Single/Dual-Channel High-Voltage Protection T/R Switch

Features

- Up to $\pm 100 \mathrm{~V}$ Input Voltage Protection
- Low On-Resistance, 15Ω Typical
- Fast-Switching Speed
- Effective Simple Two-Terminal Device
- No External Supplies Needed

Applications

- Medical Ultrasound Imaging
- Non-Destructive Testing Applications
- Fast Resettable Fuses
- High-Side Switches
- Data Acquisition

General Description

The MD0100 is a high-voltage, two-terminal, bi-directional, current-limiting protection device. The two terminals are interchangeable. It is designed to protect a low-noise receiver from high-voltage transmit pulses in ultrasound applications and is commonly referred to as a transmit-and-receive (T/R) switch.
The MD0100 can be considered as a normally closed switch with a typical switch resistance of 15Ω that allows small signals to pass. When the voltage drop across the two terminals exceeds a nominal value of $\pm 2 \mathrm{~V}$, the device turns off. In the OFF state, the MD0100 can withstand up to $\pm 100 \mathrm{~V}$ across its terminals. A small amount of current (typically $200 \mu \mathrm{~A}$) is allowed to flow through.
The applications for the MD0100 are not limited to just ultrasound. It can also be used as resettable fuses to protect power lines, output short-circuit protection and data acquisition. The MD0100 is available in an SOT-89 package as a single-channel device, as well as in a $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 8-lead DFN package as a dual-channel device.

Package Types

See Table 2-1 and Table 2-2 for pin information.

MD0100

Functional Block Diagram

Typical Application Circuit

MD0100

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings \daggerDifferential Voltage, $\mathrm{V}_{\mathrm{A}-\mathrm{B}}$
\qquad .0 V to +110 V
Maximum Junction Temperature, T_{J} $+125^{\circ} \mathrm{C}$
Storage Temperature, T_{S} $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation:
3-lead SOT-89 (Note 1, Note 2) 1.6W
8 -lead DFN (Note 1, Note 2) 1.67W
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note 1: Mounted on an FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$
2: The maximum power dissipation is per die. A package has two dies.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $T_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
Maximum Differential Input Voltage from A to B	$\mathrm{V}_{\mathrm{A}-\mathrm{B}}$	± 100	-	-	V	$\mathrm{I}_{\mathrm{A}-\mathrm{B}}= \pm 500 \mu \mathrm{~A}$
Switch-On Resistance from A to B	R_{SW}	-	15	-	Ω	$\mathrm{I}_{\mathrm{A}-\mathrm{B}}= \pm 5 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{A}-\mathrm{B}}$ Trip Point to Turn Off	$\mathrm{V}_{\text {TRIP }}$	-	± 1	± 2	V	
Switch Turn-Off Voltage	$\mathrm{V}_{\text {OFF }}$	-	± 2	-	V	$\mathrm{I}_{\mathrm{A}-\mathrm{B}}= \pm 1 \mathrm{~mA}$
Switch-Off Current	$\mathrm{I}_{\mathrm{A}-\mathrm{B}(\mathrm{OFF})}$	-	± 200	± 300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{A}-\mathrm{B}}= \pm 100 \mathrm{~V}$

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $T_{J}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
Peak Switching Current	$\mathrm{I}_{\text {PEAK }}$	-	± 60	-	mA	See Figure 3-8.
Turn-Off Time	$\mathrm{T}_{\mathrm{OFF}}$	-	-	20	ns	See Figure 3-2, Figure 3-3 and Figure 3-4.
Turn-On Time	T_{ON}	-	-	20	ns	See Figure 3-5, Figure 3-6 and Figure 3-7.
Switch-On Capacitance from A to B	$\mathrm{C}_{\mathrm{SW}(\mathrm{ON})}$	-	21	-	pF	$\mathrm{SW}=\mathrm{ON}$
Switch-Off Capacitance from A to B	$\mathrm{C}_{\text {SW(OFF) }}$	-	15	-	pF	$\mathrm{V}_{\mathrm{SW}}=25 \mathrm{~V}$
Small Signal Bandwidth	BW	-	100	-	MHz	$\mathrm{R}_{\mathrm{LOAD}}=50 \Omega$

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Junction Temperature	T_{J}	-40	-	+125	${ }^{\circ} \mathrm{C}$	
Storage Temperature	T_{S}	-65	-	+150	${ }^{\circ} \mathrm{C}$	
PACKAGE THERMAL RESISTANCE						
3-lead SOT-89	θ_{JA}	-	133	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Note 1
8-lead DFN	θ_{JA}	-	44	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

Note 1: 4-inch-x-4.5-inch JEDEC 2s2p PCB

Typical I-V Characteristics

2.0 PIN DESCRIPTION

The functional descriptions for the pins of MD0100 are listed in Table 2-1 and Table 2-2. See Package Types for the location of pins.

TABLE 2-1: 3-LEAD SOT-89 PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	A	Switch Terminal A
2	COM	Do not connect.
3	B	Switch Terminal B

TABLE 2-2: 8-LEAD DFN PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	A1	Switch Terminal A1
2	B1	Switch Terminal B1
3	A2	Switch Terminal A2
4	B2	Switch Terminal B2
5,6, and Heat Slug 2	COM2	Do not connect.
7, 8, and Heat Slug 1	COM1	Do not connect.

3.0 DETAILED DESCRIPTION

The MD0100 can be considered as a normally closed switch controlled by a built-in control circuit. (See Functional Block Diagram.) The switch control circuit monitors the voltage drop between Terminal A and Terminal B. If the voltage difference is greater than $\pm 2 \mathrm{~V}$, the T / R switch will be opened. Once in the Open state, there is a small amount of current flowing through the T/R switch (200 uA) to detect if high voltage is still present. The T/R switch will not close until the voltage between Terminal A and Terminal B drops within $\pm 2 \mathrm{~V}$. A pair of back-to-back diodes, from Terminal B (if it is connected to the receiver side) to ground is needed to complete the circuit and allow the peak current (about 60 mA) to flow through the switch. If the diodes are not present, there is no current path and the voltage drop across Terminal A and B will be less than $\pm 2 \mathrm{~V}$. As a result, the switch will remain in the ON position.

The other purpose of the diodes is to clamp voltage spikes to $\pm 0.7 \mathrm{~V}$ during transmitting and receiving periods. Low-voltage diodes with low reverse recovery time and low junction capacitances (like BAV99T) should be used.

3.1 On Resistance

When the voltage between Terminal A and Terminal B is within $\pm 2 \mathrm{~V}$, the switch is ON and the R_{ON} is typically 15Ω. Once the voltage between Terminal A and Terminal B is greater than $\pm 2 \mathrm{~V}$, the switch will be OFF and prevent high-voltage pulses from passing through to the receiver and damaging it.
The MD0100 does not require any power supply. There are only two active pins: the first connects to the transmitter side and the second connects to the receiver side.

3.2 Switch Capacitance

The typical switch-on capacitance $\mathrm{CSW}_{(\mathrm{ON})}$ is 21 pF . This is measured from A to B or B to A when the switch is turned on.

The switch-off capacitance is a function of the voltage across the T/R switch. The $\mathrm{C}_{\mathrm{SW} \text { (OFF) }}$ is about 12 pF to 19 pF for 10 V to 100 V of transmit voltage. Refer to Figure 3-1 for the $\mathrm{C}-\mathrm{V}$ curve of C_{SW} (OFF).

FIGURE 3-1: $\quad C_{S W(O F F)}$ vs. $V_{S W}$.

$3.3 \quad \mathrm{~T}_{\mathrm{ON}}$ and $\mathrm{T}_{\text {OFF }}$ Time

The T_{ON} and $\mathrm{T}_{\text {OFF }}$ of the MD0100 are less than 20 ns , which provides a quick transition between the Transmit and Receive modes. $\mathrm{T}_{\text {ON }}$ and $\mathrm{T}_{\text {OFF }}$ times are proportional to the rise and fall times of the transmit pulses. The $T_{\text {OFF }}$ and $T_{\text {ON }}$ setups are shown in Figure 3-2 and Figure 3-5, respectively.

FIGURE 3-2: \quad Test Setup for $T_{\text {OFF. }}$

FIGURE 3-3: $\quad T_{\text {OFF }}$ Timing Diagram.

FIGURE 3-4: $\quad T_{\text {OFF }}$ at $V_{A}=10 \mathrm{~V}$.
Figure 3-4 shows the actual waveform and measurement of $T_{\text {OFF. }} T_{\text {OFF }}$ is measured from 2 V of V_{A} to 10% of V_{B}. From the above waveform, $\mathrm{T}_{\text {OFF }}$ is 11 ns .

