High-Speed USB 2.0 (480 Mbps) DPDT Switch

ON Semiconductor's NLAS7222A series of analog switch circuits are produced using the company's advanced sub-micron CMOS technology, achieving industry-leading performance.

The NLAS7222A is a 2- to 1-port analog switch. Its wide bandwidth and low bit-to-bit skew allow it to pass high-speed differential signals with good signal integrity. The switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and low I/O capacitance. Its high channel-to-channel crosstalk rejection results in minimal noise interference. Its bandwidth is wide enough to pass High-Speed USB 2.0 differential signals (480 Mb/s).

Features

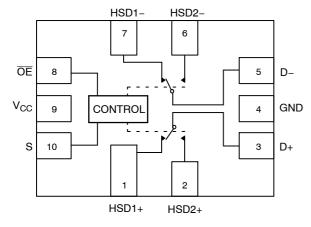
- R_{ON} is Typically 6.5 Ω at V_{CC} = 3 V
- Low Bit-to-Bit Skew: Typically 50 ps
- OVT on D+ and D- up to 3.6 V
- Power OFF Protection: When Vcc = 0 V D+ and D= C
- When $V_{CC} = 0$ V, D+ and D– Can Tolerate up to 3.6 V • Low Crosstalk: -45 dB @ 250 MHz
- Low Current Consumption: 1 μA
- Low Current Consumption. 1 μA
- Near–Zero Propagation Delay: 250 ps
- Channel On-Capacitance: 6.5 pF (Typical)
- V_{CC} Operating Range: +3.0 V to +3.6 V
- > 700 MHz Bandwidth (or Data Frequency)
- This is a Pb–Free Device

Typical Applications

- Differential Signal Data Routing
- USB 2.0 Signal Routing

Important Information

- Continuous Current Rating Through Each Switch ±50 mA
- 8 kV I/O to GND ESD Protection


ON Semiconductor®

http://onsemi.com

		MARKING DIAGRAM
1	WQFN10 CASE 488AQ	2A M ■ ■ o
	UQFN10 CASE 488AT	<u>Ү</u> М • О •
XX	= Specific Devic XX = 2A or Y	
M	= Date Code	
•	= Pb-Free Devi	ce
(Note: Mic	rodot may be in eit	her location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Table 1. PIN DESCRIPTION

Pin	Function
S	Select Input
ŌĒ	Output Enable
HSD1+, HSD1-, HSD2+, HSD2-, D+, D-	Data Ports

Table 2. TRUTH TABLE

ŌE	s	HSD1+, HSD1-	HSD2+, HSD2-
1	Х	OFF	OFF
0	0	ON	OFF
0	1	OFF	ON

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.5 to +4.6	V
V _{IS}	Analog Switch Input Voltage HSD1+, HSD1-, HSD2+, HSD2- D+, D-	-0.5 to V _{CC} + 0.3 -0.5 to +4.6	V
V _{IN}	Digital Select Input Voltage	-0.5 to +4.6	V
Ι _D	Continuous DC Current (Through Analog Switch)	50	mA
PD	Power Dissipation	0.5	W
Τ _S	Storage Temperature	–65 to +150	°C
ESD	Human Body Model I/O to GND All Pins	8.0 1.5	kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	3.0	3.6	V
V _{IS}	Analog I/O Voltage (HSD1+, HSD1-, HSD2+, HSD2-)	GND	V _{CC}	V
V _{OS}	Analog Common Output Voltage (D+, D-)	GND	3.6	V
V _{IN}	Digital Select Input Voltage	GND	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C
t _r , t _f	Input Rise or Fall Time V_{CC} = 3.3 V ± 0.3 V	0	15	ns

