General Description

The SLG5NT1533V is a $20 \mathrm{~m} \Omega 2.5$ A single-channel power switch with configurable slew rate control. The device can enable fast power rail turn on with big cap loading. Internal circuit limits max inrush current to prevent device damage. The product is packaged in an ultra-small $1.0 \times 1.6 \mathrm{~mm}$ package.

Features

- $1.0 \times 1.6 \times 0.55 \mathrm{~mm}$ FC-STDFN package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- Discharged Load when off
- Fast Turn On time
- $32 \mu \mathrm{~s}, \mathrm{C}_{\text {SLEW }}=0.1 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=1 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$
- $102 \mu \mathrm{~s}, \mathrm{C}_{\text {SLEW }}=0.5 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{DS}}=2.5 \mathrm{~A}$
- Low $\mathrm{RDS}_{\mathrm{ON}}$ while supporting 2.5 A
- $20 \mathrm{~m} \Omega, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V}$
- $27.5 \mathrm{~m} \Omega, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V}$
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Operating Voltage: 2.5 V to 5.5 V
- Power Rail Switching $\mathrm{V}_{\mathrm{D}}=0.85 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DD}}-1.5 \mathrm{~V}$

Pin Configuration

8-pin FC-STDFN

(Top View)

Applications

- Fast Turn On/Off power rail switching with big load capacitance
- Frequent wake \& sleep power cycle
- Mobile devices and portable devices

Block Diagram

Pin Description

Pin\#	Pin Name	Type	Pin Description
1	VDD	PWR	VDD supplies the power for the operation of the power switch and internal control circuitry. Bypass the VDD pin to GND with a $0.1 \mu \mathrm{~F}$ (or larger) capacitor.
2	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG5NT1533V's state machine. ON is a CMOS input with $\mathrm{ON} _\mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and $\mathrm{ON} \mathrm{V}_{\mathrm{IH}}>0.85 \mathrm{~V}$ thresholds. While there is an internal pull-down circuit to GND ($\sim 4 \mathrm{M} \Omega$), connect this pin directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller.
3, 4	D	MOSFET	Drain terminal connection of the n-channel MOSFET (2 pins fused for V_{D}). Connect at least a low-ESR $0.1 \mu \mathrm{~F}$ capacitor from this pin to ground. Capacitors used at V_{D} should be rated at 10 V or higher.
5,6	S	MOSFET	Source terminal connection of the n -channel MOSFET (2 pins fused for V_{s}). Connect a Iow-ESR capacitor from this pin to ground and consult the Electrical Characteristics table for recommended $\mathrm{C}_{\text {LOAD }}$ range. Capacitors used at V_{S} should be rated at 10 V or higher.
7	CAP	Input	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the V_{S} slew rate and overall turn-on time of the SLG5NT1533V. Capacitors at CAP pin should be rated at 10 V or higher.
8	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Type	Production Flow
SLG5NT1533V	FC-STDFN 8L	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG5NT1533VTR	FC-STDFN 8L (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$V_{D D}$	Power Supply		--	--	7	V
V_{D} to GND	Power Switch Input Voltage to GND		-0.3	--	$V_{D D}$	V
V_{S} to GND	Power Switch Output Voltage to GND		-0.3	--	V_{D}	V
ON and CAP to GND	ON and CAP Pin Voltages to GND		-0.3	--	$V_{\text {DD }}$	V
T_{S}	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature		--	--	150	${ }^{\circ} \mathrm{C}$
$E S D_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
MSL	Moisture Sensitivity Level		1			
$\theta_{\text {JA }}$	Thermal Resistance	$1.6 \times 1 \mathrm{~mm}, 8 \mathrm{~L}$ STDFN; Determined using $1 \mathrm{in}^{2}, 1 \mathrm{oz}$. copper pads under each VD and VS terminals and FR4 pcb material	--	75	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{W}_{\text {DIS }}$	Package Power Dissipation		--	--	0.4	W
MOSFET IDS ${ }_{\text {PK }}$	Peak Current from Drain to Source	For no more than 20μ s with 1% duty cycle	--	--	25.0	A
		For no more than 50μ s with 1% duty cycle	--	--	12.5	A
		For no more than 1 ms with 1% duty cycle	--	--	3.5	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$V_{D D}$	Power Supply Voltage	$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$	2.5	--	5.5	V
I_{DD}	Power Supply Current (PIN 1)	when OFF	--	--	1	$\mu \mathrm{A}$
		when ON, No load	--	--	10	$\mu \mathrm{A}$
$\mathrm{RDS}_{\text {ON }}$	ON Resistance, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}=4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=0.5 \Omega \end{aligned}$	--	20	24	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=0.5 \Omega \end{aligned}$	--	27.5	31	$\mathrm{m} \Omega$
	ON Resistance, $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}=4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=0.5 \Omega \end{aligned}$	--	23.5	27	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}=2.3 \mathrm{~V}, R_{\mathrm{LOAD}}=0.5 \Omega \end{aligned}$	--	31	35	$\mathrm{m} \Omega$
	ON Resistance, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}=4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=0.5 \Omega \end{aligned}$	--	24.5	28	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}=2.3 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=0.5 \Omega \end{aligned}$	--	33	37	$\mathrm{m} \Omega$
MOSFET IDS	Current from D to S	Continuous, $\mathrm{V}_{\mathrm{D}}=0.85 \mathrm{~V}$ to 3.3 V	--	--	2.5	A
V_{D}	Drain Voltage		0.85	--	$\begin{aligned} & V_{D D} \\ & -1.5 \end{aligned}$	V