FIGURE 3-5: \quad Test Setup for $T_{O N}$.

FIGURE 3-6: $\quad T_{O N}$ Timing Diagram.

FIGURE 3-7: $\quad T_{O N}$ at $V_{A}=10 \mathrm{~V}$.
Figure 3-7 illustrates the actual waveform and measurement of T_{ON}. T_{ON} is measured from 2 V of V_{A} to 1 V of V_{B}. From the above waveform, T_{ON} is 6.6 ns .

FIGURE 3-8: \quad Test Setup for $I_{\text {PEAK }}$.

FIGURE 3-9: Test Setup for Waveforms in
Figure 3-10 and Figure 3-11.
Figure 3-10 shows the waveforms of V_{A} and V_{B} for the test circuit in Figure 3-9. There is a small bump of about 0.5 V at the tail of the V_{B} signal because the transmit signal falls into the $\pm 2 \mathrm{~V}$ range, and the MD0100 turns back on again. Figure 3-11 illustrates the same waveforms with both V_{A} and V_{B} shown with same voltage scale of $2 \mathrm{~V} /$ div.

FIGURE 3-10: Typical Waveform A.

FIGURE 3-11: Typical Waveform B.

4.0 PACKAGING INFORMATION

4.1 Package Marking Information

3-lead SOT-89

8-lead DFN

Example

Example
MD0100
K6
(3)1819

- 483

Legend: $X X \ldots$...X Product Code or Customer-specific information
$Y \quad$ Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
(e3) Pb-free JEDEC ${ }^{\circledR}$ designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Symbol		A	b	b1	C	D	D1	E	E1	e	e1	H	L
Dimensions (mm)	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00^{+}	$\begin{aligned} & 1.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 3.00 \\ & \text { BSC } \end{aligned}$	3.94	$0.73{ }^{+}$
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.
\dagger This dimension differs from the JEDEC drawing
Drawings not to scale.

8-Lead DFN Package Outline (K6)

$4.00 \times 4.00 \mathrm{~mm}$ body, 1.00 mm height (max), 1.00 mm pitch (dual pad)

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Drawings not to scale

APPENDIX A: REVISION HISTORY

Revision A (October 2018)

- Converted Supertex Doc\# DSFP-MD0100 to Microchip DS20005738A
- Changed the power dissipation value of 8-lead DFN from "1.1W" to "1.67W"
- Changed Note 1 to " 4 -inch-x-4.5-inch JEDEC 2s2p PCB"
- Changed the package marking format
- Changed the quantity of the 8-lead DFN K6 package from 3000/Reel to 3300/Reel
- Changed the "3-lead TO-243AA (SOT-89)" package marking to "3-lead SOT-89"
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

$\frac{\text { PART NO. }}{\text { Device }}$	$\frac{X X}{\text { Padkage }}$ Options		Examples: a) MD0100N8-G:	Single-Channel High-Voltage Protection T/R Switch, 3-lead SOT89,
Devices:	MD0100 = MD0100D =	Single-Channel High-Voltage Protection T/R Switch, Single Channel Dual-Channel High-Voltage Protection T/R Switch	b) MD0100DK6G:	Dual-Channel High-Voltage Protection T/R Switch, 8-lead (4×4) VDFN, 3300/Reel
Packages:	N 8 $=$ K 6 $=$	3-lead SOT89 (for single channel only) 8 -lead (4x4) VDFN (for dual channel only)		
Environmental:	G =	Lead (Pb)-free/RoHS-compliant Package		
Media Type:	$\begin{array}{ll} \text { (blank) } & = \\ \text { (blank) } & = \end{array}$	2000/Reel for an N8 Package 3300/Reel for a K6 Package		

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC ${ }^{\circledR}$ MCUs and dsPIC ${ }^{\circledR}$ DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS $16949=$

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH \& Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
© 2018, Microchip Technology Incorporated, All Rights Reserved.
ISBN: 978-1-5224-3685-0

Microchip

Worldwide Sales and Service

AMERICAS
 Corporate Office 2355 West Chandler Blvd.
 Chandler, AZ 85224-6199
 Tel: 480-792-7200
 Fax: 480-792-7277
 Technical Support:
 http://www.microchip.com/ support
 Web Address:
 www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880-3770
Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra'anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

