit 3 PB09: GP10 group B bit 09. VDDI01 60* <td>51</td> <td>SSI_SLV_CLK</td> <td>2mA</td> <td>SSI_SLV_CLK: ssi slave clock</td> <td>VDDIO1</td> | 51 | SSI_SLV_CLK | 2mA | SSI_SLV_CLK: ssi slave clock | VDDIO1 | | PB03 | 52 | SSI_SLV_CE0 | | SSI_SLV_CEO: ssi slave chip 0 select | VDDIO1 | | PB02 PB02: GPIO group B bit 02 GMAC_MDIO MSC1_D1 PU-rst MDC SLCD_D5 MSC1_D1: MSC (MMC/SD) 1 data bit 1 VDDIO1 SLCD_D5: smart lcd data output bit 5 PB11: GPIO group B bit 11. GMAC_MDCK MSC1_D0 PD-rst MSC1_D0: MSC1_D1: MSC (MMC/SD) 1 data bit 1 SLCD_D5: smart lcd data output bit 5 PB11: GPIO group B bit 11. GMAC_MDCK MSC1_D0 PD-rst MSC1_D0: MSC (MMC/SD) 1 data bit 0 I2S_SDTO I2S_SDTO: I2S serial data output signal SLCD_D4: smart lcd data output bit 4 PB10: GPIO group B bit 10. GMAC_RXDV MSC1_CMD MSC1_CMD: MSC (MMC/SD) 1 command I2S_SDT: I2S | 53 | _ | 2mA | <u> </u> | VDDIO1 | | MSC1_D1 PU-rst MDC SLCD_D5 PB11 SLCD_D5: smart lcd data output bit 5 PB11: GPIO group B bit 11. GMAC_MDCK MSC1_D0 PD-rst MSC (MMC/SD) 1 data bit 1 SLCD_D5: smart lcd data output bit 5 PB11: GPIO group B bit 11. GMAC_MDCK: gmac manage data clock MSC1_D0 MSC (MMC/SD) 1 data bit 0 I2S_SDTO: I2S_SDTO: I2S_serial data output signal SLCD_D4: smart lcd data output bit 4 PB10: GPIO group B bit 10. GMAC_RXDV MSC1_CMD SLCD_D3: smart lcd data output bit 3 PB09 PB09: GPIO group B bit 09. GMAC_RXDD: gmac receive data bit 0 I2S_DAC_LRCK: I2S_DAC left/right clock SLCD_WR: smart lcd data output bit 3 PB09: GPIO group B bit 15. GMAC_RXD1 SLCD_TE: smart lcd write data control PB15: GPIO group B bit 15. GMAC_RXD1 SLCD_TE: smart lcd crack control PB16: GPIO group B bit 16. GMAC_TXCLK SLCD_TE: smart lcd data output bit 0 PB16: GPIO group B bit 16. GMAC_RXD1 SLCD_D0: smart lcd data output bit 0 PB16: GPIO group B bit 16. GMAC_TXCLK SLCD_D0: smart lcd data output bit 0 PB16: GPIO group B bit 06 GMAC_PHY_CLK SLCD_D1: smart lcd data output bit 1 PB07: GPIO group B bit 07 | 54 | _ | 2mA | | VDDIO1 | | MSC1_D0 PD-rst MSC1_D0: MSC (MMC/SD) 1 data bit 0 I2S_SDTO SLCD_D4 PB10 SLCD_D4: smart lcd data output signal SLCD_D4: smart lcd data output bit 4 PB10: GPIO group B bit 10. GMAC_RXDV MSC1_CMD MSC1_CMD: MSC (MMC/SD) 1 command I2S_SDTI I2S_SDTI: I2S_serial data input signal SLCD_D3: smart lcd data output bit 3 PB09 PB09 PB09: GPIO group B bit 09. GMAC_RXD0 2mA GMAC_RXD0: gmac receive data bit 0 I2S_DAC_LRCK: I2S_DAC_left/right clock SLCD_D3: smart lcd data output bit 3 PB09: GPIO group B bit 09. GMAC_RXD0 2mA GMAC_RXD0: gmac receive data bit 0 I2S_DAC_LRCK: I2S_DAC_left/right clock SLCD_WR: smart lcd write data control PB15: GPIO group B bit 15. GMAC_RXD1 PB15: GPIO group B bit 15. GMAC_RXD1 SLCD_TE PB16 PU-rst SLCD_TE: smart lcd crack control PB16: GPIO group B bit 16. GMAC_TXCLK SLCD_D0 PB06: GPIO group B bit 06 GMAC_PHY_CLK SLCD_D1: smart lcd data output bit 0 PB06: GPIO group B bit 06 GMAC_PHY_CLK SLCD_D1: smart lcd data output bit 1 PB07: GPIO group B bit 07 | 57 | MSC1_D1