				–40°C to +85°C			
Symbol	Parameter	Test Conditions	V _{cc} (V)	Min	Typ (Note 1)	Max	Unit
V _{IH}	Input HIGH Voltage (V _{IN})		3.0 to 3.6	1.3	-	-	V
VIL	Input LOW Voltage (V _{IN})		3.0 to 3.6	_	-	0.5	V
V _{IK}	Clamp Diode Voltage	I _{IS} = -18 mA	3.0	_	-	-1.2	V
I _{CC}	Quiescent Supply Current	$V_{IS} = V_{CC}$ or GND; $I_D = 0$ A	3.6	_	-	1.0	μΑ
I _{CCT}	Increase in I _{CC} per Control Voltage	V _{IN} = 2.6 V	3.6	_	-	10.0	μΑ
l _l	Input Leakage Current	$0 \le V_{IS} \le V_{CC}$	3.6	-	-	±1.0	μΑ
I _{OZ}	OFF State Leakage	$0 \le V_{\text{IS};} V_{\text{OS}} \le V_{\text{CC}}$	3.6	-	-	±1.0	μΑ
I _{OFF}	Power OFF Leakage Current (D+, D-)	$0 \le V_{IS;} V_{OS} \le V_{CC}$	0	-	-	±1.0	μΑ
R _{ON}	Switch On-Resistance	$V_{IS} = 0$ to 0.4 V; $I_D = 8$ mA	3.0	-	6.5	9.0	Ω
R _{FLAT(ON)}	On-Resistance Flatness	$V_{IS} = 0$ to 1.0 V; $I_D = 8$ mA	3.0	-	2.0	-	Ω
ΔR_{ON}	On-Resistance match from center ports to any other ports	$V_{IS} = 0$ to 0.4 V; $I_D = 8$ mA	3.0	_	0.35	-	Ω

DC ELECTRICAL CHARACTERISTICS FOR USB 2.0 SWITCHING OVER OPERATIONAL RANGE

1. Typical values are at V_{CC} = 3.3 V and T_A = +25°C

AC ELECTRICAL CHARACTERISTICS

				–40°C to +85°C			
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Typ (Note 2)	Max	Unit
t _{ON}	Turn-ON Time	V _{IS} = 0.8 V	3.0 to 3.6	-	13.0	30.0	ns
t _{OFF}	Turn-OFF Time	V _{IS} = 0.8 V	3.0 to 3.6	-	12.0	25.0	ns
t _{BBM}	Break-Before-Make Delay	V _{IS} = 0.8 V	3.0 to 3.6	2.0	4.7	6.5	ns
t _{PD}	Propagation Delay	C _L = 10 pF	3.0 to 3.6	-	0.25	-	ns
O _{IRR}	OFF-Isolation	f = 250 MHz; R_L = 50 Ω	3.0 to 3.6	-	-28	-	dB
X _{TALK}	Non-Adjacent Channel Crosstalk	f = 250 MHz; R_L = 50 Ω	3.0 to 3.6	-	-45	-	dB
BW	-3 dB Bandwidth	$R_L = 50 \Omega$; $C_L = 0 pF$	0.01.0.0	-	700	-	MHz
		R_L = 50 Ω; C_L = 5 pF	- 3.0 to 3.6	-	500	-	

AC ELECTRICAL CHARACTERISTICS FOR USB 2.0 SWITCHING OVER OPERATIONAL RANGE

t _{SK(O)}	Channel-to-Channel Skew	C _L = 10 pF	3.0 to 3.6	-	0.05	-	ns
T _{JITTER}	Total Jitter	R_L = 50 Ω; C_L = 10 pF t_r = t_f = 500 ps at 480 Mbps	3.0 to 3.6	-	0.2	-	ns

2. Typical values are at V_{CC} = 3.3 V and T_A = +25 $^\circ C$

CAPACITANCE

			–40°C to +85°C			
Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Unit
C _{IN}	Control Pin Input Capacitance	V _{CC} = 0 V	-	2.5	-	pF
C _{ON}	HSD+, HSD- ON Capacitance	$V_{CC} = 3.3 \text{ V}; \overline{OE} = 0 \text{ V}$	-	7.0	-	pF
C _{OFF}	HSD+, HSD- OFF Capacitance	$V_{CC} = V_{IS} = 3.3 \text{ V}; \overline{OE} = 3.3 \text{ V}$	-	4.5	-	pF

