
Range -126.000 °C – 1254 °C

0.001Resolution

+/– (0.1 + 0.0017 x ˚C)Accuracy

1 reading every 420msResponse time

Supported configuration

Single point

2 wire RTD

Calibration

SMBus/I2CData protocol

0x68Default I2C address

3.0V − 3.6VOperating voltage

ASCIIData format

Any PT-100
or PT-1000 RTDSupported probes

Reads Temperature in °C

OEM-RTD™
2 Wire – Embedded Temperature Circuit

This is an evolving document, check back for updates.
Written by Jordan Press
Designed by Noah Press

V 1.2
Revised 3/22

Before purchasing the RTD OEM™ read this data sheet in its
entirety. This product is designed to be surface mounted to a
PCB of your own design.

This device is designed for electrical engineers who are familiar
with embedded systems design and programing. If you, or your
engineering team are not familiar with embedded systems design
and programing, Atlas Scientific does not recommend buying this
product.

Get this device working in our
OEM Development board first!

Do not solder wires to this device.

Atlas Scientific
OEM Development

VCC

SDA

SCL

GND

INT

PRB

PRB G

1
5

10
15

20

1
5

15
15

20

A B C D E F G H I J

A B C D E F G H I J

REGISTERS

Table of contents
OEM circuit dimensions
Power consumption
Absolute max ratings
Pin out
Resolution
Power on/start up

RTD connection
System overview
Reading register values
Writing register values
Sending floating point numbers
Receiving floating point numbers

Designing your product
Designing your PCB
Recommended pad layout
IC tube measurements
Recommended reflow soldering profile
Pick and place usage
Datasheet change log
Firmware updates

0x00 Device type register
0x01 Firmware version register
0x02 Address lock/unlock register
0x03 Address register
0x04 Interrupt control register
0x05 LED control register
0x06 Active/hibernate register
0x07 New reading available register
0x08 – 0x0B Calibration registers
0x0C Calibration request register
0x0D – Calibration confirmation register
0x0E – 0x11 RTD reading registers

4
4
4
5
5
5

6
7
8
9
10
11

23
25
26
26
27
28
29
29

13
13
14
15
16
18
18
19
20
21
21
22

3 Copyright © Atlas Scientific LLC

OEM circuit dimensions

Power consumption
LED OPERATIONAL HIBERNATION

ON 4.2 mA 3.7 mA

3.7 mA 2.3 mAOFF

3.3V

Absolute max ratings
MIN MAXTYPParameter

-60 °C 150 °C

125 °C25 °C-40 °C

Storage temperature

VCC

Operational temperature

3.3V 4.0V3.0V

11mm

2.65mm

12mm

11mm

2.3mm

1.3mm

All pins

4 Copyright © Atlas Scientific LLC

Pin out
1

2NC

3VCC

4
PRB 1

5
PRB 2

10 NC

9 NC

8 SCL

7
INT

6
GND

SDA

Power on/start up
Once the Atlas Scientific™ RTD OEM™ is powered on it will be ready to receive commands
and take readings after 1 ms. Communication is done using the SMBus/I2C protocol at
speeds of 10 – 100 kHz.

Settings that are retained if power is cut

Calibration
I2C address

Active/Hibernation mode
LED control
Interrupt control

Settings that are NOT retained if power is cut

WriteStart Stop

Stop

RegAddress

WriteStart Data StopRegAddress

Start Stopunlock register

unlock register

0x55

Start Stop0xAA

ReadStart

The resolution of a sensor is the smallest change it can detect in the quantity that it is
measuring. The Atlas Scientific™ RTD OEM™ will always produce a reading with a resolution
of three decimal places.

Example
100.123 ˚C
-76.000 ˚C

Resolution

5 Copyright © Atlas Scientific LLC

RTD connection
The Atlas Scientific™ RTD OEM™ will automatically detect if the attached probe is a
PT-100 or PT-1000 probe.

Keep in mind that PT-100 / PT-1000 probes have no polarity.
It’s not possible to connect the leads to the probe in reverse.

3 wire

RedRed

2 wire

Red White White

4 wire

RedRed White White

6 Copyright © Atlas Scientific LLC

The Atlas Scientific™ RTD OEM™ Class Embedded Circuit is the core electronics needed
to read temperature from any brand of PT-100 or PT-1000 RTD temperature probe.
The RTD OEM™ is an SMBus/I2C slave device that communicates to a master device at
a speed of 10 –100 kHz. Read and write operations are done by accessing 18 different
8 bit registers.