SLCD_D5 | | MDC MSC1_D1: MSC (MMC/SD) 1 data bit 1 SLCD_D5: smart lcd data output bit 5 | VDDIO1 | | MSC1_CMD MSC1_CMD: MSC (MMC/SD) 1 command 12S_SDTI SLCD_D3 PB09 GMAC_RXD0 12S_DAC_LRCK SLCD_WR PB15 GMAC_RXD1 SLCD_TE PB16 GMAC_TXCLK SLCD_TE PB16 GMAC_TXCLK SLCD_D0 SMAC_TXCLK SLCD_D0 SMAC_TXCLK SLCD_D0 SMAC_TXCLK SLCD_D0 SMAC_TXCLK SLCD_D0 SMAC_TXCLK SLCD_D0 SMAC_TXCLK SLCD_D1 SMAC_PHY_CLK GMAC_PHY_CLK GMAC_PHY_CLK SLCD_D1: smart lcd data output bit 1 PB07 MSC1_CMD: MSC (MMC/SD) 1 command VDDIO1 | 58 | MSC1_D0
I2S_SDTO
SLCD_D4 | | MSC1_D0: MSC (MMC/SD) 1 data bit 0 I2S_SDTO: I2S serial data output signal SLCD_D4: smart lcd data output bit 4 | VDDIO1 | | 60* I2S_DAC_LRCK SLCD_WR SLCD_WR PB15 GMAC_RXD1 SLCD_TE PB16 GMAC_TXCLK SLCD_D0 PB06 GMAC_PHY_CLK SLCD_D1 PB07 GMAC_PHY_CLK SLCD_D1: smart lcd data output bit 1 PB07 I2S_DAC_LRCK: I2S DAC left/right clock SLCD_WR: smart lcd write data control PB15: GPIO group B bit 15. VDDIO1 | 59 | MSC1_CMD
I2S_SDTI
SLCD_D3 | 2mA | MSC1_CMD: MSC (MMC/SD) 1 command I2S_SDTI:I2S serial data input signal SLCD_D3: smart lcd data output bit 3 | VDDIO1 | | 61* SLCD_TE PU-rst SLCD_TE: smart lcd crack control PB16: GPIO group B bit 16. GMAC_TXCLK 2mA GMAC_TXCLK: gmac transmitting clock SLCD_D0: smart lcd data output bit 0 PB06: GPIO group B bit 06 GMAC_PHY_CLK 2mA GMAC_PHY_CLK: gmac phy clock SLCD_D1: smart lcd data output bit 1 PB07: GPIO group B bit 07 | 60* | I2S_DAC_LRCK
SLCD_WR | 2mA | I2S_DAC_LRCK: I2S DAC left/right clock SLCD_WR: smart lcd write data control | VDDIO1 | | 62 SLCD_D0 SLCD_D0: smart lcd data output bit 0 PB06 PB06: GPIO group B bit 06 GMAC_PHY_CLK 2mA GMAC_PHY_CLK: gmac phy clock SLCD_D1 SLCD_D1: smart lcd data output bit 1 PB07 PB07: GPIO group B bit 07 | 61* | SLCD_TE | | SLCD_TE: smart lcd crack control | VDDIO1 | | 63 SLCD_D1 SLCD_D1: smart lcd data output bit 1 VDDIO1 PB07 PB07: GPIO group B bit 07 | 62 | SLCD_D0 | 2mA | SLCD_D0: smart lcd data output bit 0 | VDDIO1 | | 64 GMAC_TXD0 2mA GMAC_TXD0: gmac transmit data bit 0 VDDIO1 | 63 | SLCD_D1 | 2mA | SLCD_D1: smart lcd data output bit 1 | VDDIO1 | | | 64 | GMAC_TXD0 | 2mA | GMAC_TXD0: gmac transmit data bit 0 | VDDIO1 | | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO Power | |---------------------|---|------------------|---|----------| | | MSC1_D2
I2S_ADC_LRCK
SLCD_D6
PB13 | | MSC1_D2: MSC (MMC/SD) 1 data bit 2
I2S_ADC_LRCK: I2S ADC left/right clock SLCD_D6: smart lcd data output bit 6 PB13: GPIO group B bit 13. | | | 65 | GMAC_TXD1
MSC1_D3
I2S_DAC_MCLK
SLCD_D7
PB14 | 2mA
PU-rst | GMAC_TXD1: gmac transmit data bit 1 MSC1_D3: MSC (MMC/SD) 1 data bit 3 I2S_DAC_MCLK: I2S DAC system clock SLCD_D7: smart lcd data output bit 7 PB14: GPIO group B bit 14. | VDDIO1 | | 66 | GMAC_TXEN MSC1_CLK I2S_ADC_MCLK SLCD_D2 PB08 | 2mA | GMAC_TXEN: gmac transmitting enable MSC1_CLK: MSC (MMC/SD) 1 clock output I2S_ADC_MCLK: I2S system clock SLCD_D2: smart lcd data output bit 2 PB08: GPIO group B bit 08 | VDDIO1 | | 67 | (BOOT_SEL0)
PC00 | 2mA
PU-rst | It is taken as BOOT select bit 0 by Boot ROM code PC00: GPIO group C bit 00 | VDDIO1 | | 68 | UARTO_RTS I2S_DAC_BCLK SLCD_DC PB21 | 2mA | UARTO_RTS: UART 0 request-to-send handshaking I2S_DAC_BCLK: I2S DAC bit clock SLCD_DC: smart lcd cmd/data identify PB21: GPIO group B bit 21 | VDDIO1 | | 69 | UARTO_CTS I2S_ADC_BCLK SLCD_CS PB20 | 2mA | UARTO_CTS: UART 0 clear-to-send handshaking I2S_ADC_BCLK: I2S ADC bit clock SLCD_CS: smart lcd chip select PB20: GPIO group B bit 20 | VDDIO1 | | 70 | UARTO_TXD