3. Typical values are at V_{CC} = 3.3 V and T_A = +25 $^\circ C$

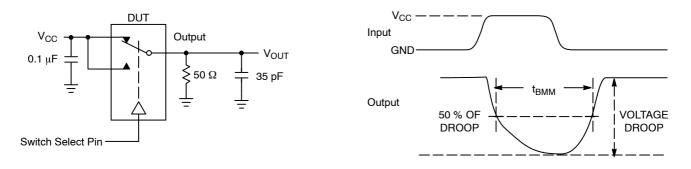
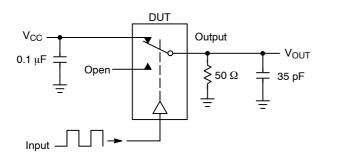



Figure 2. t_{BBM} (Time Break-Before-Make)

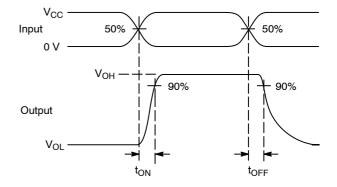
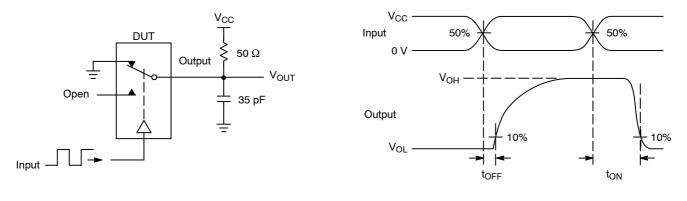
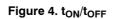
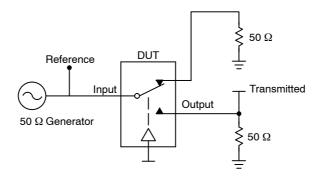
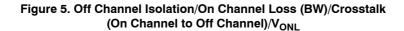





Figure 3. t_{ON}/t_{OFF}



Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$\begin{split} V_{ISO} &= \text{Off Channel Isolation} = 20 \text{ Log}\left(\frac{V_{OUT}}{V_{IN}}\right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \\ V_{ONL} &= \text{On Channel Loss} = 20 \text{ Log}\left(\frac{V_{OUT}}{V_{IN}}\right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \text{ to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL} V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

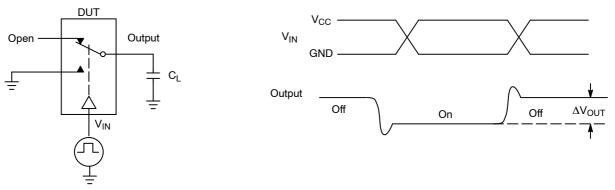


Figure 6. Charge Injection: (Q)

APPLICATIONS INFORMATION

The low on resistance and capacitance of the NLAS7222A provides for a high bandwidth analog switch suitable for applications such as USB data switching. Results for the USB 2.0 signal quality tests will be shown in this section, along with a description of the evaluation test board. The data for the eye diagram signal quality and jitter tests verifies that the NLAS7222A can be used as a data switch in low, full and high speed USB 2.0 systems.

Figures 7, 8 and 9 provide a description of the test evaluation board. The USB tests were conducted per the procedures provided by the USB Implementers Forum (www.usb.org), the industry group responsible for defining the USB certification requirements. The test patterns were generated by a PC and MATLAB software, and were inputted to the analog switch through USB connectors J1 (HSD1) or J2 (HSD2). A USB certified device was plugged into connector J4 to function as a data transceiver. The high speed and full speed tests used a flash memory device, while the low speed tests used a mouse. Test connectors J3 and J5 provide a direct connection of the USB device and were used to verify that the analog switch does not distort the data signals.