Integrated Power Switch with Discharge

Electrical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
Ton_Delay	ON Delay Time	$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 10 \% \mathrm{~V}_{\mathrm{S}} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=0.1 \mathrm{nF} \end{aligned}$	--	12	15	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 10 \% \mathrm{~V}_{\mathrm{S}} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=0.5 \mathrm{nF} \end{aligned}$	--	32	35	$\mu \mathrm{s}$
T Total_ON	Total Turn On Time	50% ON to $90 \% \mathrm{~V}_{\text {S }}$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 90 \% \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=1 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=50 \mathrm{~mA}, \mathrm{C}_{\mathrm{SLEW}}=0.1 \mathrm{nF} \end{aligned}$	--	32	39	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 90 \% \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=1 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}, \mathrm{C}_{\mathrm{SLEW}}=0.1 \mathrm{nF} \end{aligned}$	--	32	39	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 90 \% \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=4.7 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=2.5 \mathrm{~A}, \mathrm{C}_{\mathrm{SLEW}}=0.5 \mathrm{nF} \end{aligned}$	--	102	123	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \mathrm{ON} \text { to } 90 \% \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=2.5 \mathrm{~A}, \mathrm{C}_{\mathrm{SLEW}}=0.5 \mathrm{nF} \end{aligned}$	--	102	123	$\mu \mathrm{s}$
$\mathrm{V}_{\mathrm{S}(\mathrm{SR})}$	Slew Rate	$10 \% \mathrm{~V}_{\mathrm{S}}$ to $90 \% \mathrm{~V}_{\mathrm{S}}$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			V/ms
		$\begin{aligned} & 10 \% \mathrm{~V}_{\mathrm{S}} \text { to } 90 \% \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=1 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=50 \mathrm{~mA}, \mathrm{C}_{\mathrm{SLEW}}=0.1 \mathrm{nF} \end{aligned}$	--	65	78	V/ms
		$\begin{aligned} & 10 \% V_{S} \text { to } 90 \% V_{S}, V_{D D}=5 \mathrm{~V}, \\ & V_{D}=1.0 \mathrm{~V}, C_{L O A D}=1 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}, \mathrm{C}_{\mathrm{SLEW}}=0.1 \mathrm{nF} \end{aligned}$	--	65	78	V/ms
		$\begin{aligned} & 10 \% \mathrm{~V}_{\mathrm{S}} \text { to } 90 \% \mathrm{~V}_{\mathrm{S}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=4.7 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=2.5 \mathrm{~A}, \mathrm{C}_{\mathrm{SLEW}}=0.5 \mathrm{nF} \end{aligned}$	--	13	16	V/ms
		$\begin{aligned} & 10 \% \mathrm{~V}_{\mathrm{S}} \text { to } 90 \% \mathrm{~V}_{\mathrm{S},} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{DS}}=2.5 \mathrm{~A}, \mathrm{C}_{\mathrm{SLEW}}=0.5 \mathrm{nF} \end{aligned}$	--	13.5	16.5	V/ms
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from S to GND	--	--	10	$\mu \mathrm{F}$
$\mathrm{R}_{\text {DISCHRGE }}$	Discharge Resistance		100	150	300	Ω
ON_V ${ }_{\text {IH }}$	High Input Voltage on ON pin		0.85	--	V_{DD}	V
ON_V ${ }_{\text {IL }}$	Low Input Voltage on ON pin		-0.3	0	0.3	V
TofF_Delay	OFF Delay Time	50% ON to V_{S} Fall Start, no $C_{\text {LOAD }}$, $R_{\text {LOAD }}=20 \Omega, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}$, No C SLew	--	120	150	$\mu \mathrm{s}$
THERM ${ }_{\text {OFF }}$	Thermal shutoff turn-off temperature	Programmable, automatic shutoff temperature	--	125	--	${ }^{\circ} \mathrm{C}$
THERM $_{\text {OFFACC }}$	Thermal Sensor Accuracy		--	--	± 20	\%
THERM ${ }_{\text {DT }}$	Thermal Disable Time	Thermal sensor disable for the ON rising edge to $100 \mu \mathrm{~s}$. Prevent thermal shutdown from inrush current	--	--	100	$\mu \mathrm{s}$
Notes: 1. Refer to typical timing parameter vs. $\mathrm{C}_{\text {SLEW }}$ performance charts for additional information when available.						