TDO
SLCD_RDY
PB22 | 2mA | UARTO_TXD: UART 0 data transmit TDO: JTAG data output SLCD_RDY: smart lcd work status PB22: GPIO group B bit 22 | VDDIO1 | | 71 | UARTO_RXD
TDI
PB19 | 2mA
PU-rst | UARTO_RXD: UART 0 data receive
TDI: JTAG data input
PB19: GPIO group B bit 19 | VDDIO1 | | 73 | UART1_RXD
TMS
PB24 | 2mA
PU-rst | UART1_RXD: UART 1 receive data
TMS: JTAG mode select
PB24: GPIO group B bit 24 | VDDIO1 | | 74 | UART1_TXD
TCK
PB23 | 2mA | UART1_TXD: UART 1 transmit data
TCK: JTAG clock input
PB23: GPIO group B bit 23 | VDDIO1 | | 80 | GPIO_PB31 | 2mA
PD-rst | PB31: GPIO group B bit 31 | VDDIO1 | | 81 | SSI1_CE0 | 2mA | SSI1_CEO: normal speed ssi 1 chip 0 select | VDDIO1 | | QFN Pin
Location | Pin Function
Names | IO Cell
Char. | Pin Function Description | IO Power | |---------------------|-------------------------------------|------------------|---|----------| | | DMIC_DAT1
PB30 | PU-rst | DMIC_DAT1: digital microphone data bit 1
PB30: GPIO group B bit 30 | | | 82 | SSI1_CLK
DMIC_DATO
PB29 | 2mA
PU-rst | SSI1_CLK: normal speed ssi 1 clock DMIC_DAT0: digital microphone data bit 0 PB29: GPIO group B bit 29 | VDDIO1 | | 85 | PWM3
SSI1_DR
DMIC_CLK
PB28 | 2mA
PD-rst | PWM3: PWM channel 3 output SSI1_DR: normal speed ssi 1 data receive DMIC_CLK: digital microphone clock output PB28: GPIO group B bit 28 | VDDIO1 | | 86 | PWM2
DRV_VBUS
SSI1_DT
PB27 | 2mA
PD-rst | PWM2: PWM channel 2 output DRV_VBUS:USB-5V control signal SSI1_DT: normal speed ssi 1 transmit data PB27: GPIO group B bit 27 | VDDIO1 | | 87 | SMB1_SCK
SSI1_CLK
PB26 | 2mA
PU-rst | SMB1_SCK: I2C 1 serial clock SSI1_CLK: normal speed ssi 1 clock PB26: GPIO group B bit 26 | VDDIO1 | | 88 | SMB1_SDA
SSI1_CE0_
PB25 | 2mA
PU-rst | SMB1_SDA: I2C 1 serial data
SSI1_CEO: normal speed ssi 1 chip 0 select
PB25: GPIO group B bit 25 | VDDIO1 | #### NOTES Pin 60 and 61 share IO with PA25 and PA26, If need configure as this function, please fixed the another IO to GPIO input model. ### 2.5.4 System Control Table 0-4 System Control Pins(1) | QFN Pin | Pin Function | IO Cell | Pin Function Description | IO | |----------|--------------|------------|--|--------| | Location | Names | Char. | | Power | | 7 | PPRST_ | 2mA
SMT | PPRST_: RTC power on reset and RESET-KEY reset input | VDDIO0 | ## 2.5.5 Digital IO/core power/ground Table 0-5 IO/Core power supplies Pins (10) | QFN Pin
Location | Pin Names | Pin Function Description | |---------------------|-----------|--| | 9 | VDDIO0 | VDDIO0: IO digital power for DVP power domain, 1.8V | | 56,84 | VDDIO1 | VDDIO1: IO digital power for normal function Pad power domain, 1.8V/3.3V | | 40 | VDDIO2 | VDDIO2: IO digital power for normal function Pad power domain, 1.8V/3.3V | | QFN Pin
Location | Pin Names | Pin Function Description | |---------------------|-----------|--| | 10,39,55,
72,83 | VDD | VDD: CORE digital power, 0.8V | | Epad | VSS | VSS: IO digital ground for none DRAM and CORE digital ground, 0V | ### 2.5.6 DDR power/ground Table 0-6 DDR power/ground supplies Pins (5) | QFN Pin