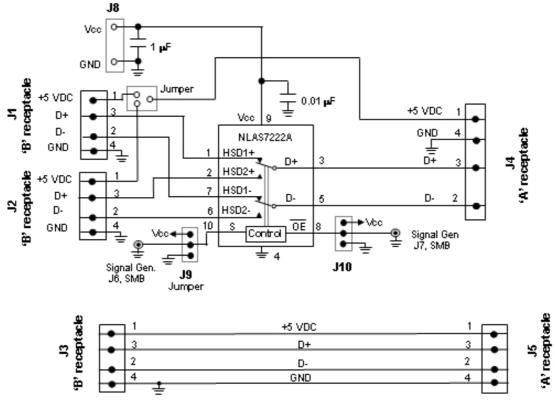


Figure 7. Schematic of the NLAS7222A USB Demo Board

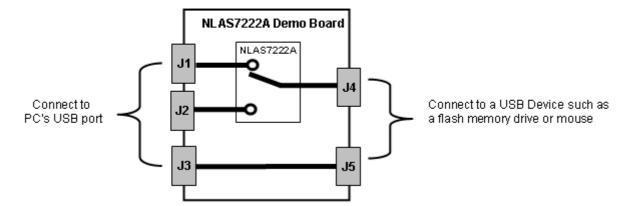


Figure 8. Block Diagram of the NLAS7222A USB Demo Board

Figure 9. Photograph of the NLAS7222A USB Demo Board

AND8267/D - NLAS7222A USB 2.0 Signal Quality Compliance Tests

Figures 10, 11 and 12 show the test results for USB eye diagram tests. A summary of the USB tests is provided in Table 3. The NLAS7222A passes the low, full and high

speed signal quality, eye diagram and jitter tests. Application note AND8267/D provides a detailed description of the USB 2.0 test results.

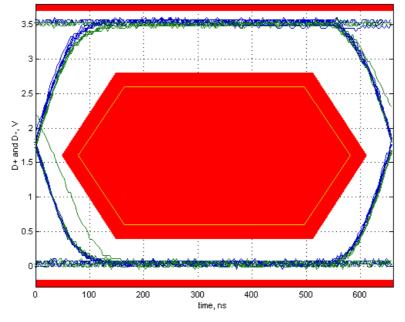


Figure 10. Low Speed Signal Quality Eye Diagram Test (NLAS7222A with V_{CC} = 3.6 V)

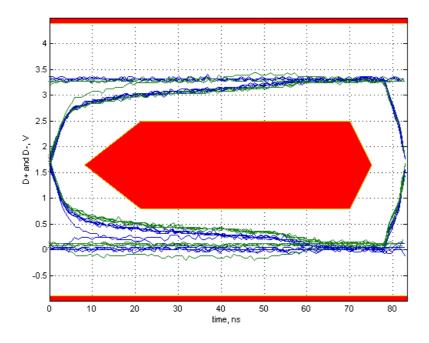


Figure 11. Full Speed Signal Quality Eye Diagram Test (NLAS7222A with V_{CC} = 3.6 V)

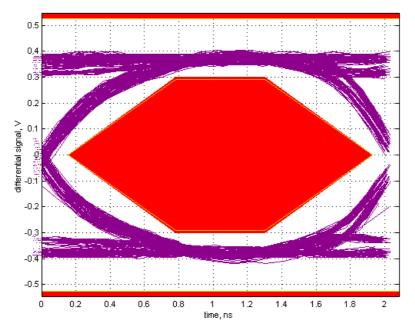
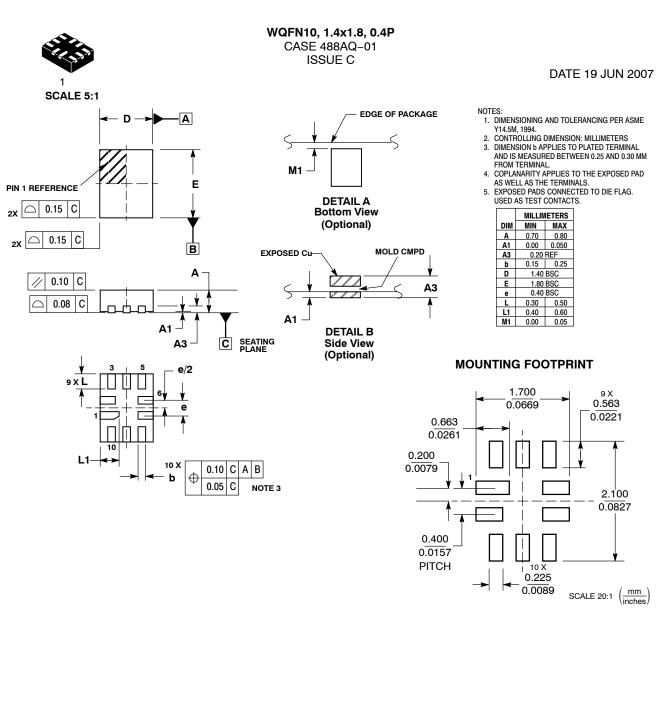