$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A
Integrated Power Switch with Discharge
$\mathrm{T}_{\text {ON_Delay }}, \mathrm{V}_{\mathrm{S}(\mathrm{SR})}$, and $\mathrm{T}_{\text {Total_ON }}$ Timing Details

$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A

Integrated Power Switch with Discharge
Typical Performance Characteristics
RDS ${ }_{O N}$ vs. Temperature and $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}$

$\mathrm{RDS}_{\mathrm{ON}}$ vs. $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{D}}$

$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A

Integrated Power Switch with Discharge
V_{S} Slew Rate vs. $\mathrm{C}_{\text {SLEW }}$

$\mathrm{T}_{\text {Total_ON }}$ vs. $\mathrm{C}_{\text {SLEW }}$

SLG5NT1533V Power-Up/Power-Down Sequence Considerations

A nominal power-up sequence is to apply $V_{D D}$ first, followed by V_{D} only after $V_{D D}$ is $>90 \%$ of final $V_{D D}$, and finally toggling the ON pin LOW-to-HIGH after V_{D} is at least 90% of its final value.

A nominal power-down sequence is the power-up sequence in reverse order.
If $V_{D D}$ and V_{D} are applied at the same time, a voltage glitch may appear on the output pin at V_{S}. To prevent glitches at the output, it is recommended to connect at least a $1 \mu \mathrm{~F}$ capacitor from the S pin to GND and to keep the $V_{D D}$ and V_{D} ramp times higher than 2 ms .

If the ON pin is toggled HIGH before $V_{D D}$ and V_{D} have reached their steady-state values the IPS timing parameters may differ from datasheet specifications.