Location | Pin Names | Pin Function Description | |---------------------|-------------|--| | 77 | VREF | VREF: DDR reference voltage, (VREF = VDDMEM/2) | | 76 | VDDMEM | VDDMEM: DDR IO supply(1.5V for DDR2) | | 75 | DDRVDD | DDRVDD: DDR PHY 1.5V supply | | 78 | DDR_PLLVCCD | DDR_PLLVCCD: DDR PLL power supply for digital | | 79 | DDR_PLLVCCA | DDR_PLLVCCA: DDR PLL power supply for analog | # 2.5.7 Analog - USB Table 0-7 USB 2.0 OTG (4) | QFN Pin
Location | Pin Names | Pin Function Description | IO Power | |---------------------|-----------|---|-----------| | 36 | USB0PP | USBOPP: USB data-positive | USB_AVD33 | | 35 | USB0PN | USBOPN: USB data-negative | USB_AVD33 | | 37 | USB_AVD33 | USB_AVD33: This is the analog supply that is used to support 3.3V signaling. This supply has both integrated IO pads and associated ESD. The expectation is that this supply is unique to the USB PHY. The PHY provides two pins for this power supply, but they can often be bonded out to a single package pin if the parasitic are low enough to support the current draw. | - | | 38 | USB_AVD18 | USB_AVD18: This is the analog supply that is used to support 1.8V signaling. This supply has both integrated IO pads. | - | ### 2.5.8 Analog - MIPI and DVP Table 0-8 MIPI CSI and DVP(8) | QFN Pin
Location | Pin Names | Pin Function Description | IO Power | |---------------------|-----------|---|------------| | 1 24 | | DATANO: In MIPI model is data lane 0 serial signal DVP_D5: In TTL model is DVP input data bit 5 | MIPI_AVD18 | | 25 | DATAP0 | DATAP0: In MIPI model is data lane 0 serial signal | MIPI_AVD18 | T31 ZX A Division of | QFN Pin
Location | Pin Names | Pin Function Description | IO Power | |---------------------|------------------|---|------------| | | DVP_D4 | DVP_D4: In TTL model is DVP input data bit 4 | | | 26 | CLKN
DVP_D3 | CLKN: In MIPI model is clock lane serial signal DVP_D3: In TTL model is DVP input data bit 3 | MIPI_AVD18 | | 27 | CLKP
DVP_D2 | CLKP: In MIPI model is clock lane serial signal DVP_D2: In TTL model is DVP input data bit 2 | MIPI_AVD18 | | 28 | DATAN1
DVP_D1 | DATAN1: In MIPI model is data lane 1 serial signal DVP_D1:In TTL model is DVP input data bit 1 | MIPI_AVD18 | | 29 | DATAP1
DVP_D0 | DATAP1: In MIPI model is data lane 1 serial signal DVP_D0: In TTL model is DVP input data bit 0 | MIPI_AVD18 | | 30 | MIPI_AVD08 | MIPI_AVD08: PHY analog power, 0.8V | - | | 31 | MIPI_AVD18 | MIPI_AVD18: PHY analog power, 1.8V | - | ### **NOTES:** #### **Analog - SARADC** 2.5.9 Table 0-9 SARADC Pins (3) | QFN Pin
Location | Pin Names | Pin Function Description | IO
Power | |---------------------|-----------|--|-------------| | 32 | ADC_AUX0 | ADC_AUX0: SARADC channel 0 input | ADC_AVDD | | 33 | ADC_VREF | SADC_VREF: Voltage reference input, 0.5* ADC_AVDD ~ 0.99* ADC_AVDD | - | | 34 | ADC_AVDD | ADC_AVDD: SARADC analog power, 1.8 V | - | ### 2.5.10 Analog - CODEC Table 0-10 CODEC Pins (4) | QFN Pin
Location | Pin Names | Pin Function Description | IO
Power | |---------------------|------------|-------------------------------------|-------------| | 41 | MICP | MICP: differential microphone input | CODEC_AVDD | | 42 | VCM | VCM: Reference voltage output | CODEC_AVDD | | 44 | HPOUT | HPOUT: headphone output | CODEC_AVDD | | 43 | CODEC_AVDD | CODEC_AVDD:1.8V analog supply | - | #### **Analog - EFUSE** 2.5.11 Table 0-11 FFUSE Pins (1) | QFN Pin