System overview

R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

Each RTD reading
takes 420ms

The default device address is 0x68
This address can be changed.

7 Copyright © Atlas Scientific LLC

To read one or more registers, issue a write command and transmit the register address
that should be read from, followed by a stop command. Then issue a read command; the
data read will be the value that is stored in that register. Issuing another read command
will automatically read the value in the next register. This can go on until all registers have
been read. After reading the last register, additional read commands will return 0xFF.
Issuing a stop command will terminate the read event.

Reading register values

Example
Start reading at register 0x04 and read 2 times.

0x04

0x04

0x05
Read Stop

WriteStart Stop0x04Address

ReadStart Address

The default device address is 0x68
This address can be changed.

8 Copyright © Atlas Scientific LLC8 Copyright © Atlas Scientific LLC

byte i2c_device_address=0x68;
byte reg_4, reg_5;

Wire.beginTransmission(i2c_device_address);
Wire.write(0x04);
Wire.endTransmission();

Wire.requestFrom(i2c_device_address,2);
reg_4=Wire.read();
reg_5=Wire.read();

Wire.endTransmission();

Example code
reading two registers

To write to one (or more) registers, issue a write command and transmit the register
address that should be written to, followed by the data byte to be written. Issuing another
write command will automatically write the value in the next register. This can go on until
all registers have been written to. After writing to the last register, additional write
commands will do nothing.

Writing register values
All registers can be read, but only registers marked
read/write can be written to.

0x05

0x05

0x06
Stop

WriteStart 0x05Address

Data

Data

Example
Start writing at address 0x05 and write 2 values.

byte i2c_device_address=0x68;
byte starting_register=0x05
byte data=1;

Wire.beginTransmission(i2c_device_address);
Wire.write(starting_register);
Wire.write(data);
Wire.write(data);
Wire.endTransmission();

Example code
writing the number 1
in register 0x05 – 0x06

9 Copyright © Atlas Scientific LLC

Sending floating point
numbers

It is not possible to send/receive a floating (fixed decimal) point number over the SMBus/
I2C data protocol. Therefore, a multiplier/divider is used to remove the decimal point.
Do not transmit a floating point number without property formatting the number first.

For ease of understanding we are calling fixed decimal numbers “floating point
numbers.” We are aware they are not technically floating point numbers.

When transmitting a floating point number to the calibration value registers, the number
must first be multiplied by 1,000. This would have the effect of removing the floating
point. Internally the RTD OEM™ will divide the number by 1,000; converting it back into a
floating point number.

Example
Setting an RTD calibration value of: 100.123 ˚C
100.123 X 1,000 = 100,123
Transmit the number 100,123 to the Calibration value registers.

Setting an RTD calibration value of: -76 ˚C
-76 X 1,000 = -76,000
Transmit the number -76,000 to the Calibration value registers.

When reading back a value stored in the calibration value registers, the value must be
divided by 1,000 to return it to its originally intended value.

10 Copyright © Atlas Scientific LLC

After receiving a value from the temperature reading registers, the number must be
divided by 1,000 to convert it back into a floating point number.

Example
Reading a temperature value of 34.786
Value received = 34,786
34,786 / 1,000 = 34.786

Reading an temperature value of -98.335
Value received = -98,335
-98,335 / 1,000 = -98.335

Receiving floating point
numbers

11 Copyright © Atlas Scientific LLC

Registers

13 Copyright © Atlas Scientific LLC

Device information

This register contains a number indicating what type of OEM device it is.

1 unsigned byte
Read only value = 5
5 = RTD

1 unsigned byte
Read only value = 2
2 = firmware version

This register contains a number indicating the firmware version of the OEM device.

0x00 – Device type register

0x01 – Firmware version register

R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

byte i2c_device_address=0x68;
byte starting_register=0x00
byte device_type;
byte version_number;

Wire.beginTransmission(i2c_device_address);
Wire.write(staring_register);
Wire.endTransmission();

Wire.requestFrom(i2c_device_address,(byte)2);
device_type = Wire.read();
version_number = Wire.read();
Wire.endTransmission();

Example code
reading device type
and device version registers

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

14 Copyright © Atlas Scientific LLC

Changing I2C address

This is a 2 step procedure

0x02 – I2C address unlock register

The two unlock commands must be sent back to back in immediate succession. No other
write, or read event can occur. Once the register is unlocked it will equal 0x00 (unlocked).