Power Dissipation

The junction temperature of the SLG5NT1533V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG5NT1533V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}=\left(\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}{ }^{2}\right)+\left(\mathrm{V}_{\mathrm{DD}} \times \mathrm{I}_{\mathrm{DD}}\right)
$$

where:
PD = Power dissipation, in Watts (W)
RDS $_{\text {ON }}=$ Power MOSFET ON resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
$\mathrm{V}_{\mathrm{DD}}=$ Power supply voltage applied to the SLG5NT1533V, in Volts (V)
$\mathrm{I}_{\mathrm{DD}}=$ Power supply current of the SLG5NT1533V at V_{DD}, in Amps (A)
and

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{PD} \times \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{A}}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Junction temperature, in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)=75^{\circ} \mathrm{C} / \mathrm{W}$ for the SLG5NT1533V's STDFN package.
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
For more information on Dialog GreenFET3 integrated power switch features, please visit our Documents search page at our website and see App Note "AN-1068 GreenFET3 Integrated Power Switch Basics".

$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A

Integrated Power Switch with Discharge

Layout Guidelines:

1. The VDD pin needs a $0.1 \mu \mathrm{~F}$ (or larger) external capacitor to smooth pulses from the power supply. Locate this capacitor as close as possible to the SLG5NT1533V's pin 1.
2. Since the D and S pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils $(0.381 \mathrm{~mm})$ per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
3.To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output

4.The GND pin should be connected to system analog or power ground plane.
3. 2 oz . copper is recommended for high current operation.

SLG5NT1533V Evaluation Board:

A GFET3 Evaluation Board for SLG5NT1533V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for $\mathrm{RDS}_{\mathrm{ON}}$ evaluation.

Please solder your SLG5NT1533V here

Figure 1. SLG5NT1533V Evaluation Board

Figure 2. SLG5NT1533V Evaluation Board Connection Circuit
$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5A
Integrated Power Switch with Discharge

Basic Test Setup and Connections

Figure 3. SLG5NT1533V Evaluation Board Connection Circuit

EVB Configuration

1. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
2. Turn on Power Supply 1 and set desired V_{DD} from 2.5 V ...5.5 V range;
3. Turn on Power Supply 2 and set desired V_{D} from $0.85 \mathrm{~V} \ldots \mathrm{~V}_{\mathrm{DD}}-1.5 \mathrm{~V}$ range;

4 .Toggle the ON signal High or Low to observe SLG5NT1533V operation.
$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A
Integrated Power Switch with Discharge
Package Top Marking System Definition

Each character in Serial Number field can be alphanumeric A-Z

$\overline{20 \mathrm{~m} \Omega}$, Fast Turn On, 2.5 A

Integrated Power Switch with Discharge

Package Drawing and Dimensions
8 Lead STDFN Package 1.0×1.6 mm (Fused Lead)

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.10	0.15	0.20
e	0.40 BSC			S	0.2 REF		

$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A
Integrated Power Switch with Discharge
Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		Reel \& Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
$\begin{gathered} \text { STDFN 8L } \\ 1 \times 1.6 \mathrm{~mm} \\ 0.4 \mathrm{FFC} \\ \text { Green } \end{gathered}$	8	$1.0 \times 1.6 \times 0.55$	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	$\begin{aligned} & \text { Pocket BTM } \\ & \text { Width } \end{aligned}$	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
STDFN 8L $1 \times 1.6 \mathrm{~mm}$ 0.4P FC Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.88 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.
$20 \mathrm{~m} \Omega$, Fast Turn On, 2.5 A
Integrated Power Switch with Discharge

Revision History

Date	Version	Change
$11 / 26 / 2018$	1.06	Added Junction Temperature to Abs Max Table
$11 / 8 / 2018$	1.05	Updated Style and formatting Updated Abs, Max and Electrical Characteristics tables Added Applications information Added Layout Guidelines
$8 / 14 / 2015$	1.04	Add support for 0.85 VD
$4 / 22 / 2015$	1.03	Removed TBD from Timing Diagram
$4 / 20 / 2015$	1.02	Fixed Block Diagram (added Discharge Resistor)
$9 / 15 / 2014$	1.01	Added MSL
$6 / 16 / 2014$	1.0	Production release