Location | Pin Names | Pin Function Description | |---------------------|-----------|---| | 8 | EFUSE_AVD | EFUSE_AVD: EFUSE programming power, 0V/1.8V | ^{1.} DVP_Dx signals can input form this Pad when configure the MIPI PHY to TTL model ### 2.5.12 Analog - CLOCK/PLL Table 0-12 CLOCK/PLL Pins (4) | QFN Pin
Location | Pin Names | IO Cell
Char. | Pin Function Description | IO
Power | |---------------------|-----------|-------------------------|---|-------------| | 5 | EXCLK_XI | 2~30 MHz
Oscillator, | EXCLK_XI: external oscillator clock input or external 24MHz clock input | VDDIO_OSC | | 4 | EXCLK_XO | OSC on/off | EXCLK_XO: external oscillator clock output | VDDIO_OSC | | 3 | VDDIO_OSC | - | VDDIO_OSC: Oscillator power supply, 1.8V | - | | 6 | PLL_VDDHV | - | PLL_VDDHV:PLL analog supply power 1.8V | - | #### **NOTES:** - All GPIO are programmable with multi-voltage (1.8V, 3.3V) general purpose, bi-directional I/O buffer with a selectable LVCMOS input or LVCMOS Schmitt trigger input and programmable pull-up / pull-down. In the full-drive mode, this buffer can operate in excess of 100MHz frequency with 15pF external load and 125 MHz with
10pF load, but actual frequency is load and system dependent. A maximum of 200 MHz can be achieved under small capacitive loads. - 2 The meaning of phases in IO cell characteristics are: - 8/16mA out: The IO cell's output driving strength is about 8/16mA. - PU: The IO cell contains a pull-up resistor and fixed pull up. - PD: The IO cell contains a pull-down resistor and fixed pull down. - PU-rst: The IO cell during reset and after the pull up function is enabled. - PD-rst: The IO cell during reset and after the pull down function is enabled. - SMT: The IO cell is Schmitt trigger input and fixed. - SMT-rst: The IO cell during reset and after the Schmitt trigger input function is enabled. - SR-rst: The IO cell during reset and after the slew-rate function select fast mode. # 3 Electrical Specifications ### 3.1 Absolute Maximum Ratings The absolute maximum ratings for the processors are listed in **Error! Reference source not found.** Do not exceed these parameters or the part may be damaged permanently. Operation at absolute maximum ratings is not guaranteed. Table 3-1 Absolute Maximum Ratings | Parameter | Min | Max | Unit | |---|------|------|------| | Storage Temperature | -65 | 150 | °C | | Operation Temperature | -40 | 125 | °C | | VDDMEM power supplies voltage | -0.1 | 1.98 | V | | DDRVDD power supplies voltage | -0.1 | 1.98 | V | | DDR_PLLVCCA power supplies voltage | -0.1 | 1.98 | V | | DDR_PLLVCCD power supplies voltage | -0.1 | 0.88 | V | | VDDIO0 power supplies voltage | -0.5 | 1.98 | V | | VDDIO1 power supplies voltage | -0.5 | 3.63 | V | | VDDIO2 power supplies voltage | -0.5 | 3.63 | V | | VDD power supplies voltage | -0.1 | 0.88 | V | | PLL_VDDHV power supplies voltage | -0.1 | 1.98 | V | | EFUSE_AVD power supplies voltage | -0.1 | 1.98 | V | | USB_AVD33 power supplies voltage | -0.1 | 3.63 | V | | USB_AVD18 power supplies voltage | -0.1 | 1.98 | V | | ADC_AVDD power supplies voltage | -0.1 | 1.98 | V | | CODEC_AVDD power supplies voltage | -0.1 | 1.98 | V | | Maximum ESD stress voltage, Human Body Model; Any pin to any supply pin, either polarity, or Any pin to all non-supply pins together, | - | 2000 | V | | either polarity. Three stresses maximum. | | | | ### 3.2 Recommended operating conditions Table 3-2 Recommended operating conditions for power supplies | Symbol | Description | Min | Typical | Max | Unit | |-------------|--------------------------------------|------|---------|------|------| | VDDMEM | VDDMEM voltage for SSTL18 (DDR2) | 1.62 | 1.8 | 1.98 | V | | DDRVDD | DDR KGD power supplies voltage | 1.62 | 1.8 | 1.98 | V | | DDR_PLLVCCA | DDR PLL power supplies voltage | 1.62 | 1.8 | 1.98 | V | | DDR_PLLVCCD | DDR PLL power supplies voltage | 0.72 | 0.8 | 0.88 | V | | VDDI00 | GPIO power domain 0 supplies voltage | 1.62 | 1.8 | 1.98 | V | | VDDI01 | GPIO power domain 1 supplies voltage | 1.5 | 3.3 | 3.63 | V | | VDDIO2 | GPIO power domain 2 supplies voltage | 1.5 | 3.3 | 3.63 | V | | VDD | VDD core supplies voltage | 0.72 | 0.8 | 0.88 | V | | PLL_VDDHV | APLL, MPLL and VPLL analog voltage | 1.62 | 1.8 | 1.98 | V | | EFUSE_AVD | EFUSE program supplies voltage | 1.62 | 1.8 | 1.98 | V | | USB_AVD33 | USB PHY VCCA3P3 analog voltage | 3.0 | 3.3 | 3.6 | V | | USB_AVD18 | USB PHY VCC18 analog voltage | 1.62 | 1.8 | 1.98 | V | | ADC_AVDD | SAR-ADC analog voltage | 1.62 | 1.8 | 1.98 | V | | CODEC_AVDD | CODEC analog voltage | 1.62 | 1.8 | 1.98 | V | | MIPI_AVD08 | MIPI analog voltage | 0.72 | 0.8 | 0.98 | V | | MIPI_AVD18 | MIPI analog voltage | 1.62 | 1.8 | 1.98 | V | Table 3-3 Recommended operating conditions for VDDIO0/VDDIO1/VDDIO2 supplied pins | Symbol | Parameter | Min | Typical | Max | Unit | |--------|---------------|--------|-----------|-----|------| | SAMOO | I al allicici | 141111 | 1 y picai | waa | UIII | | MICROSYSTEMS | |--------------| | | | $V_{\rm IH18}$ | Input high voltage for 1.8V I/O application | *0.65 | - | +0.3 | V | |-------------------|---|-------|---|-------|---| | $V_{\rm IL18}$ | Input low voltage for 1.8V I/O application | -0.3 | - | *0.35 | V | | V_{IH25} | Input high voltage for 2.5V I/O application | 1.7 | - | +0.3 | V | | $V_{\rm IL25}$ | Input low voltage for 2.5V I/O application | -0.3 | - | 0.7 | V | | V _{IH33} | Input high voltage for 3.3V I/O application | 2 | - | +0.3 | V | | V_{IL33} | Input low voltage for 3.3V I/O application | -0.3 | - | 0.8 | V | Table 3-4 Recommended operating conditions for others | Symbol | Description | Min | Typical | Max | Unit | |---------|----------------------|-----|---------|------|------| | T_{A} | Ambient temperature | -20 | 25 | +85 | °C | | TJ | Junction temperature | -40 | 25 | +125 | °C | #### 3.3 Audio codec ### 3.3.1 Microphone input There are two inputs channels named left ADC channel and right ADC channel. In the each channel, there are one inputs which are configured as differential input by the microphone PGA(MICL). The signal of microphone output should be input to AUDIO CODEC through DC-blocking capacitor, as shown in following figure. The capacitance and input resistance form a high pass filter. For example, when the gain of the MIC module is 20dB, the input resistance is $45 \text{K}\,\Omega$ and 0.1 uF DC-blocking capacitor is used, the lower cut-off frequency is: $$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 45 \times 10^3 \times 0.1 \times 10^{-6}} = 35.4 Hz$$ The capacitance of the DC-blocking capacitor should be determined by the minimum input impedance and application requirements. If the output of microphone is single-ended, the AUDIO ADC input should be connected as following figure. Microphone PGA has four gains to amplify the input signal, that is, 0dB, 20dB, 30dB and 40dB. #### 3.3.2 ALC Automatic Level Control (ALC) function is included to adjust the signal level, which is input into ADC. ALC will measure the signal magnitude and compare it to defined threshold. Then it will adjust the ALC controlled PAG (ALC_L and ALC_R) gain according to the comparison result. The programmable gain range of ALC controlled PAG is from -18dB to +28.5dB. The tuning step is 1.5dB. ### 3.3.3 Headphone output Audio codec DAC output can drive 16Ω or 32Ω headphone load through DC-blocking capacitor. In the configuration using DC-blocking capacitor, shown in following figure, the headphone ground is connected to the real ground. The capacitance and the load resistance determine the lower cut-off frequency. For instance, if $16\,\Omega$ headphone and 100uF DC-blocking capacitor are used, the lower cut-off frequency is $$f = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 16 \times 100 \times 10^{-6}} = 99.5 Hz$$ The DC-blocking capacitor can be increased to lower the cut-off frequency for better bass response. The headphone driver chooses DAC output as input. It has a gain rang from -39dB to +6dB with a tuning step of 1.5dB. ### 3.3.4 Microphone bias Microphone bias output is used to bias external microphones. The bias voltage can varies from 0.8*CODEC_AVDD to 0.975* CODEC_AVDD with a step of 0.025* CODEC_AVDD. #### 3.4 Power On, Reset and BOOT #### 3.4.1 Power-On Timing The external voltage regulator and other power-on devices must provide the T31X processor with a specific sequence of power and resets to ensure proper operation. **Error! Reference source not found.** shows this sequence and **Error! Reference source not found.** gives the timing parameters. Following are the name of the power. - VDD08: all 0.8V power supplies, VDD, DDR_PLLVCCD, MIPI_AVD08, USB_AVD08, PLL_VDD, USB_AVD08 - VMEM: VDDMEM.DDRVDD - VDD18: VDDIO0, DDR_PLLVCCA, PLL_VDDHV, USB_AVD18, MIPI_AVD18, ADC_AVDD, CODEC_AVDD - VDD33: VDDIO1, VDDIO2, USB_AVD33 Table 3-5 Power-On Timing Parameters | Symbol | Parameter | Min | Max | Unit | |----------------------|--|-----|-----|------| | t _{R_VDD18} | VDD18 rise time ^[1] | 0 | - | ms | | t _{D_VMEM} | Delay between VDD18 arriving 50% to VMEM arriving 50% | 0 | - | ms | | t _{D_VDD33} | Delay between VMEM arriving 50% to VDD33 arriving 50% | 0 | - | ms | | t _{D_VDD08} | Delay between VDD33 arriving 50% to VDD08 arriving 50% | 0 | - | ms | #### **NOTES:** The power rise time is defined as 10% to 90%. Figure 3-1 Power-On Timing Diagram #### 3.4.2 Reset procedure There are 3 reset sources: 1. POR hardware reset; 2. WDT timeout reset; and 3. hibernating reset when exiting hibernating mode. After reset, program start from boot. POR(Power-On-Reset) hardware reset. The chip POR circuit provides reliable reset function for general applications. Powered by 1.8V analog supply and monitors 0.8V digital and 1.8V analog supply. It generates reset signal to digital logic. Set low if analog supply or digital supply is below the threshold voltage(typical 1.35V threshold for 1.8V supply and 0.6V threshold for 0.8V supply), and will be set high if both of analog supply and digital supply exceed the threshold voltage. WDT reset. This reset happens in case of WDT timeout. The reset keeps for about a few RTCLK cycles. Hibernating reset. This reset happens in case of wakeup the main power from power down. The reset keeps for about 1ms ~ 125ms programable, plus 1M EXCLK cycles, start after WKUP signal is recognized. After reset, all GPIO shared pins are put to GPIO input function and most of their internal pull-up/down resistor are set to on, see "Error! Reference source not found. Error! Reference source not found." for details. The oscillators are on. The USB 2.0 OTG PHY, the audio CODEC DAC/ADC, the SAR-ADCs is put in suspend mode. #### 3.4.3 **BOOT** The boot sequence of the T31X is controlled by boot_sel0. The configuration is shown as follow: | Table 3-6 Boot Configuration of | 01 131X | |---------------------------------|---| | boot_sel0
| Boot method | | 0 | MMC/SD boot @ MSC0 (MMC/SD use GPIO Port B. | | | MSC1 use GPIO Port C) | |---|---------------------------| | 1 | SFC boot @ CS4 (SPI boot) | #### Note: - 1. When SFC boot start failure, the program in bootrom will go into MSC0 boot, If it is boot from MMC/SD card at MSC0, its function pins MSC0_D0, MSC0_CLK, MSC0_CMD are initialized, the boot program loads the maximum 100KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1_D0 is used. - 2. When MSC0 boot start failure, the program in bootrom will go into MSC1 boot, If it is boot from MMC/SD card at MSC1, its function pins MSC1_D0, MSC1_CLK, MSC1_CMD are initialized, the boot program loads the maximum 100KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC1_D0 is used. If MSC1 boot start failure, jump to USB boot. Figure 3-2 Boot sequence diagram of T31X As shown in boot sequence Block Diagram, After reset, the boot program on the internal boot ROM executes as follows: - 1 Disable all interrupts and read boot_sel[0] to determine the boot method. - 2 There 26KB backup reading failed, the 26KB backup at 128th, 256 th, ..., and finally 1024th page will be tried in consecutive order. - 3 If it is boot from MMC/SD card at MSC0, its function pins MSC0_D0, MSC0_CLK, MSC0_CMD are initialized, the boot program loads the maximum 100KB code from MMC/SD card to cache and jump to it. Only one data bus which is MSC0_D0 is used. # **T31 ZX** - 4 If it is boot from USB, a block of code will be received through USB cable connected with host PC and be stored in cache. Then branch to this area in cache. - 5 If it is boot from SPI nor/nand at SFC, its function pins SFC_CLK,SFC_CE, SFC_DR,SFC_DT, SFC_WP,SFC_HOLD are initialized,the boot program loads the maximum 100KB code from SPI NAND/NOR flash to cache and jump to it.