0x55
0xAA

Settings that are retained if power is cut

Calibration
I2C address

Active/Hibernation mode
LED control
Interrupt control

Settings that are NOT retained if power is cut

WriteStart Stop

Stop

RegAddress

WriteStart Data StopRegAddress

Start Stopunlock register

unlock register

0x55

Start Stop0xAA

ReadStart
1 unsigned byte
Read only value = 0 or 1
0 = unlocked
1 = locked

To unlock this register it must be written to twice.

To lock the register
Write any value to the register other than 0x55;
or, change the address in the Device Address Register.

Step 1
Issue unlock command

To change the I2C address, an unlock command must first be issued.R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

byte i2c_device_address=0x68;
byte unlock_register=0x02;

Wire.beginTransmission(bus_address);
Wire.write(unlock_register);
Wire.write(0x55);
Wire.endTransmission();

Wire.beginTransmission(bus_address);
Wire.write(unlock_register);
Wire.write(0xAA);
Wire.endTransmission();

Example code
address unlock

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

15 Copyright © Atlas Scientific LLC

Address changes outside of the possible range 0x01 – 0x7F (1–127) will be ignored.

After a new address has been sent to the device the Address lock/unlock register will lock
and the new address will take hold. It will no longer be possible to communicate with the
device using the old address.

Settings to this register are retained if the power is cut.

0x03 – I2C address register
1 unsigned byte
Default value = 0x68
Address can be changed 0x01 – 0x7F (1–127)

Step 2
Change address

byte i2c_device_address=0x68;
byte new_i2c_device_address=0x60;
byte address_reg=0x03;

Wire.beginTransmission(bus_address);
Wire.write(address_reg);
Wire.write(new_i2c_device_address);
Wire.endTransmission();

Example code
changing device address

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

Control registers

The Interrupt control register adjusts the function of pin 9 (the interrupt output pin).

Settings to this register are not retained if the power is cut.

0x04 – Interrupt control register

2 2 2

New Reading New Reading New Reading

1 unsigned byte
Default value = 0 (disabled)

Command values
0 = disabled
2 = pin high on new reading (manually reset)
4 = pin low on new reading (manually reset)
8 = invert state on new reading (automatically reset)

Command value = 2

By setting the interrupt control register to 2 the pin will go to a low state (0 volts). Each
time a new reading is available the INT pin (pin 9) will be set and output the same voltage
that is on the VCC pin.

The pin will not auto reset. 2 must be
written to the interrupt control register
after each transition from low to high.

Pin high on new reading

R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

byte i2c_device_address=0x68;
byte int_control=0x04;

Wire.beginTransmission(i2c_device_address);
Wire.write(int_control);
Wire.write(0x02);
Wire.endTransmission();

Example code
Setting pin high on new reading

Pin 9

16 Copyright © Atlas Scientific LLC

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

New Reading

New Reading New Reading

New Reading

4 4 4

New Reading New Reading

17 Copyright © Atlas Scientific LLC

Pin low on new reading

By setting the interrupt control register to 4 the pin will go to a high state (VCC). Each
time a new reading is available the INT pin (pin 9) will be reset and the pin will be at 0 volts.

The pin will not auto set. 4 must be written
to the interrupt control register after each
transition from high to low.

Invert state on new reading

Command value = 8

By setting the interrupt control register to 8 the pin will remain in whatever state it is in.
Each time a new reading is available the INT pin (pin 9) will invert its state.

The pin will automatically invert its state each
time a new reading is available. This setting has
been specifically designed for a master device
that can use an interrupt on change function.

Command value = 4

byte I2C_device_address=0x68;
byte int_control=0x04;

Wire.beginTransmission(I2C_device_address);
Wire.write(int_control);
Wire.write(0x04);
Wire.endTransmission();

Example code
Setting pin low on new reading

byte i2c_device_address=0x68;
byte int_control=0x04;

Wire.beginTransmission(i2c_device_address);
Wire.write(int_control);
Wire.write(0x08);
Wire.endTransmission();

Example code
Inverting state on new reading

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

25.724

18 Copyright © Atlas Scientific LLC

0x06 – Active/hibernate register

Settings to this register are not retained if the power is cut.

This register is used to activate, or hibernate the sensing subsystem of the OEM device.

Once the device has been woken up it will continuously take readings every 420ms. Wak-
ing the device is the only way to take a reading. Hibernating the device is the only
way to stop taking readings.