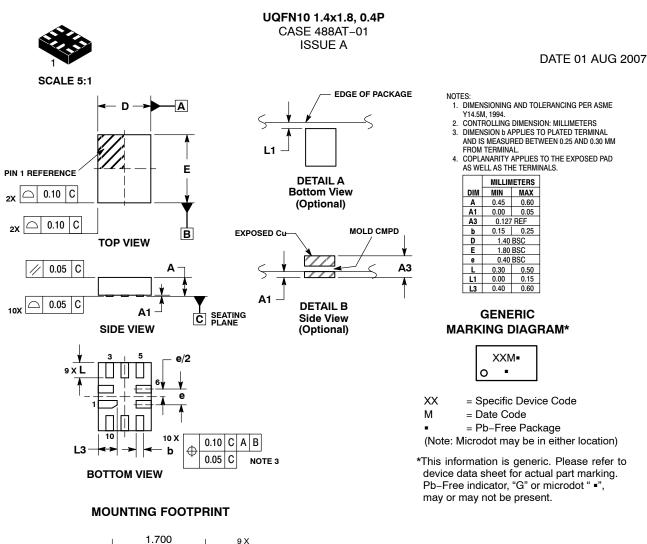
Figure 12. High Speed Signal Quality Eye Diagram Test (NLAS7222A with V_{CC} = 3.0 V)

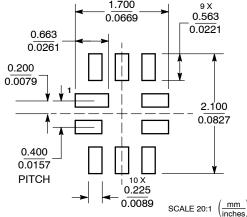
Compliance Test	Low Speed	Full Speed	High Speed
Signal Quality Test	Pass	Pass	Pass
Signal Eye Test	Pass	Pass	Pass
EOP Width	1.29 ms	166.86 ns	7.98 bits
Measured Signal Rate	1.5140 MHz	12.0016 MHz	480.0685 MHz
Crossover Voltage Range	1.75 to 1.83 V, mean crossover = 1.78 V	1.70 to 1.73 V, mean crossover = 1.71 V	N/A
Connective Jitter Range	–2.2 to 2.2 ns, RMS jitter = 1.3 ns	–0.2 to 0.2 ns, RMS jitter = 0.1 ns	–79.4 to 77.4 ps, RMS jitter = 35.0 ps
Paired JK Jitter Range	–1.4 to 2.7 ns, RMS jitter = 1.3 ns	–0.1 to 0.1 ns, RMS jitter = 0.1 ns	–93.2 to 78.7 ps, RMS jitter = 24.4 ps
Paired KJ Jitter Range	–1.9 to 1.1 ns, RMS jitter = 1.0 ns	–0.2 to 0.1 ns, RMS jitter = 0.1 ns	–72.8 to 50.9 ps, RMS jitter = 15.6 ps


Table 3. Summary of the USB 2.0 Signal Quality Tests Results

ORDERING INFORMATION

Device	Package	Shipping†
NLAS7222AMTR2G	WQFN10 (Pb-Free)	
NLAS7222AMUR2G*	UQFN10	3000 / Tape & Reel
NLAS7222AMUTAG*	(Pb-Free)	


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLAS72222AMUR2G and NLAS7222AMUTAG are Tape & Reel orientation options.



DOCUMENT NUMBER:	98AON20791D	Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED to the stamped "CONTROLLED to the stamped statement of the stamped statement of the s					
DESCRIPTION:	WQFN10, 1.4 X 1.8, 0.4P		PAGE 1 OF 1				
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the						

DOCUMENT NUMBER:	98AON22493D	N22493D Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	10 PIN UQFN, 1.4 X 1.8, 0.4P		PAGE 1 OF 1

ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative