

## MCU with 1KB SRAM and 16Kx16 ECC E-Flash

## **GENERAL DESCRIPTION**

CS8975 is a general-purpose MCU with 16KB Code e-Flash memory with ECC, 1K SRAM with ECC. The embedded flash for code storage has built-in ECC that correct 1-bit error and detect two-bit errs. CPU accesses the e-Flash through program address read and through Flash Controller which can performs software read/write operations of e-Flash.

CPU in CS8975 is 1-T 8051 with enhanced multiplication and division accelerator. There are two clock sources for system, one is a 16MHz/32MHz IOSC (manufacturer calibrated +/- 2%) and another one is 128KHz SOSC. Both clock sources have a clock programmable divider for scaling down the frequency to save power dissipations. The clock selections are combined with flexible power management schemes, including NORMAL, STOP, and SLEEP modes to balance speed and power consumption.

There are T0/T1/T2/T3/T4/T5 timers coupled with CPU and three WDT where WDT1 is clocked by SYSCLK, and WDT2/WDT3 are clocked by a non-stop SOSC. An 8-bit/16-bit checksum and 16-bit CRC accelerator is included. There are EUART/LIN controller and I2C master/Slave controller as well as SPI master/slave controller. The interfaces of these controllers are multiplexed with GPIO pins. Other useful peripherals include a buzzer control, 6 channels of 12-bit PWM, and one channel of 16-bit timer/capture and quadrature decoder.

Analog peripherals include an 11-bit ADC with internal temperature sensor, an 8-bit voltage output DAC, and four analog comparators with programmable threshold. A touch key controller up to 20-bit resolutions is also included. The touch key controller also has shield output capability for moisture immunity. The touch key controller allows sleep mode (under 10uA) and use auto detection for wakeup. The maximum number of key input can be scanned is 11.

CS8975 also provides a flexible means of flash programming that supports ISP and IAP. The protection of data loss is implemented in hardware by access restriction of critical storage segments. The code security is reinforced with sophisticated writer commands and ISP commands. The on-chip break point processor also allows easy debugging which can be integrated with ISP. Reliable power-on-reset circuit and low supply voltage detection allows reliable operations under harsh environments.

#### **Applications**

- Touch key applications with high robustness and reliability requirements
- Automotive and appliance

## FEATURES

#### CPU and Memory

- 1-Cycle 8051 CPU core up to 32MHz
- 16-bit Timers T0/T1/T2/T3/T4 and 24-bit T5
- Checksum and CRC accelerator
- WDT1 by SYSCLK, WDT2/WDT3 by SOSC
- Clock fault monitoring
- Up to 6 external interrupts shared with GPIO pins
- Power saving modes Normal, STOP, and SLEEP modes
- 256B IRAM and 1792B XRAM or 256B IRAM and 768B XRAM with ECC check
- 16KB Code e-Flash with ECC and two 512x16 Information Block
  - Program read with hardware ECC
  - Software read/write direct access 16-bit wide
  - Code security and data loss protection
  - 100K endurance and 10 years retention

#### Clock Sources

- Internal oscillator at +/- 2% 16MHz/32MHz
   Spread Spectrum option
- Internal low power oscillator 128KHz
- External clock option

#### Digital Peripherals

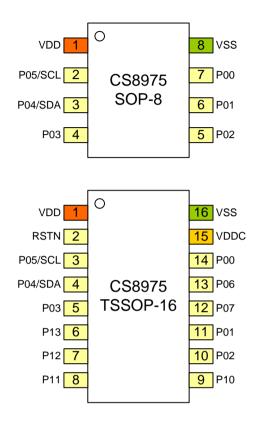
- ♦ 6 CH 8/10/12-bit center-aligned PWM controller
  - Trigger interrupt and ADC conversion
  - Output polarity
- One 16-bit Timer/Capture and One 16-bit quadrature decoder
- Buzzer/Melody generator
- One I<sup>2</sup>C Master
- One I<sup>2</sup>C Slave also for ISP and debug
- One SPI Master/Slave Controllers
- One EUART1 and one EUART2/LIN

#### Analog Peripherals

- Capacitance sense touch-key controller scan up to 11 key inputs
  - Shield output for moisture immunity
  - Low power sleep mode wakeup (<5uA).</li>
- 11-Bit SAR ADC with GPIO analog input
- Temperature sensor and supply measurement
- 8-Bit DAC and four analog comparators
- Power on reset and Low voltage detect (2.3V-4.5V)

#### Miscellaneous

- Up to 12 GPIO pins with multi-function options
  - Configurable IO structure and noise filters
- 2.3V to 5.5V single supply
- Active current < 150uA/MHz in Normal mode
- Low power standby (< 1uA) in SLEEP mode</li>
- Operating temperature -40°C to 85°C
- SOP-8/TSSOP-16 package and RoHS compliant




## IS31CS8975 BLOCK DIAGRAM

| REGULATOR                                                                  | RESET                                         | LOW<br>SUPPLY<br>DETECT  | IOSC<br>16/32MHz        | DT1<br>DT2<br>DT3<br>SIOSC<br>128KH |                            | TIMER[0-5]                                    | RUPT                                          |
|----------------------------------------------------------------------------|-----------------------------------------------|--------------------------|-------------------------|-------------------------------------|----------------------------|-----------------------------------------------|-----------------------------------------------|
|                                                                            | 2KB<br>IRAM/XRAM                              |                          |                         |                                     |                            |                                               |                                               |
| 4KB<br>ECC<br>Boot Code<br>12KB<br>ECC<br>Code<br>FLASH<br>512B IFB<br>X 2 | ;                                             | FLASH<br>CONTROL         |                         | 8051                                |                            | I2CS / ISP<br>I2CM0<br>UART1<br>EUART2<br>LIN | I/O MULTIPLEXER AND BUFFERS AND PIN INTERRUPT |
| 16-Bit QED<br>16-Bit PCA<br>1CH TCC                                        |                                               | 2-Bit PCA<br>6-CH<br>PWM | TOUCH KEY<br>Controller | 11-Bit<br>ADC                       | 8-Bit<br>DAC<br>ACMP<br>X4 | SPI M/S                                       | I/O MULTIF                                    |
|                                                                            | I/O MULTIPLEXER AND BUFFERS AND PIN INTERRUPT |                          |                         |                                     |                            |                                               |                                               |

## IS31CS8975 PIN OUT





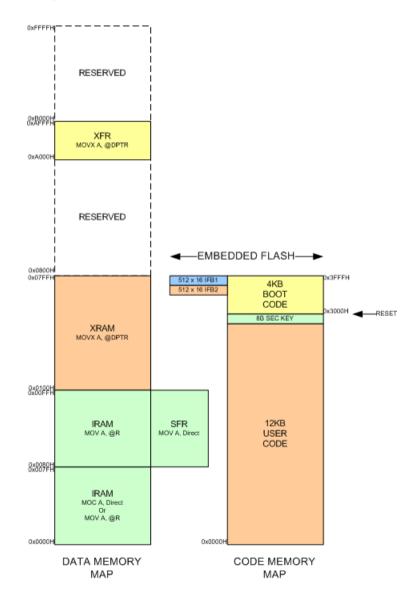


## IS31CS8975 PIN Description and Multifunction Table

|       | -      | on and Mu  |      |                                                                                 |               |                                                                                 |  |  |  |
|-------|--------|------------|------|---------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------|--|--|--|
| 8 PIN | 16 PIN |            | TYPE | ANIO1                                                                           | ANIO2         |                                                                                 |  |  |  |
| 1     | 1      | VDDH       | P    |                                                                                 |               | Supply Voltage 2.3V to 5.5V                                                     |  |  |  |
| -     | 2      | RSTN       | 10   |                                                                                 | 4004          | Active low reset input with internal 5K Ohm pull-up.                            |  |  |  |
| 2     | 3      | P05        | IO/A | KEY                                                                             | ADCA          | Port 0.5 I/O with multi-function.                                               |  |  |  |
| 3     | 4      | P04        | IO/A | KEY                                                                             | ADCB          | This pin also defaults to I2CS SCL for ISP<br>Port 0.4 I/O with multi-function. |  |  |  |
| 3     | 4      | F 04       | 10/A |                                                                                 | ADCB          | This pin also defaults to I2CS SDA for ISP                                      |  |  |  |
| 4     | 5      | P03        | IO/A | KEY                                                                             | ADCA          | Port 0.3 I/O with multi-function.                                               |  |  |  |
| •     | 6      | P13        | IO/A | KEY                                                                             | CMPTH         | Port 1.3 I/O with multi-function.                                               |  |  |  |
|       | 7      | P12        | IO/A | KEY                                                                             | CMPD          | Port 1.2 I/O with multi-function.                                               |  |  |  |
|       | 8      | P11        | IO/A | KEY                                                                             | CMPC          | Port 1.1 I/O with multi-function.                                               |  |  |  |
|       | 9      | P10        | IO/A | KEY                                                                             | CMPB          | Port 1.0 I/O with multi-function.                                               |  |  |  |
| 5     | 10     | P02        | IO/A | KEY                                                                             | CMPA          | Port 0.2 I/O with multi-function.                                               |  |  |  |
| 6     | 10     | P01        | IO/A | KEY                                                                             | SHIELD        | Port 0.1 I/O with multi-function.                                               |  |  |  |
| 0     | 12     | P07        | IO/A | KEY                                                                             | ADCB          | Port 0.7 I/O with multi-function.                                               |  |  |  |
|       | 13     | P06        | IO/A | KEY                                                                             | SHIELD        | Port 0.6 I/O with multi-function.                                               |  |  |  |
| 7     | 14     | P00        | IO/A | KEYR                                                                            | DAC           | Port 0.0 I/O with multi-function.                                               |  |  |  |
| 1     | 14     | VDDC       | P/0  |                                                                                 |               | Internal 1.5V supply.                                                           |  |  |  |
|       | 10     | 1000       | 1/0  |                                                                                 |               | Connect to external 1.0uF decoupling capacitor.                                 |  |  |  |
| 8     | 16     | VSS        | G    |                                                                                 |               | VSS                                                                             |  |  |  |
|       |        |            |      | ter to selec                                                                    | t nin functio | ons. The function table is shown as following table.                            |  |  |  |
|       | G[4-0] | Function I |      |                                                                                 |               | FUNCTION DESCRIPTION                                                            |  |  |  |
|       | 000    | LOW        |      | This force the output to logic low state. Actual output depends on OPOL setting |               |                                                                                 |  |  |  |
| 000   |        |            |      | in IOCFG register.                                                              |               |                                                                                 |  |  |  |
| 000   | 001    | GPIC       |      | 8051 GPIC                                                                       |               |                                                                                 |  |  |  |
| 000   | 010    | SCK        |      | SPI SCK ir                                                                      | put or outp   | out depending SPI MS setting.                                                   |  |  |  |
| 000   | D11    | SDI        |      | SPI SDI input corresponding to MI or SI depending SPI MS setting.               |               |                                                                                 |  |  |  |
| 00    | 100    | SDO        |      | SPI SDO output corresponding to MO or SO depending SPI MS setting.              |               |                                                                                 |  |  |  |
| 00    | 101    | SSN        |      | SPI SSN ir                                                                      | put or outp   | out depending SPI MS setting.                                                   |  |  |  |
| 00    | 110    | SSCL       | -    | I2C Slave SCL I/O                                                               |               |                                                                                 |  |  |  |
| 00    | 111    | SSDA       | A I  | I2C Slave SDA I/O                                                               |               |                                                                                 |  |  |  |
| 010   | 000    | MSCI       | -    | I2C Master                                                                      | SCL I/O       |                                                                                 |  |  |  |
| 010   | 001    | MSDA       | A    | I2C Master                                                                      | SDA I/O       |                                                                                 |  |  |  |
| 010   | 010    | TX1        |      | EUART1 T                                                                        | X output      |                                                                                 |  |  |  |
| 010   | 011    | RX1        |      | EUART1 R                                                                        | X input       |                                                                                 |  |  |  |
| 01    | 100    | TX2        |      | EUART2/L                                                                        | IN TX outp    | ut                                                                              |  |  |  |
| 01    | 101    | RX2        |      | EUART2/L                                                                        | IN RX inpu    | t                                                                               |  |  |  |
| 011   | 110    | BZ         |      |                                                                                 | lody output   |                                                                                 |  |  |  |
| 01    | 111    | XCLK       | <    | External sy                                                                     | stem clock    | input                                                                           |  |  |  |
| 100   | 000    | Т0         |      | Timer 0 inp                                                                     |               |                                                                                 |  |  |  |
|       | 001    | T1         |      | Timer 1 inp                                                                     |               |                                                                                 |  |  |  |
| 100   | 010    | T2         |      | Timer 2 inp                                                                     | out           |                                                                                 |  |  |  |
| 100   | 011    | IDX        |      | Quadrature                                                                      | e Encoder I   | DX (Index) input                                                                |  |  |  |
| 101   | 100    | PHA        |      | Quadrature                                                                      | e Encoder F   | PHA (Phase A) input                                                             |  |  |  |
| 10    | 101    | PHB        |      | Quadrature                                                                      | e Encoder F   | PHA (Phase B) input                                                             |  |  |  |
| 10    | 110    | XCAP       | Т    | TCC (Time                                                                       | r Compare     | /Capture) Capture Input                                                         |  |  |  |
| 10    | 111    | TC         |      | TCC (Time                                                                       | r Compare     | /Capture) Terminal Count output                                                 |  |  |  |
| 11(   | 000    | CC         |      | TCC (Time                                                                       | r Compare     | /Capture) Compare Count output                                                  |  |  |  |
| 11(   | 001    | PWM        | 0    | PWM Char                                                                        | nnel 0 outpu  | ut                                                                              |  |  |  |
| 11010 |        | PWM        | 1    | PWM Char                                                                        | nnel 1 outpu  | ut                                                                              |  |  |  |



| _ |       |      |                                                                                                    |
|---|-------|------|----------------------------------------------------------------------------------------------------|
|   | 11011 | PWM2 | PWM Channel 2 output                                                                               |
|   | 11100 | PWM3 | PWM Channel 3 output                                                                               |
|   | 11101 | PWM4 | PWM Channel 4 output                                                                               |
|   | 11110 | PWM5 | PWM Channel 5 output                                                                               |
|   | 11111 | HIGH | This force the output to logic high state. Actual output depends on OPOL setting in IOCFG register |


\*\*\*\* MFCFG[4-0] default is 00000 after reset, thus default state is output logic low.



## IS31CS8975 MEMORY MAP

There are total 256 bytes internal RAM in CS8975, the same as standard 8052. There are total 768 bytes auxiliary RAM allocated in the 8051 extended RAM area at 0x0100h – 0x03FFh. Programs can use "MOVX" instruction to access the XRAM.

There is a 16Kx16 embedded Flash memory for code storage. For CPU program access (Read Only), the lower byte is used for actual access, and the upper byte is used for ECC check. The ECC is performed in nibble bases with each nibble in the high byte corresponds to the nibbles in the low byte. ECC in this case is capable of onebit correction and two-bit detection for each nibble. This is significantly more robust than 8:5 ECC. ECC check in program access path is in hardware and performed automatically. The embedded Flash can also be accessed through Flash controller. The Flash controller allows both read/write access and is always in 16-bit width with no ECC. For erase operations, the page size of the Flash is in 512x16. There are two 512x16 IFB blocks in the Flash. The first IFB is used for manufacturing and calibration data, and some area as user OTP data. The 2<sup>nd</sup> IFB is open for user application with no restriction. Also please note there are 8-byte of code security key located at the last of user program space for protection of pirate access of information.





## REGISTER MAP SFR (0x80 – 0xFF)

The SFR address map maintains maximum compatibilities to most commonly used 8051 like MCU. The following table shows the SFR address map. Since SFR can be accessed by direct addressing mode, registers of built-in peripherals that require fast access are mostly located in SFR. XFR is mainly used for on-chip peripheral control and configurations.

|      | 0     | 1      | 2      | 3        | 4       | 5        | 6        | 7      |
|------|-------|--------|--------|----------|---------|----------|----------|--------|
| 0XF0 | В     | -      |        |          | I2CMSA  | I2CMCR   | I2CMBUF  | I2CMTP |
| 0XE0 | ACC   | -      | -      | -        | -       | -        | -        | -      |
| 0XD0 | PSW   | -      | -      | -        | -       | -        | -        | -      |
| 0XC0 | -     | -      | SCON2  | I2CMTO   | PMR     | STATUS   | MCON     | ТА     |
| 0XB0 | -     | SCON1  | SCON1X | SFIFO1   | SBUF1   | SINT1    | SBR1L    | SBR1H  |
| 0XA0 | P2    | SPICR  | SPIMR  | SPIST    | SPIDATA | SFIFO2   | SBUF2    | SINT2  |
| 0X90 | P1    | EXIF   | WTST   | DPX      | -       | DPX1     | -        | -      |
| 0X80 | P0    | SP     | DPL    | DPH      | DPL1    | DPH1     | DPS      | PCON   |
|      | 8     | 9      | A      | В        | С       | D        | E        | F      |
| 0XF8 | EXIP  | MD0    | MD1    | MD2      | MD3     | MD4      | MD5      | ARCON  |
| 0XE8 | EXIE  |        | MXAX   | -        | -       | -        | -        | -      |
| 0XD8 | WDCON |        | DPXR   | I2CSCON2 | I2CSST2 | I2CSADR2 | I2CSDAT2 | -      |
| 0XC8 | T2CON | ТВ     | RLDL   | RLDH     | TL2     | TH2      | ADCCTL   | T34CON |
| 0XB8 | IP    | -      | ADCL   | ADCH     | -       | -        | -        | -      |
| 0XA8 | IE    | ADCCFG | -      | -        | TL4     | TH4      | TL3      | TH3    |
| 0X98 |       |        | -      | ESP      | -       | ACON     | -        | WKMASK |
| 0X88 | TCON  | TMOD   | TL0    | TL1      | TH0     | TH1      | CKCON    | CKSEL  |



| <b>REGISTER MAP</b> |        | 10 1000                    |               |
|---------------------|--------|----------------------------|---------------|
|                     | VLD.   | $m_{\mathbf{v}} \wedge mm$ |               |
|                     |        |                            |               |
|                     | /\   \ |                            | V/// 11 I I / |

|                              | 0                                    | 1                                    | 2                                  | 3                       | 4                       | 5                                            | 6                   | 7                   |
|------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------------|-------------------------|----------------------------------------------|---------------------|---------------------|
| A000                         | REGTRM                               | IOSCITRM                             | IOSCVTRM                           | -                       | -                       | -                                            | -                   | SOSCTRM             |
| A010                         | LVDCFG                               | LVDTHD                               | LVDHYS                             | -                       | TSTMON                  | FLSHVDD                                      | BSTCMD              | RSTCMD              |
| A020                         | FLSHDATL                             | FLSHDATH                             | FLSHADL                            | FLSHADH                 | FLSHECC                 | FLSHCMD                                      | ISPCLKF             | FLSHPRTC            |
| A030                         | FLSHPRT0                             | FLSHPRT1                             | FLSHPRT2                           | FLSHPRT3                | FLSHPRT4                | FLSHPRT5                                     | FLSHPRT6            | FLSHPRT7            |
| A040                         | NTAFRQL                              | NTAFRQH                              | NTADUR                             | NTAPAU                  | NTBFRQL                 | NTBFRQH                                      | NTBDUR              | NTBPAU              |
| A050                         | TCCFG1                               | TCCFG2                               | TCCFG3                             | -                       | TCPRDL                  | TCPRDH                                       | TCCMPL              | ТССМРН              |
| A060                         | TCCPTRL                              | TCCPTRH                              | TCCPTFL                            | TCCPTFH                 | -                       | -                                            | -                   | -                   |
| A070                         | QECFG1                               | QECFG2                               | QECFG3                             | -                       | QECNTL                  | QECNTH                                       | QEMAXL              | QEMAXH              |
|                              |                                      |                                      |                                    |                         |                         |                                              |                     |                     |
|                              | 8                                    | 9                                    | A                                  | В                       | С                       | D                                            | E                   | F                   |
| A008                         | -                                    | 9                                    | A<br>-                             | B<br>-                  | C<br>-                  | D<br>PECCCFG                                 | E<br>PECCADL        | F<br>PECCADH        |
| A008<br>A018                 |                                      | 9<br>-<br>TK3CFGB                    | A<br>-<br>TK3CFGC                  | B<br>-<br>TK3CFGD       | C<br>-<br>TK3HDTYL      |                                              |                     |                     |
|                              | -                                    | -                                    | -                                  | -                       | -                       | PECCCFG                                      | PECCADL             | PECCADH             |
| A018                         | -<br>TK3CFGA<br>TK3BASEL             | -<br>TK3CFGB                         | -<br>TK3CFGC                       | -<br>TK3CFGD            | -<br>TK3HDTYL           | PECCCFG<br>TK3HDTYH                          | PECCADL<br>TK3LDTYL | PECCADH<br>TK3LDTYH |
| A018<br>A028                 | -<br>TK3CFGA<br>TK3BASEL             | -<br>TK3CFGB<br>TK3BASEH             | -<br>TK3CFGC<br>TK3THDL            | -<br>TK3CFGD<br>TK3THDH | -<br>TK3HDTYL<br>TK3PUD | PECCCFG<br>TK3HDTYH<br>DECCCFG               | PECCADL<br>TK3LDTYL | PECCADH<br>TK3LDTYH |
| A018<br>A028<br>A038         | -<br>TK3CFGA<br>TK3BASEL<br>CMPCFGAB | -<br>TK3CFGB<br>TK3BASEH<br>CMPCFGCD | -<br>TK3CFGC<br>TK3THDL<br>CMPVTH0 | -<br>TK3CFGD<br>TK3THDH | -<br>TK3HDTYL<br>TK3PUD | PECCCFG<br>TK3HDTYH<br>DECCCFG               | PECCADL<br>TK3LDTYL | PECCADH<br>TK3LDTYH |
| A018<br>A028<br>A038<br>A048 | -<br>TK3CFGA<br>TK3BASEL<br>CMPCFGAB | -<br>TK3CFGB<br>TK3BASEH<br>CMPCFGCD | -<br>TK3CFGC<br>TK3THDL<br>CMPVTH0 | -<br>TK3CFGD<br>TK3THDH | -<br>TK3HDTYL<br>TK3PUD | PECCCFG<br>TK3HDTYH<br>DECCCFG<br>CMPST<br>- | PECCADL<br>TK3LDTYL | PECCADH<br>TK3LDTYH |

|      | 0        | 1        | 2        | 3        | 4        | 5        | 6        | 7         |
|------|----------|----------|----------|----------|----------|----------|----------|-----------|
| A080 | PWMCFG1  | PWMCFG2  | PWMCFG3  | -        | PWM0DTYL | PWM0DTYH | PWM1DTYL | PWM1DTYH  |
| A090 | LINCTRL  | LINCNTRH | LINCNTRL | LINSBRH  | LINSBRL  | LININT   | LININTEN | -         |
| A0A0 | -        | -        | -        | -        | -        | -        | -        | -         |
| A0B0 | LINTCON  | TXDTOL   | TXDTOH   | RXDTOL   | RXDTOH   | BSDCLRL  | BSDCLRH  | BSDWKC    |
| A0C0 | -        | -        | -        | -        | -        | -        | -        | -         |
| A0D0 | -        | -        | -        | -        | -        | -        | -        | -         |
| A0E0 | BPINTF   | BPINTE   | BPINTC   | BPCTRL   | -        | -        | -        | -         |
| A0F0 | PC1AL    | PC1AH    | PC1AT    | -        | PC2AL    | PC2AH    | PC2AT    | -         |
|      | 8        | 9        | A        | В        | С        | D        | E        | F         |
| A088 | PWM2DTYL | PWM2DTYH | PWM3DTYL | PWM3DTYH | PWM4DTYL | PWM4DTYH | PWM5DTYL | PWM5DTYH  |
| A098 | DBPCIDL  | DBPCIDH  | DBPCIDT  | DBPCNXL  | DBPCNXH  | DBPCNXT  | STEPCTRL | SI2CDBGID |
| A0A8 | -        | -        | -        | -        | -        | -        | -        | -         |
| A0B8 | BSDACT   | -        | -        | -        | -        | -        | -        | -         |
| A0C8 | -        | -        | -        | -        | -        | -        | -        | -         |
| A0D8 | WDT2CF   | WDT2L    | WDT2H    | WDT3CF   | WDT3L    | WDT3H    |          |           |
| A0E8 | -        | -        | -        | -        | -        | -        | -        | -         |
| A0F8 | -        | _        | -        | -        | -        | -        | -        | -         |



|                              | 0                                         | 1                    | 2                    | 3                    | 4                    | 5                                         | 6                    | 7                    |
|------------------------------|-------------------------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------------|----------------------|----------------------|
| A100                         | IOCFGO00                                  | IOCFGO01             | IOCFGO02             | IOCFGO03             | IOCFGO04             | IOCFGO05                                  | IOCFGO06             | IOCFGO07             |
| A110                         | IOCFGI00                                  | IOCFGI01             | IOCFGI02             | IOCFGI03             | IOCFGI04             | IOCFGI05                                  | IOCFGI06             | IOCFGI07             |
| A120                         | MFCFG00                                   | MFCFG01              | MFCFG02              | MFCFG03              | MFCFG04              | MFCFG05                                   | MFCFG06              | MFCFG07              |
| A130                         |                                           |                      |                      |                      |                      |                                           |                      |                      |
| A140                         |                                           |                      |                      |                      |                      |                                           |                      |                      |
| A150                         |                                           |                      |                      |                      |                      |                                           |                      |                      |
| A160                         | -                                         | -                    | -                    | -                    | -                    | -                                         | -                    | -                    |
| A170                         | -                                         | -                    | -                    | -                    | -                    | -                                         | -                    | -                    |
|                              |                                           |                      |                      |                      |                      |                                           |                      |                      |
|                              | 8                                         | 9                    | А                    | В                    | С                    | D                                         | E                    | F                    |
| A108                         | 8<br>IOCFGO10                             | 9<br>IOCFGO11        | A<br>IOCFGO12        | B<br>IOCFGO13        | C<br>IOCFGO14        | D<br>IOCFGO15                             | E<br>IOCFGO16        | F<br>IOCFGO17        |
| A108<br>A118                 |                                           |                      |                      |                      |                      |                                           |                      |                      |
|                              | IOCFGO10                                  | IOCFG011             | IOCFGO12             | IOCFGO13             | IOCFGO14             | IOCFGO15                                  | IOCFGO16             | IOCFGO17             |
| A118                         | IOCFGO10<br>IOCFGI10                      | IOCFGO11<br>IOCFGI11 | IOCFGO12<br>IOCFGI12 | IOCFGO13<br>IOCFGI13 | IOCFGO14<br>IOCFGI14 | IOCFGO15<br>IOCFGI15                      | IOCFGO16<br>IOCFGI16 | IOCFGO17<br>IOCFGI17 |
| A118<br>A128                 | IOCFGO10<br>IOCFGI10                      | IOCFGO11<br>IOCFGI11 | IOCFGO12<br>IOCFGI12 | IOCFGO13<br>IOCFGI13 | IOCFGO14<br>IOCFGI14 | IOCFGO15<br>IOCFGI15                      | IOCFGO16<br>IOCFGI16 | IOCFGO17<br>IOCFGI17 |
| A118<br>A128<br>A138         | IOCFGO10<br>IOCFGI10<br>MFCFG10<br>-      | IOCFGO11<br>IOCFGI11 | IOCFGO12<br>IOCFGI12 | IOCFGO13<br>IOCFGI13 | IOCFGO14<br>IOCFGI14 | IOCFGO15<br>IOCFGI15<br>MFCFG15<br>-      | IOCFGO16<br>IOCFGI16 | IOCFGO17<br>IOCFGI17 |
| A118<br>A128<br>A138<br>A148 | IOCFGO10<br>IOCFGI10<br>MFCFG10<br>-<br>- | IOCFGO11<br>IOCFGI11 | IOCFGO12<br>IOCFGI12 | IOCFGO13<br>IOCFGI13 | IOCFGO14<br>IOCFGI14 | IOCFGO15<br>IOCFGI15<br>MFCFG15<br>-<br>- | IOCFGO16<br>IOCFGI16 | IOCFGO17<br>IOCFGI17 |



## 1. <u>8051 CPU</u>

#### 1.1 <u>CPU Register</u>

#### ACC (0xE0) Accumulator R/W (0x00)

|    | 7        | 6        | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----------|----------|---|---|---|---|---|---|
| RD |          | ACC[7-0] |   |   |   |   |   |   |
| WR | ACC[7-0] |          |   |   |   |   |   |   |

ACC is the CPU accumulator register and is involved in direct operations of many instructions. ACC is bit addressable.

#### B (0xF0) B Register R/W (0x00)

|    | 7 | 6      | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---|--------|---|---|---|---|---|---|
| RD |   | B[7-0] |   |   |   |   |   |   |
| WR |   | B[7-0] |   |   |   |   |   |   |

B register is used in standard 8051 multiply and divide instructions and also used as an auxiliary register for temporary storage. B is also bit addressable.

#### PSW (0xD0) Program Status Word R/W (0x00)

|    | 7  | 6          | 5  | 4   | 3   | 2  | 1  | 0 |
|----|----|------------|----|-----|-----|----|----|---|
| RD | CY | AC         | FO | RS1 | RS0 | OV | UD | Р |
| WR | CY | AC         | FO | RS1 | RS0 | OV | UD | Р |
| С  | Y  | Carry Flag |    |     |     |    |    |   |

| CY       | Carry Flag                            |
|----------|---------------------------------------|
| AC       | Auxiliary Carry Flag (BCD Operations) |
| FO       | General Purpose                       |
| RS1, RS0 | Register Bank Select                  |
| OV       | Overflow Flag                         |
| UD       | User Defined (reserved)               |
| Р        | Parity Flag                           |
|          |                                       |

#### SP (0x81) Stack Pointer R/W (0x00)

|    | 7 | 6       | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|---------|---|---|---|---|---|---|--|
| RD |   | SP[7-0] |   |   |   |   |   |   |  |
| WR |   | SP[7-0] |   |   |   |   |   |   |  |

PUSH will result ACC to be written to SP+1 address. POP will load ACC from IRAM with the address of SP.

#### ESP (0x9B) Extended Stack Pointer R/W (0x00)

|    | 7        | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|----------|----------|---|---|---|---|---|---|--|
| RD |          | ESP[7-0] |   |   |   |   |   |   |  |
| WR | ESP[7-0] |          |   |   |   |   |   |   |  |

In FLAT address mode, ESP and SP together form a 16-bit address for stack pointer. ESP holds the higher byte of the 16-bit address.

#### STATUS (0xC5) Program Status Word RO(0x00)

|                | 7  | 6                                                        | 5                                | 4                                       | 3 | 2 | 1 | 0 |  |
|----------------|----|----------------------------------------------------------|----------------------------------|-----------------------------------------|---|---|---|---|--|
| RD - HIP LIP - |    |                                                          |                                  |                                         |   |   |   |   |  |
| WR             | -  |                                                          |                                  |                                         |   |   |   |   |  |
|                | IP | HIP=0 india<br>HIP=1 india<br>Low Priorit<br>LIP=0 india | y (LP) Interrup<br>ates no LP in | nterrupt<br>rrupt progress<br>ot Status | Ū |   |   |   |  |



The program should check status conditions before entering SLEEP, STOP, IDLE, or PMM modes to prevent loss of intended functions from delayed entry until these events are finished.

#### 1.2 Addressing Timing and Memory Modes

The clock speed of an MCU with embedded flash memory is usually limited by the access time of on-chip flash memory. While in modern process technology, the CPU can operate much faster and the access time of flash memory is usually around 40 nanoseconds, which becomes a bottleneck for CPU performance. To mitigate this problem, a programmable wait state function is incorporated to allow faster CPU clock rate to access slower embedded flash memory. The wait state is controlled by WTST register as shown in the following,

#### WTST (0x92) R/W (0x07) TA Protected

|    | 7 | 6 | 5 | 4 | 3     | 2     | 1     | 0     |
|----|---|---|---|---|-------|-------|-------|-------|
| RD | - | - | - | - | WTST3 | WTST2 | WTST1 | WTST0 |
| WR | - | - | - | - | WTST3 | WTST2 | WTST1 | WTST0 |

WTST[3-0] Wait State Control register. WTST sets the wait state in CPU clock period

| <u> </u> | [5-0] Wall | State Control re | gister. WIST sets |       |                  |
|----------|------------|------------------|-------------------|-------|------------------|
|          | WTST3      | WTST2            | WTST1             | WTST0 | Wait State Cycle |
|          | 0          | 0                | 0                 | 0     | 0                |
| Γ        | 0          | 0                | 0                 | 1     | 1                |
|          | 0          | 0                | 1                 | 0     | 2                |
| Γ        | 0          | 0                | 1                 | 1     | 3                |
| Γ        | 0          | 1                | 0                 | 0     | 4                |
|          | 0          | 1                | 0                 | 1     | 5                |
| Γ        | 0          | 1                | 1                 | 0     | 6                |
| Γ        | 0          | 1                | 1                 | 1     | 7                |
|          | 1          | 0                | 0                 | 0     | 8                |
|          | 1          | 0                | 0                 | 1     | 9                |
|          | 1          | 0                | 1                 | 0     | 10               |
|          | 1          | 0                | 1                 | 1     | 11               |
|          | 1          | 1                | 0                 | 0     | 12               |
|          | 1          | 1                | 0                 | 1     | 13               |
| Γ        | 1          | 1                | 1                 | 0     | 14               |
|          | 1          | 1                | 1                 | 1     | 15               |

The default setting of the program wait state register after reset is 0x07 and the software must initialize the setting to change the wait state setting. Using a SYSCLK of 4MHz, the WTST can be set to minimum because one clock period is 250ns, which is longer than the typical embedded flash access time. If SYSCLK is above 16MHz, then WTST should be set higher than 1 to allow enough read access time. And note that when IOSC is set to 32MHz range, WTST[3-0] = 0 is forced to be equivalent as WTST[3-0] = 1.

#### MCON (0xC6) XRAM Relocation Register R/W (0x00) TA Protected

|    | 7 | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-----------|---|---|---|---|---|---|--|
| RD |   | MCON[7-0] |   |   |   |   |   |   |  |
| WR |   | MCON[7-0] |   |   |   |   |   |   |  |

MCON holds the starting address of XRAM in 2KB steps. For example, if MCON[7-0]=0x01, the starting address is 0x001000h. MCON is not meaningful in IS32LT3183because it only contains on-chip XRAM and MCON should not be modified from 0x00.

The LARGE mode, addressing mode is compatible with standard 8051 in 16-bit address. FLAT mode extends the program address to 20-bit and expands the stack space to 16-bit data space. The data space is always 16-bit in either LARGE or FLAT mode.



#### ACON (0x9D) R/W (0x00) TA Protected

|    | 7 | 6 | 5       | 4 | 3      | 2  | 1   | 0   |
|----|---|---|---------|---|--------|----|-----|-----|
| RD | - | - | IVECSEL | - | DPXREN | SA | AM1 | AM0 |
| WR | - | - | IVECSEL | - | DPXREN | SA | AM1 | AM0 |

ACON is addressing mode control register.

| IVECSEL  | Interrupt Vector Selection                                                                           |
|----------|------------------------------------------------------------------------------------------------------|
|          | INTVSEC=1 maps the interrupt vector to 0x3000 space.                                                 |
|          | INTVSEC=0 maps to normal 0x0000 space                                                                |
| DPXREN   | DPXR Register Control Bit.                                                                           |
|          | If DPXREN is 0, "MOVX, @Ri" instruction uses P2 (0xA0) register and XRAM Address [15-8].             |
|          | If DPXREN is 1,DPXR (0xDA) register and XRAM Address [15-8] is used.                                 |
| SA       | Extended Stack Address Mode Indicator. This bit is read-only.                                        |
|          | 0 – 8051 standard stack mode where stack resides in internal 256-byte memory                         |
|          | <ol> <li>Extended stack mode. Stack pointer is ESP:SP in 16-bit addressing to data space.</li> </ol> |
| AM1, AM0 | AM1 and AM0 Address Mode Control Bits                                                                |
|          | 00 – LARGE address mode in 16-bit                                                                    |
|          | 1x – FLAT address mode with 20-bit program address                                                   |
|          |                                                                                                      |

#### 1.3 MOVX A, @Ri Instructions

#### DPXR (0xDA) R/W (0x00)

|    | 7 | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-----------|---|---|---|---|---|---|--|
| RD |   | DPXR[7-0] |   |   |   |   |   |   |  |
| WR |   | DPXR[7-0] |   |   |   |   |   |   |  |

DPXR is used to replace P2[7-0] for high byte of XRAM address bit[15-7] for "MOVX, @Ri" instructions only if DPXREN=1.

#### MXAX (0xEA) MOVX Extended Address Register R/W (0x00)

|    | 7 | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-----------|---|---|---|---|---|---|--|
| RD |   | MXAX[7-0] |   |   |   |   |   |   |  |
| WR |   | MXAX[7-0] |   |   |   |   |   |   |  |

MXAX is used to provide top 8-bit address for "MOVX @Ri" instructions only. MXAX does not affect other MOVX instructions.

When accessing XRAM using "MOVX, @DPTR" instruction, the address of XRAM access is formed by DPHi:DPLi depending on which data pointer is selected. Another form of MOVX instruction is "MOVX, @Ri". This instruction provides an efficient programming method to move content within a 256-byte data block. In "@RI" instruction, the XRAM address [15-7] can be derived from two sources. If ACON.DPXREN = 0, the high order address [15-8] is from P2 (0xA0), if ACON.DPXREN = 1, the high order address is from DPXR (0xDA) register.

The maximum addressing space of XRAM is up to 16MB thus requiring 24-bit address. For "MOVX, @DPTR", the XRAMADDR [23-16] is from either DPX (0x93) or DPX1 (0x95) depending on which data pointer is selected. For "MOVX, @Ri", the XRAMUADDR [23-16] is from MXAX (0xEA) register.

#### 1.4 Dual Data Pointers and MOVX operations

In standard 8051, there is only one data pointers DPH:DPL to perform MOVX. The enhanced CPU provides 2<sup>nd</sup> data pointer DPH1:DPL1 to speed up the movement, or copying of data block. The active DPTR is selected by setting DPS (Data Pointer Select) register. Through the control DPS, efficient programming can be achieved.

#### DPS (0x86) Data Pointer Select R/W (0x00)

|    | 7   | 6   | 5   | 4 | 3 | 2 | 1 | 0   |
|----|-----|-----|-----|---|---|---|---|-----|
| RD | ID1 | ID0 | TSL | - | - | - | - | SEL |
| WR | ID1 | ID0 | TSL | - | - | - | - | SEL |

ID[1:0]

Define the operation of Increment Instruction of DPTR, "INC DPTR". Standard 8051 only have increment DPTR instruction. ID[1-0] changes the definitions of "INC DPTR" instruction and allows flexible modifications of DPTR when "INC DPTR" instructions is executed.

SEL



| ID1 | ID0 | SEL=0    | SEL=1     |
|-----|-----|----------|-----------|
| 0   | 0   | INC DPTR | INC DPTR1 |
| 0   | 1   | DEC DPTR | INC DPTR1 |
| 1   | 0   | INC DPTR | DEC DPTR1 |
| 1   | 1   | DEC DPTR | DEC DPTR1 |

TSL Enable toggling selection of DPTR selection. When this bit is set, the selection of DPTR is toggled when DPTR is used in an instruction and executed.

DPTR selection bit. Set to select DPTR1, and clear to select DPTR. SEL is also affected by the state of ID[1:0] and TSL after DPTR is used in an instruction. When read, SEL reflects the current selection of command.

#### DPL (0x82) Data Pointer Low R/W (0x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|----------|---|---|---|---|---|---|--|--|
| RD |   | DPL[7-0] |   |   |   |   |   |   |  |  |
| WR |   | DPL[7-0] |   |   |   |   |   |   |  |  |

DPL register holds the low byte of data pointer, DPTR.

#### DPH (0x83) Data Pointer High R/W (0x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|----------|---|---|---|---|---|---|--|
| RD |   | DPH[7-0] |   |   |   |   |   |   |  |
| WR |   | DPH[7-0] |   |   |   |   |   |   |  |

DPH register holds the high byte of data pointer, DPTR.

#### DPL1 (0x84) Extended Data Pointer Low R/W (0x00)

|    | 7 | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-----------|---|---|---|---|---|---|--|--|
| RD |   | DPL1[7-0] |   |   |   |   |   |   |  |  |
| WR |   | DPL1[7-0] |   |   |   |   |   |   |  |  |

DPL1 register holds the low byte of extended data pointer 1, DPTR1.

#### DPH1 (0x85) Extended Data Pointer High R/W (0x00)

|    | 7 | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-----------|---|---|---|---|---|---|--|--|
| RD |   | DPH1[7-0] |   |   |   |   |   |   |  |  |
| WR |   | DPH1[7-0] |   |   |   |   |   |   |  |  |

DPH1 register holds the high byte of extended data pointer 1, DPTR1.

#### DPX (0x93) Data Pointer Top R/W (0x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|----------|---|---|---|---|---|---|--|
| RD |   | DPX[7-0] |   |   |   |   |   |   |  |
| WR |   | DPX[7-0] |   |   |   |   |   |   |  |

DPX is used to provide top 8-bit address of DPTR when address above 64KB. The lower 16-bit address is formed by DPH and DPL. DPX is not affected in LARGE mode, and will form full 24-bit address in FLAT mode, meaning auto increment and decrement when DPTR is changed. DPX value has no effect if on-chip data memory is less than 64KB.

#### DPX1 (0x95) Extended Data Pointer Top R/W (0x00)

|    | 7 | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-----------|---|---|---|---|---|---|--|
| RD |   | DPX1[7-0] |   |   |   |   |   |   |  |
| WR |   | DPX1[7-0] |   |   |   |   |   |   |  |

DPX1 is used to provide top 8-bit address of DPTR when address above 64KB. The lower 16-bit address is formed



by DPH1 and DP1L. DPX1 is not affected in LARGE mode, and will form full 24-bit address in Flat mode, meaning auto increment and decrement when DPTR is changed. DPX value has no effect if on-chip data memory is less than 64KB.

#### 1.5 Interrupt System

The CPU implements an enhanced Interrupt Control that allows total 15 interrupt sources and each with two programmable priority levels. The interrupts are sampled at rising edge of SYSCLK. If interrupts are present and enabled, the CPU enters interrupt service routine by vectoring to the highest priority interrupt. Of the 15 interrupt sources, 7 of them are from CPU internal integrated peripherals, 6 of them are for on-chip external peripherals, and 2 of them are used for external pin interrupt expansion. When an interrupt is shared, the interrupt service routine must determine which source is requesting the interrupt by examining the corresponding interrupt flags of sharing peripherals.

The following table shows the interrupt sources and corresponding interrupt vectors. The Flag Reset column shows whether the corresponding interrupt flag is cleared by hardware (self-cleared) or software. Please note the software can only clear the interrupt flag but not set the interrupt flag. The Natural Priority column shows the inherent priority if more than one interrupts are assigned to the same priority level. Please note that the interrupts assigned with higher priority levels always get serviced first compared with interrupts assigned with lower priority levels regardless of the natural priority sequence.

| Interrupt | Peripheral Source Description | Vectors (*Note)<br>IVECSEL=0/1 | FLAG RESET | Natural Priority |
|-----------|-------------------------------|--------------------------------|------------|------------------|
| PINT0     | Expanded Pin INT0.x           | 0x0003/0xX003                  | Software   | 1                |
| TF0       | Timer 0                       | 0x000B/0xX00B                  | Hardware   | 2                |
| PINT1     | Expanded Pin INT1.x           | 0x0013/0xX013                  | Software   | 3                |
| TF1       | Timer 1                       | 0x001B/0xX01B                  | Hardware   | 4                |
| TI0/RI0   | EUART1                        | 0x0023/0xX023                  | Software   | 5                |
| TF2       | Timer 2                       | 0x002B/0xX02B                  | Software   | 6                |
| TI2/RI2   | EUART2/LIN/LIN_FAULT          | 0x0033/0xX033                  | Software   | 7                |
| I2CM      | I <sup>2</sup> C Master       | 0x003B/0xX03B                  | Software   | 8                |
| INT2      | LVT                           | 0x0043/0xX043                  | Software   | 9                |
| INT3      | Touch Key/ACMP                | 0x004B/0xX04B                  | Software   | 10               |
| INT4      | ADC                           | 0x0053/0xX053                  | Software   | 11               |
| WDIF      | Watchdog WDT1                 | 0x005B/0xX05B                  | Software   | 12               |
| INT6      | PWM/TCC/QE                    | 0x0063/0xX063                  | Software   | 13               |
| INT7      | SPI/I2C Slave                 | 0x006B/0xX06B                  | Software   | 14               |
| INT8      | T3/T4/T5/BZ                   | 0x0073/0xX073                  | Software   | 15               |
| ECC       | PECC/DECC/WDT2                | 0x007B/0xX07B                  | Software   | 0                |
| BKP       | Break Point                   | 0xX080                         | Software   | 0                |
| DBG       | I2CS Debug                    | 0xX0C0                         | Software   | 0                |

\* Note: When IVECSEL=1, the interrupt vector is relocated to the top available 4KB memory space for boot code usage. Therefore, X=F, for 64K, and X=B for 48K program memory size, and X=7 for 32K, and X=3 for 16K sizes.

In addition to the 15 peripheral interrupts, there are two highest priority interrupts associated with debugging and break point. DBG interrupt is generated when I<sup>2</sup>C slave is configured as a debug port and a debug request from the host matches the debug ID. BKP interrupt is generated when break point match condition occurs. DBG has higher priority than BKP. The BKP and DBG interrupts are not affected by global interrupt enable, EA bit, IE register (0xA8).

The interrupt related registers are listed in the following. Each interrupt can be individually enabled or disabled by setting or clearing corresponding bits in IE, EXIE and integrated peripherals' control registers.

#### IE (0xA8) Interrupt Enable Register R/W (0x00)

|    | 7  | 6   | 5   | 4   | 3   | 2       | 1   | 0       |
|----|----|-----|-----|-----|-----|---------|-----|---------|
| RD | EA | ES2 | ET2 | ES0 | ET1 | PINT1EN | ET0 | PINT0EN |



| N | /R  | EA   | ES2                                              | ET2           | ES0    | ET1 | PINT1EN | ET0 | PINT0EN |
|---|-----|------|--------------------------------------------------|---------------|--------|-----|---------|-----|---------|
|   | EA  |      | Global Inter                                     | rupt Enable b | oit.   |     |         |     |         |
|   | ES2 | 2    | LIN-capable16550-likeUART2 Interrupt Enable bit. |               |        |     |         |     |         |
|   | ET2 | 2    | Timer 2 Interrupt Enable bit.                    |               |        |     |         |     |         |
|   | ESC | )    | eUART1 In                                        | errupt Enable | e bit. |     |         |     |         |
|   | ET1 |      | Timer 1 Inte                                     | errupt Enable | bit.   |     |         |     |         |
|   | PIN | T1EN | Pin PINT1.x Interrupt Enable bit.                |               |        |     |         |     |         |
|   | ETC | )    | Timer 0 Interrupt Enable bit.                    |               |        |     |         |     |         |
|   | PIN | TOEN | Pin PINT0.x Interrupt Enable bit.                |               |        |     |         |     |         |

#### EXIE (0xE8) Extended Interrupt Enable Register R/W (0x00)

|    | 7     | 6     | 5     | 4    | 3     | 2     | 1     | 0     |
|----|-------|-------|-------|------|-------|-------|-------|-------|
| RD | EINT8 | EINT7 | EINT6 | EWDI | EINT4 | EINT3 | EINT2 | EI2CM |
| WR | EINT8 | EINT7 | EINT6 | EWDI | EINT4 | EINT3 | EINT2 | EI2CM |

| EINT8 | INT8 Interrupt Enable bit.                    |
|-------|-----------------------------------------------|
| EINT7 | INT7 Interrupt Enable bit.                    |
| EINT6 | INT6 Enable bit.                              |
| EWD1  | Watchdog Timer Interrupt Enable bit.          |
| EINT4 | INT4 Interrupt Enable bit.                    |
| EINT3 | INT3 Interrupt Enable bit.                    |
| EINT2 | INT2 Interrupt Enable bit.                    |
| EI2CM | I <sup>2</sup> C Master Interrupt Enable bit. |

Each interrupt can be individually assigned to either high or low. When the corresponding bit is set to 1, it indicates it is of high priority.

#### IP (0xB8) Interrupt Priority Register R/W (0x00)

|    | 7 | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----|---|-----|-----|-----|-----|-----|-----|-----|
| RD | - | PS2 | PT2 | PS0 | PT1 | PX1 | PT0 | PX0 |
| WR | - | PS2 | PT2 | PS0 | PT1 | PX1 | PT0 | PX0 |

PS2 LIN-capable 16550-like UART2 Priority bit.

PT2 Timer 2 Priority bit.

PS0 eUART1 Priority bit.

PT1 Timer 1 Priority bit.

PX1 Pin Interrupt INT1 Priority bit.

PT0 Timer 0 Priority bit.

PX0 Pin Interrupt INT0 Priority bit.

#### EXIP (0xF8) Extended Interrupt Priority Register R/W (0x00)

|    | 7     | 6     | 5     | 4    | 3     | 2     | 1     | 0     |
|----|-------|-------|-------|------|-------|-------|-------|-------|
| RD | EINT8 | EINT7 | EINT6 | EWDI | EINT4 | EINT3 | EINT2 | EI2CM |
| WR | EINT8 | EINT7 | EINT6 | EWDI | EINT4 | EINT3 | EINT2 | EI2CM |

| EINT8 | INT8 Priority bit.                    |
|-------|---------------------------------------|
| EINT7 | INT7 Priority bit.                    |
| EINT6 | INT6 Priority bit.                    |
| EWDI  | Watchdog Priority bit.                |
| EINT4 | INT4 Priority bit.                    |
| EINT3 | INT3 Priority bit.                    |
| EINT2 | INT2 Priority bit.                    |
| EI2CM | I <sup>2</sup> C Master Priority bit. |
|       |                                       |

#### EXIF (0x91) Extended Interrupt Flag R/W (0x00)

|    | 7     | 6     | 5     | 4 | 3     | 2     | 1     | 0      |
|----|-------|-------|-------|---|-------|-------|-------|--------|
| RD | INT8F | INT7F | INT6F | - | INT4F | INT3F | INT2F | I2CMIF |
| WR | -     | -     | -     | - | -     | -     | -     | I2CMIF |



| INT8F  | INT8 Flag bit                                                                    |
|--------|----------------------------------------------------------------------------------|
| INT7F  | INT7 Flag bit                                                                    |
| INT6F  | INT6 Flag bit                                                                    |
| INT4F  | INT4 Interrupt Flag bit                                                          |
| INT3F  | INT3 Flag bit                                                                    |
| INT2F  | INT2 Flag bit                                                                    |
| I2CMIF | I <sup>2</sup> C Master Interrupt Flag bit. This bit must be cleared by software |
| Note:  | Writing to INT2F to INT8F has no effect.                                         |

The interrupt flag of internal peripherals are stored in the corresponding flag registers in the peripheral and EXIF registers. These peripherals include T0, T1, T2, and WDT1. Software needs to clear the corresponding flags located in the peripherals (for T0, T1, and T2, and WDT1). For I2CM, the interrupt flag is located in the EXIF register bit I2CMIF. This needs to be cleared by software.

INT2 to INT8 are used to connect to the external peripherals. INT2F to INT8F are direct equivalents of the interrupt flags from the corresponding peripherals. These peripherals include I<sup>2</sup>Cs, ADC, etc.

#### WKMASK (0x9F) R/W (0xFF) Wake Up Mask Register TB Protected

|    |   | 7      | 6      | 5      | 4      | 3      | 2      | 1       | 0       |
|----|---|--------|--------|--------|--------|--------|--------|---------|---------|
| RI | D | WEINT8 | WEINT7 | WEINT6 | WEINT4 | WEINT3 | WEINT2 | WEPINT1 | WEPINT0 |
| W  | R | WEINT8 | WEINT7 | WEINT6 | WEINT4 | WEINT3 | WEINT2 | WEPINT1 | WEPINT0 |

| WEINT8  | Set this bit to allow INT8 to trigger the wake up of CPU from STOP modes. |
|---------|---------------------------------------------------------------------------|
| WEINT7  | Set this bit to allow INT7 to trigger the wake up of CPU from STOP modes. |
| WEINT6  | Set this bit to allow INT6 to trigger the wake up of CPU from STOP modes. |
| WEINT4  | Set this bit to allow INT4 to trigger the wake up of CPU from STOP modes. |
| WEINT3  | Set this bit to allow INT3 to trigger the wake up of CPU from STOP modes. |
| WEINT2  | Set this bit to allow INT2 to trigger the wake up of CPU from STOP modes. |
| WEPINT1 | Set this bit to allow INT1 to trigger the wake up of CPU from STOP modes. |
| WEPINT0 | Set this bit to allow INT0 to trigger the wake up of CPU from STOP modes. |

WKMASK register defines the wakeup control of the interrupt signals from the STOP mode. The wake-up is performed by these interrupts and if enabled the internal oscillator is turned on and SYSCLK resumes. The interrupt can be set as a level trigger or an edge trigger and the wake-up always runs in accordance with the edge. Please note the wakeup control is wired separately from the interrupt logic, therefore, after waking up, the CPU does not necessarily enter the interrupt service routine if the corresponding interrupt is not enabled. In this case, the CPU continues onto the next instruction, which initiates the STOP mode. Extra attention should be exerted as designing the exit and re-entry of modes to ensure proper operation.

Please note that all clocks are stopped in STOP mode, therefore peripherals require clock such as I<sup>2</sup>C slave, EUART1, EUART2, ADC, LVD, and T3 cannot perform wake-up function. Only external pins and peripherals that do not require a clock can be used for wakeup purposes. Such peripherals for examples are an analog comparator and GPIO.

PINT0 and PINT1 are used for external GPIO pin Interrupts. All GPIO pin can be enabled to generate the PINT0 or PINT1 depending on its MFCFG register setting. Each GPIO pin also contains the rising/falling edge detections and either or both edges can be used for interrupt triggering. The same signaling can be used for generating wake-up.

| TF0                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 110                                                                                         | TR0                                                                                                                                                          | PINT1F                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                          | PINT0F                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| -                                                                                           | TR0                                                                                                                                                          | PINT1F                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                          | <b>PINT0F</b>                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Timer 1 Interrupt Flag bit. TF1 is cleared by hardware when entering the interrupt routine. |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Timer 1 Run Control bit. Set to enable Timer 1.                                             |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Timer 0 Interrupt Flag. TF0 is cleared by hardware when entering the interrupt routine.     |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Timer 0 Run Control bit. Set to enable Timer 0.                                             |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Pin INT1 Interrupt Flag bit.                                                                |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| Pin INT0 Interrupt Flag bit.                                                                |                                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| <br>- (<br>- (                                                                              | <ul> <li>1 Interrupt Flag bi</li> <li>1 Run Control bit.</li> <li>0 Interrupt Flag. T</li> <li>0 Run Control bit.</li> <li>11 Interrupt Flag bit.</li> </ul> | <sup>1</sup> 1 Interrupt Flag bit. TF1 is clear<br><sup>1</sup> 1 Run Control bit. Set to enable<br><sup>1</sup> 0 Interrupt Flag. TF0 is cleared<br><sup>1</sup> 0 Run Control bit. Set to enable<br>IT1 Interrupt Flag bit. | <ul> <li>1 Interrupt Flag bit. TF1 is cleared by hardwa</li> <li>1 Run Control bit. Set to enable Timer 1.</li> <li>0 Interrupt Flag. TF0 is cleared by hardware wardware wardware for the control bit. Set to enable Timer 0.</li> <li>IT1 Interrupt Flag bit.</li> </ul> | <sup>1</sup> Interrupt Flag bit. TF1 is cleared by hardware when enter<br><sup>1</sup> 1 Run Control bit. Set to enable Timer 1.<br><sup>1</sup> 0 Interrupt Flag. TF0 is cleared by hardware when entering<br><sup>1</sup> 0 Run Control bit. Set to enable Timer 0.<br>IT1 Interrupt Flag bit. | <ul> <li>Interrupt Flag bit. TF1 is cleared by hardware when entering the interrupt 1 Run Control bit. Set to enable Timer 1.</li> <li>Interrupt Flag. TF0 is cleared by hardware when entering the interrupt 0 Run Control bit. Set to enable Timer 0.</li> <li>Interrupt Flag bit.</li> </ul> |  |  |  |  |  |

#### TCON (0x88) R/W (0x00)



#### 1.6 <u>Register Access Control</u>

One important aspect of the embedded MCU is its reliable operations under a harsh environment. Many system failures result from the accidental loss of data or changes of critical registers that may lead to catastrophic effects. The CPU provides several protection mechanisms, which are described in this section.

#### TA (0xC7) Time Access A Control Register2 WO xxxxxx0

|    | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0      |
|----|-------------|---|---|---|---|---|---|--------|
| RD | -           | - | - | - | - | - | - | TASTAT |
| WR | TA Register |   |   |   |   |   |   |        |

TA access control emulates a ticket that must be purchased before modifying a critical register. To modify or write into a TA protected register, TA must be accessed in a predefined sequence to obtain the ticket. The ticket is used when an intended modification operation is done to the TA protected register. To obtain the next access a new ticket must be obtained again by performing the same predefined sequence on TA. TA does not limit the read access of the TA protect registers. The TA protected register includes WDCON (0xD8), MCON (0xC6), and ACON (0x9D) registers. The following predefined sequence is required to modify the content of MCON.

MOV TA, #0xAA;

MOV TA, #0x55;

MOV MCON, #0x01;

Once the access is granted, there is no time limitation of the access. The access is voided if any operation is performed in TA address. When read, TASTAT indicates whether TA is locked or not (1 indicates "unlock" and 0 indicates "lock").

#### TB (0xC9) Time Access B Control Register2 RW (0x00)

|    | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0      |  |
|----|-------------|---|---|---|---|---|---|--------|--|
| RD | -           | - | - | - | - | - | - | TBSTAT |  |
| WR | TB Register |   |   |   |   |   |   |        |  |

TB access control functions are similar to TA control, except the ticket is for multiple uses with a time limit. Once access is granted, the access is open for 256 clock periods and then expires. The software can also read TB address to obtain the current TB status. The TB protected registers are marked on the register names and descriptions. To modify registers with TB protection, the following procedure must be performed.

#### MOV TB, #0xAA

MOV TB, #0x55

This action creates a timed window of 256 SYSCLK periods to allow write access of these TB protected registers. If any above-mentioned sequences are repeated before the 128 cycles expires, a new 128 cycles is extended. The current 256 cycles can be terminated immediately by writing #0x00 to TB registers, such as

#### MOV TB, #0x00

It is recommended to terminate the TB access window once the user program finishes the modifications of TB protected registers.

Because TA and TB are critical reassurance of the reliable operation of the MCU that prevents accidental hazardous uncontrollable modifications of critical registers, the operation of these two registers should bear extreme cautions. It is strongly advised that these two registers should be turned on only when needed. Both registers use synchronous CPU clock, therefore it is imperative that any running tasks of TA and TB should be terminated before entering IDLE mode or STOP mode. Both modes turn off the CPU clock and if TA and TB are enabled, they stay enabled until the CPU clock resumes thus may create vulnerabilities for critical registers.

Another reliability concern of embedded Flash MCU is that the important content on the Flash can be accidentally erased. This concern is addressed by the content protection in the Flash controller.

#### 1.7 Clock Control and Power Management Modes

This section describes the clock control and power saving modes of the CPU and its integrated peripherals. The settings are controlled by PCON (0x87) and PMR (0xC4) registers. The register description is defined as following.

#### PCON (0x87) R/W (0x00)

|    | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|-------|---|---|---|---|---|---|---|
| RD | SMOD0 | - | - | - | - | - | - | - |



| WR | SMOD0 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -             | - | -                                              | SLEEP | STOP | IDLE       |  |  |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|------------------------------------------------|-------|------|------------|--|--|
| 5  | SMOD0 | UART0 usi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng Timer 1 ov |   | sed to select d<br>definition is the<br>UART 0 |       |      | 2 or 3 for |  |  |
| S  | SLEEP | Sleep Mode Control Bit. When this bit and the Stop bit are set to 1, the clock of the CPU and all peripherals is disabled and enters SLEEP mode. The SLEEP mode exits when non-<br>clocked interrupts or resets occur. Upon exiting SLEEP mode, Sleep bit and Stop bit in PCON is automatically cleared. In terms of power consumption, the following relationship applies: IDLE mode > STOP mode > SLEEP mode. SLEEP mode is the same as STOP mode, except it also turns off the band gap and the regulator. It uses a very low power back-up regulator (< 5uA). When waking up from SLEEP mode, it takes longer time (< 64 IOSC clock cycles, compared with STOP mode) because the regulator requires more time to stabilize. |               |   |                                                |       |      |            |  |  |
| S  | STOP  | Stop Mode Control Bit. The clock of the CPU and all peripherals is disabled and enters STOP mode if the Sleep bit is in the reset state. The STOP mode can only be terminated by non-clocked interrupts or resets. Upon exiting STOP mode, Stop bit in PCON is automatically cleared                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |   |                                                |       |      |            |  |  |
| 11 | DLE   | automatically cleared.<br>Idle Bit. If the IDLE bit is set, the system goes into IDLE mode. In Idle mode, CPU clock<br>becomes inactive and the CPU and its integrated peripherals such as WDT, T0/T1/T2, and<br>UART0 are reset. But the clocks of external peripherals and CPU like ADC, LIN-<br>capable16550-like EUART1, EUART2, SPI, T3, I <sup>2</sup> C slave and the others are still active. This<br>allows the interrupts generated by these peripherals and external interrupts to wake the<br>CPU. The exit mechanism of IDLE mode is the same as STOP mode. Idle bit is<br>automatically cleared at the exit of the IDLE mode.                                                                                     |               |   |                                                |       |      |            |  |  |

PMR (0xC4) R/W (010xxxxx)

|    | 7     | 6   | 5   | 4 | 3 | 2 | 1 | 0 |
|----|-------|-----|-----|---|---|---|---|---|
| RD | CD1=0 | CD0 | SWB | - | - | - | - | - |
| WR | -     | CD0 | SWB | - | - | - | - | - |

| CD1, CD0 | Clock Divider Control. These two bits control the entry of PMM mode. When CD0=1, and            |
|----------|-------------------------------------------------------------------------------------------------|
|          | CD1=0, full speed operation is in effect. When CD0=1, and CD1=1, the CPU enters PMM             |
|          | mode where CPU and its integrated peripherals operate at a clock rate divided by 257. Note      |
|          | that in PMM mode, all integrated peripherals such as UART0, LIN-capable 16550-like              |
|          | UART2, WDT1, and T0/T1/T2 run at this reduced rate, thus may not function properly. All         |
|          | external peripherals to CPU still operate at full speed in PMM mode.                            |
| NOTE:    | CD1 is internally hardwired to 0. This implementation does not support PMM mode.                |
| SWB      | Switch Back Control bit. Setting this bit allows the actions to occur in integrated peripherals |
|          | to automatically switch back to normal operation mode.                                          |
| NOTE:    | PMM mode is not supported.                                                                      |

#### CKSEL (0x8F) System Clock Selection Register R/W (0x0C) TB Protected

|    |             |          |              | ,             | ,         |           |           |           |
|----|-------------|----------|--------------|---------------|-----------|-----------|-----------|-----------|
|    | 7           | 6        | 5            | 4             | 3         | 2         | 1         | 0         |
| RD |             | IOSCD    | IV[3-0]      |               | -         | -         | CLKSEL[1] | CLKSEL[0] |
| WR |             | IOSCD    | IV[3-0]      |               | REGRDY[1] | REGRDY[0] | CLKSEL[1] | CLKSEL[0] |
| IC | OSCDIV[3-0] | IOSC Pre | -Divider. De | fault is IOSC | /32.      |           |           |           |
|    |             |          | IOSCDIV[3-   | D]            | SYSC      | CLK       |           |           |
|    | 0           |          |              | IOS           | SC        |           |           |           |
|    |             |          | 1            |               | IOSC      | C/2       |           |           |
|    |             |          | 2            |               | IOS       | C/4       |           |           |
|    |             |          | 3            |               | IOS       | C/6       |           |           |
|    |             |          | 4            |               | IOS       | C/8       |           |           |
|    |             |          | 5            |               | IOSC      | :/10      |           |           |
|    |             |          | 6            |               | IOSC      | /12       |           |           |
|    |             |          | 7            |               | IOSC      | :/14      |           |           |



| 8  | IOSC/16  |
|----|----------|
| 9  | IOSC/32  |
| 10 | IOSC/64  |
| 11 | IOSC/128 |
| 12 | IOSC/256 |
| 13 | IOSC/256 |
| 14 | IOSC/256 |
| 15 | IOSC/256 |

REGRDY[1-0]

Wake up delay time for main regulator stable time from reset or from sleep mode wakeup. Default is longest delay at 256 SOSC (128KHz).

| REGRDY[1] | REGRDY[0] | Delay time     |  |  |  |  |  |  |
|-----------|-----------|----------------|--|--|--|--|--|--|
| 0         | 0         | 8 SOSC cycle   |  |  |  |  |  |  |
| 0         | 1         | 16 SOSC cycle  |  |  |  |  |  |  |
| 1         | 0         | 64 SOSC cycle  |  |  |  |  |  |  |
| 1         | 1         | 256 SOSC cycle |  |  |  |  |  |  |

CLKSEL[1-0]

Clock Source Selection

These two bits define the clock source of the system clock SYSCLK. The selections are shown in the following table. The default setting after reset is IOSC.

|           |           | <u> </u>               |
|-----------|-----------|------------------------|
| CLKSEL[1] | CLKSEL[0] | SYSCLK                 |
| 0         | 0         | IOSC (through divider) |
| 0         | 1         | SOSC/4 (32KHz)         |
| 1         | 0         | IOSC (through divider) |
| 1         | 1         | XCLKIN                 |
|           |           |                        |

#### WKMASK (0x9F) R/W (0xFF) Wake-Up Mask Register TB Protected

|    | _                                                                                |                                                                              | _                                                                         |                | _            | -           |          |         |
|----|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------|--------------|-------------|----------|---------|
|    | 7                                                                                | 6                                                                            | 5                                                                         | 4              | 3            | 2           | 1        | 0       |
| RD | WEINT8                                                                           | WEINT7                                                                       | WEINT6                                                                    | WEINT4         | WEINT3       | WEINT2      | WEPINT1  | WEPINT0 |
| WR | WEINT8                                                                           | WEINT7                                                                       | WEINT6                                                                    | WEINT4         | WEINT3       | WEINT2      | WEPINT1  | WEPINT0 |
| V  | WEINT8 Set this bit to allow INT8 to trigger the wake up of CPU from STOP modes. |                                                                              |                                                                           |                |              |             |          |         |
| V  | /EINT7                                                                           | Set this bit to allow INT7 to trigger the wake up of CPU from STOP modes.    |                                                                           |                |              |             |          |         |
| V  | /EINT6                                                                           | Set this bit                                                                 | Set this bit to allow INT6 to trigger the wake up of CPU from STOP modes. |                |              |             |          |         |
| V  | /EINT4                                                                           | T4 Set this bit to allow INT4 to trigger the wake up of CPU from STOP modes. |                                                                           |                |              |             |          |         |
| W  | /EINT3                                                                           | Set this bit                                                                 | to allow INT3                                                             | to trigger the | wake up of C | PU from STO | P modes. |         |

WEINT2 Set this bit to allow INT2 to trigger the wake up of CPU from STOP modes.

WEPINT1 Set this bit to allow INT1 to trigger the wake up of CPU from STOP modes.

WEPINT0 Set this bit to allow INT0 to trigger the wake up of CPU from STOP modes.

WKMASK register defines the wake up control of the interrupt signals from the STOP/SLEEP mode. The wake-up is performed by these interrupts and if enabled the internal oscillator is turned on and SYSCLK resumes. The interrupt can be set as a level trigger or an edge trigger and the wake-up always runs in accordance with the edge. Please note the wake-up control is wired separately from the interrupt logic, therefore, after waking up, the CPU does not necessarily enter the interrupt service routine if the corresponding interrupt is not enabled. In this case, the CPU continues onto the next instruction, which initiates the STOP/SLEEP mode. Extra attention should be exercised as designing the exit and re-entry of modes to ensure proper operation.

Please note that all clocks are stopped in STOP/SLEEP mode, therefore peripherals require clock such as I<sup>2</sup>C slave, EUART1, EUART2, ADC, LVD, and T3/T4 cannot perform wake-up function. Only external pins and peripherals that do not require a clock can be used for wakeup purposes. Such peripherals are LIN Wakeup and Timer5 with SOSC.



#### IDLE Mode

IDLE mode provides power saving by stopping SYSCLK to CPU and its integrated peripherals while other peripherals are still in operation with SYSCLK. Thus other peripherals still function normally and can generate interrupts that wake up the CPU from IDLE mode. The IDLE mode is enabled by setting IDLE bit to 1.

When the CPU is in idle mode, no processing is possible. All integrated internal peripherals such as T0/T1/T2, EUART1, LIN-capable 16550-like EUART2 and I<sup>2</sup>C Master are inaccessible during idling. The IDLE mode can be excited by hardware reset through RSTN pin (no such pin) or by external interrupts as well as the interrupts from external peripherals that are OR-ed with the external interrupts. The triggering external interrupts need be enabled properly. Upon exiting from IDLE mode, the CPU resumes operation as the clock is being turned on. CPU immediately vectors to the interrupt service routine of the corresponding interrupt sources that wake up the CPU. When the interrupt service routine completes, RETI returns to the program and immediately follows the one that invokes the IDLE mode. Upon returning from IDLE mode to normal mode, idle bit in PCON is automatically cleared.

#### STOP Mode

STOP mode provides further power reduction by stopping SYSCLK to all circuits. In STOP mode, IOSC oscillator is disabled. STOP mode is entered by setting STOP=1. To achieve minimum power consumption, it is essential to turn off all peripherals with DC current consumption. It is also important that the software switches to the IOSC clock and disables all other clock generator before entering STOP mode. This is critical to ensure a smooth transition when resuming its normal operations. Upon entering STOP mode, the system uses the last edge of IOSC clock to shut down the IOSC clock generator.

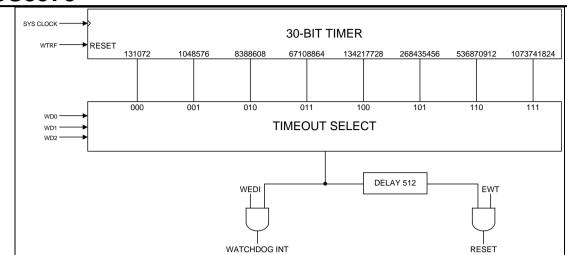
Valid interrupt/wakeup event or reset will result the exit of STOP mode. Upon exit, STOP bit is cleared by hardware and IOSC is resumed. The triggering interrupt source must be enabled and its Wake-up bit is set in the WKMASK register. As CPU resumes the normal operation using previous clock settings. When an interrupt occurs, the CPU immediately vectors to the interrupting service routine of the corresponding interrupt source. When the interrupt service routine completes, RETI returns to the program immediately to execute the instruction that invokes the STOP mode.

The on-chip 1.5V regulator for core circuits is still enabled along with its reference voltage. As the result, the power consumption due to the regulator and its reference circuit is still around 100uA to 200uA. The advantage of STOP mode is its immediate resumption of the CPU.