0x05 – LED control register
1 unsigned byte

Command values
1 = Blink each time a reading is taken
0 = Off

1 unsigned byte

To wake the device
Transmit a 0x01 to register 0x06

To hibernate the device
Transmit a 0x00 to register 0x06

The LED control register adjusts the function of the on board LED. By default the LED
is set to blink each time a reading is taken.

byte i2c_device_address=0x68;
byte led_reg=0x05;

Wire.beginTransmission(i2c_device_address);
Wire.write(led_reg);
Wire.write(0x00);
Wire.endTransmission();

Example code
Turning off LED

byte i2c_device_address=0x68;
byte active_reg=0x06;

Wire.beginTransmission(i2c_device_address);
Wire.write(active_reg);
Wire.write(0x01);
Wire.endTransmission();

Example code
Activate RTD readings

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

This register is for applications where the interrupt output pin cannot be used and
continuously polling the device would be the preferred method of identifying when a
new reading is available.

When the device is powered on, the New Reading Available Register will equal 0. Once
the device is placed into active mode and a reading has been taken, the New Reading
Available Register will move from 0 to 1.

This register will never automatically reset itself to 0.
The master must reset the register back to 0 each time.

0x07 – New reading available register
1 unsigned byte
Default value = 0 (no new reading)
New reading available = 1

Command values
0 = reset register

byte i2c_device_address=0x68;
byte new_reading_available=0;
byte nra=0x07;

while(new_reading_available==0){
Wire.beginTransmission(i2c_device_address);
Wire.write(nra);
Wire.endTransmission();

Wire.requestFrom(i2c_device_address,(byte)1);
new_reading_available = Wire.read();
Wire.endTransmission();
delay(10);
}

if(new_reading_available==1){
call read_RTD();
Wire.beginTransmission(i2c_device_address);
Wire.write(nra);
Wire.write(0x00);
Wire.endTransmission();
}

Example code
Polling new reading available register

19 Copyright © Atlas Scientific LLC

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

Calibration

0x08 – 0x0B Calibration registers
Signed long
0x08 = MSB
0x0B = LSB
Units = °C

A calibration point can be a single whole number, or single floating point number up
to three decimal place.

Example
100
-21.4
49.613

After sending a value to this register block, calibration is not
complete. The calibration request register must be set after loading
a calibration value into this register block.

Example
Calibrating to a temperature of 50.5
calibration value = 50.5
50.5 x 1,000 = 50,500
50500 to HEX = 0x0000C544

calibration MSB Register = 0x00
calibration high byte Register = 0x00
calibration low byte Register = 0xC5
calibration LSB Register = 0x44

When sending a calibration temperature to the RTD OEM™ the value of the calibration
temperature must be multiplied by 1,000 and then transmitted to the RTD OEM™.

MSB

LSB

0x44

0xC5

0x00

0x00

Write

Write

Write

Write

0x44

0xC5

0x00

0x00

0x0000C544

0x08

0x09

0x0A

0x0B

MSB

LSB

0x44

0xC5

0x00

0x00

Write

Write

Write

Write

0x44

0xC5

0x00

0x00

0x0000C544

0x08

0x09

0x0A

0x0B

20 Copyright © Atlas Scientific LLC

R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

By default this register will read 0x00. When a calibration request command has been
sent and a stop command has been issued, the RTD OEM™ will perform that calibration
requested. Once the calibration has been done the Calibration Request Registers value
will return to 0x00.

After a calibration event has been successfully carried out, the calibration confirmation
register will reflect what that calibration has been done.

0x0C – Calibration request register

0x0D – Calibration confirmation register

1 unsigned byte

Command values
1 = Clear calibration (delete all calibration data)
2 = Single point calibration

1 unsigned byte

Command values
0 = no calibration
1 = calibration

R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

21 Copyright © Atlas Scientific LLC

Settings to this register are retained if the power is cut.

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

Sensor data

0x0E – 0x11 RTD reading registers
Signed long
0x0E = MSB
0x11 = LSB
Units = °C

The last temperature reading taken is stored in these four registers. To read the value
in this register, read the bytes MSB to LSB and assign them to a signed long, cast to a
float. Divide that number by 1,000.

Example
Reading an temperature of 25.761 ˚C

MSB

LSB

0xA1

0x64

0x00

0x00

Step 1 read 4 bytes

Read

Read

Read

Read

0x0E

0x0F

0x10

0x11
0xA1

0x64

0x00

0x00

Step 2 read unsigned long

0x000064A1

Step 4 divide by 1,000

25,761 25.761/ 1,000 =

Step 3 cast unsigned long to a float

25,7610x000064A1

22 Copyright © Atlas Scientific LLC

R/W
R/W

R/W
R/W0x04: Interrupt control

0x05: LED control

0x06: Active/hibernate

0x07: New reading available

R/W

RRead only
Read and write

Accessible registers

R/W

R/W

0x02: SMBus/I2C address lock/unlock

0x03: SMBus/I2C address

0x08: Calibration value MSB

0x09: Calibration value high byte

0x0A: Calibration value low byte

0x0B: Calibration value LSB

0x0E: Temperature reading MSB

0x0F: Temperature reading high byte

0x10: Temperature reading low byte

0x11: Temperature reading LSB

Sensor Data

Calibration
R
R

0x00: Device type

0x01: Firmware version

Device information

Device address

Control

R/W
R/W

R/W
R/W

R/W0x0C: Calibrate request

0x0D: Calibration confirm

R

R

R
R
R

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11

The RTD OEM™ circuit is a sensitive device. Special care MUST be taken to ensure your
Temperature readings are accurate.

Simple low voltage computer systems experience little to no problems during development
and have no reported issues from the target customer.

Complex computer systems with multiple voltages and switching, can lead to extended
and unnecessary debugging time. Target customers can experience frequent accuracy
issues.

Simple design

Complex design

120-220V

Fan

Lights

120-220V

120-220V

120-220V120-220V

120-220V

Pump 1

Pump 2

O
E

M
 1

O
E

M
 2

Designing your product

23 Copyright © Atlas Scientific LLC

Pump 1

Input

Fan

PG

Pump 2

5V – 3.3V
Power Regulator

120-220V 120-220V 120-220V 120-220V

How to add chemical sensing to a complex computer system

Placing the OEM™ circuits onto their own board is strongly recommended; Not only
does this help keep the design layout simple and easy to follow, it also significantly
reduces debugging and development time.

Target customers will experience accurate, stable and repeatable readings for the life of
your product.

Distance between SMA/BNC connector and
the OEM circuit should be as short as possible.

The sensor board should have
it’s own power regulator.

24 Copyright © Atlas Scientific LLC

Ground Plane

1 10

2 9

3 8

6

74

5

Designing your PCB
Create the traces as short as possible from the RTD OEM™ to your probe connection.
Keep the traces on your top layer, keep a distance of 1mm for any other trace, use 0.4mm
trace width. Use a ground plane underneath the traces and probe connection.

Make sure there are no vias or exposed
metal underneath the RTD OEM™ circuit.

This cross section is an example of how the ground plane protects
the RTD signal. The ground plane should surround the RTD
signal, on the top layer as well as the bottom layer.

PCB cross section of the signal path

Ground planeGround plane

Ground plane

If pin 7 (INT) is unused leave it floating,
do not connect pin 7 to VCC or ground.

RTD Signal

Keep the traces for both probe and
probe ground as short as possible.

Connect pin 6 to the ground plane.

25 Copyright © Atlas Scientific LLC

Recommended pad layout

IC tube measurements

4.1mm
inside dimensions

plastic thickness 0.5mm

325mm

11.6mm

3.1mm 4.1mm

12.6mm

12.6m
m

12.6mm

325mm

outside dimensions

L

W

H

325mm

Fits 25 RTD OEM™ circuits

2.5mm

1.4mm

11mm

2.3mm

26 Copyright © Atlas Scientific LLC

350 °C

0s 25s 50s 75s 100s 125s 150s 175s 200s 225s 250s 275s 300s 325s 350s 375s 400s 425s 450s

315 °C

280 °C

245 °C

210 °C

175 °C

140 °C

105 °C

70 °C

35 °C

0 °C

163
165
167
170
172
174
176
178
180
181

10
10
10
10
10
10
10
10
10
10

11
12
13
14
15
16
17
18
19
20

182
183
185
187
220
225
230
235
170
130

10
10
10
10
30
20
20
8

20
20

21
22
23
24
25
26
27
28
29
30

100
80
30
0

25
30
30
15

31
32
33
34

1
2
3
4
5
6
7
8
9

10

30
90

110
130
135
140
155
156
158
160

15
20
8
5
5
5
8

10
10
10

Temp# Sec Temp# Sec Temp# Sec Temp# Sec

Recommended reflow
soldering profile

27 Copyright © Atlas Scientific LLC

Pick and place usage

28 Copyright © Atlas Scientific LLC

Datasheet V 1.1

Datasheet V 1.0

Revised operating voltages on pages 1 & 4.

New datasheet

Datasheet change log

V4.0 – Initial release (June, 28 2017)

V5.0 – (November 27, 2018)
• Fixed a bug where the calibration status didn’t load correctly on power up.

Firmware updates

Datasheet V 1.2

Revised wiring diagram on pg 6.

29 Copyright © Atlas Scientific LLC