#### SLEEP Mode

SLEEP mode achieves very low standby consumption by putting the on-chip 1.5V regulator in disabled state. An ultra-low power 1.3V backup regulator supplies the internal core circuit and maintains the logic state and SRAM data. The total current drain in SLEEP mode is less than 1uA for typical condition. Only the backup regulator and the SOSC circuit are still in operation in SLEEP mode.

The exit of SLEEP mode is the same interrupt/wakeup event as in STOP node, and in addition the on-chip regulator is enabled, then after a delay set by REGRDY (clocked by SOSC), SYSCLK is resumed. REGRDY delay is necessary to ensure stable operation of the regulator. The larger the decoupling capacitance longer delay should be set.


#### **Clock Control**

The clock selection is defined by CKSEL register (0x8F). There are two selections either from divided IOSC or SOSC/4. The default selection is divided IOSC. Typical power consumption of CPU is 0.15mA/MHZ.

#### 1.8 <u>Watchdog Timer</u>

The Watchdog Timer is a 30-bit timer that can be used by a system supervisor or as an event timer. The Watchdog timer can be used to generate an interrupt or to issue a system reset depending on the control settings. This section describes the register related to the operation of Watchdog Timer and its functions. The following diagram shows the structure of the Watchdog Timer. Note WDT1 shares the same clock with the CPU, thus WDT1 is disabled in IDLE mode or STOP mode however it runs at a reduced rate in PMM mode.





#### WDCON (0xD8) WDT1 Interrupt Flag Register R/W (0x02) TA Protected

|    | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                            | 9 9          |               |             |              |             |             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------|--------------|-------------|-------------|
|    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                          | 5            | 4             | 3           | 2            | 1           | 0           |
| RD | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                          | -            | -             | WDT1IF      | WDT1RF       | WDT1REN     | -           |
| WR | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                          | -            | -             | WDT1IF      | WDT2RF       | WDT1REN     | WDT1CLR     |
|    | WDT1IFWDT1 Interrupt Flag bit. This bit is set when the session expires regardless of a WDT1<br>interrupt is enabled or not. Note the WDT1 interrupt enable control is located in EXIE<br>(0xE8).4 EWDI bit. It must be cleared by softwareWDT1RFWDT1 Reset Flag bit. WDT1RF is cleared by hardware reset including RSTN, POR etc.<br>WDT1RF is set to 1 after a WDT1 reset occurs. It can be cleared by software. WDT1RF<br>can be used by software to determine if a WDT1 reset has occurred. |                                                                                                                                            |              |               |             |              |             |             |
| W  | /DT1REN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WDT1 Enable bit. Set this bit to enable the watchdog reset function. The default WDT1 reset is enabled and WDT1 timeout is set to maximum. |              |               |             |              |             | IIt WDT1    |
| V  | /DT1CLR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reset the \                                                                                                                                | Natchdog tim | er 1. Writing | 1 to WDT1CL | R resets the | WDT1 timer. | WDT1CLR bit |

WDT1CLR Reset the Watchdog timer 1. Writing 1 to WDT1CLR resets the WDT1 timer. WDT1CLR bit is not a register and does not hold any value. The clearing action of Watchdog timer is protected by TA access. In another word, to clear Watchdog timer 1, TA must be unlocked then and then followed by writing WDT1CLR bit to 1. If TA is still locked, the program can write 1 into WDT1CLR bit, but it does not reset the Watchdog timer.

#### CKCON (0x8E) Clock Control and WDT1 R/W (0xC7)

|    | _                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | _        | _         |   | - |  |  |  |
|----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|---|---|--|--|--|
|    | 7                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4        | 3        | 2         | 1 | 0 |  |  |  |
| RD | WD1                | WD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T2CKDCTL                                                                                                                                                                                                                                                                                                                                                                                                                                | T1CKDCTL | T0CKDCTL | WD2       | - | - |  |  |  |
| WR | WD1                | WD0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T2CKDCTL                                                                                                                                                                                                                                                                                                                                                                                                                                | T1CKDCTL | T0CKDCTL | WD2       | - | - |  |  |  |
|    | 2CKDCTL<br>1CKDCTL | Timer 2 Clock Source Division Factor Control Flag. Setting this bit to 1 sets the Timer 2 division factor to 4, the Timer 2 clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power on value) sets the Timer 2 division factor to 12, the Timer 2 clock frequency equals CPU clock frequency divided by 12. Timer 1 Clock Source Division Factor Control Flag. Setting this bit to 1 sets the Timer 1 division factor to 4, the Timer 1 clock frequency equals CPU clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power on value) sets the Timer 1 division factor to 12, the Timer 1 clock frequency equals CPU clock frequency divided by 4. Setting this bit to 0 (the default power on value) sets the Timer 1 division factor to 12, the Timer 1 clock frequency equals CPU clock frequency divided by 4. |                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |           |   |   |  |  |  |
| Т  | 0CKDCTL            | Timer 0 Clo<br>division fac<br>Setting this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Timer 1 clock frequency equals CPO clock frequency divided by 12.<br>Timer 0 Clock Source Division Factor Control Flag. Setting this bit to 1 sets the Timer 0<br>division factor to 4, the Timer 0 clock frequency equals CPU clock frequency divided by 4.<br>Setting this bit to 0 (the default power on value) sets the Timer 0 division factor equals 12,<br>the Timer 0 clock frequency equals CPU clock frequency divided by 12. |          |          |           |   |   |  |  |  |
| W  | /D[2-0]            | This register controls the time out value of WDT1 as the following table. The time out value is shown as follows and the default is set to maximum:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |           |   |   |  |  |  |
|    |                    | WD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WD1                                                                                                                                                                                                                                                                                                                                                                                                                                     | WD0      | Time C   | Dut Value | 7 |   |  |  |  |
|    |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0        | 13       | 1072      |   |   |  |  |  |
|    |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | 104      | 8576      |   |   |  |  |  |
|    |                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0        | 838      | 38608     |   |   |  |  |  |



| 0 | 1 | 1 | 67108864   |
|---|---|---|------------|
| 1 | 0 | 0 | 134217728  |
| 1 | 0 | 1 | 268435456  |
| 1 | 1 | 0 | 536870912  |
| 1 | 1 | 1 | 1073741824 |

A second 16-bit Watchdog Timer (WDT2) clocked by the independent nonstop SOSC/4 (32KHz) is included. WDT2 can be used to generate interrupt/wakeup timing from STOP/SLEEP mode, or generate software reset.

#### WDT2CF (0xA0D8h) Watchdog Timer 2 Configure Registers R/W (0xA7) TB Protected

|        | 7              | 6                      | 5               | 4                         | 3             | 2                       | 1             | 0         |
|--------|----------------|------------------------|-----------------|---------------------------|---------------|-------------------------|---------------|-----------|
| RD     | -              | WDT2REN                | WDT2RF          | WDT2IEN                   |               | WDT2CS[2-0]             | ]             | WDT2I     |
| WR     | WDT2CLR        | WDT2REN                | WDT2RF          | WDT2IEN                   |               | WDT2CS[2-0]             | ]             | WDT2I     |
| W      | /DT2CLR        | WDT2 Count             | ter Clear       | •                         |               |                         |               |           |
|        |                | Writing "1" to         | WDT2CLR         | clears the WD             | T2 count to C | ). It is self-clea      | ared by hardw | vare.     |
| W      | /DT2REN        | WDT2 Reset             |                 |                           |               |                         |               |           |
|        |                |                        | •               | WDT2 to perfo             | orm software  | reset.                  |               |           |
| W      | /DT2RF         | WDT2 Reset             | 0               |                           |               |                         |               | _         |
|        |                | WD12RF is writing "0". | set to "1" afte | er a WDT2 reso            | et occurs. If | his must be cle         | ared by softw | are by    |
| 14     | /DT2IEN        | WDT2 Interr            | int Enable      |                           |               |                         |               |           |
| vv     |                |                        | •               | DT2 interrupt.            |               |                         |               |           |
| W      | /DT2CS[2-0]    | WDT2 Clock             |                 |                           |               |                         |               |           |
|        |                | WDT2CS                 |                 | k SOSC/4 Div              | ider WD       | WDT2Period (SOSC/4=32K) |               | ]         |
|        |                | 000                    |                 | 2^8                       |               | 8 msec                  |               |           |
|        |                | 001                    |                 | 2^8                       |               | 8 msec                  |               |           |
|        |                | 010                    |                 | 2^8                       |               | 8 msec                  |               |           |
|        |                | 011                    | 011 2^8         |                           |               | 8 msec                  |               |           |
|        |                | 100                    |                 | 2^12                      |               | 128 mse                 | С             |           |
|        |                | 101                    |                 | 2^13                      |               | 256 msec                |               |           |
|        |                | 110                    |                 | 2^14                      |               | 512 mse                 | с             |           |
|        |                | 111                    |                 | 2^15                      |               | 1024 mse                | ec            |           |
| W      | /DT2IF         | WDT2 Interr            | upt Flag        |                           |               |                         |               | -         |
|        |                | WDT2IF is s            |                 | <sup>r</sup> a WDT2 inter | rupt. This m  | ust be cleared          | by software b | y writing |
|        |                | "0".                   |                 |                           |               |                         |               |           |
| P      | lease note the | longest effectiv       | ve time WDT     | 2 can be set is           | approximate   | ely 18 hours.           |               |           |
| T2L (0 | )xA0D9h) Wa    | tchdog Timer           | 2 Time Out      | Value Low By              | te RW (0xFF   | ) TB Protecte           | d             |           |
|        | 7              | 6                      | 5               | 4                         | 3             | 2                       | 1             | 0         |
| RD     |                | WDT2CNT[7-0]           |                 |                           |               |                         |               |           |

#### WDT2H (0xA0DAh) Watchdog Timer 2 Time Out Value High Byte RW (0x0F) TB Protected

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | WDT2CNT[15-8] |   |   |   |   |   |   |  |  |
| WR |   | WDT2[15-8]    |   |   |   |   |   |   |  |  |

WDT2[7-0]

WDT2L and WDT2H hold the time out value for watchdog timer 2. When the counter reaches WDT2 time out value, an interrupt or reset is generated. Reading this register returns the current count value.

A third Watchdog Timer (WDT3) is also included for further enhancement of fault recovery. WDT3 cannot be disabled in normal mode. It can be disabled only in SLEEP mode if SLEEPDIS[2-0] = 3'b101. WDT3 is clocked 4 times slower than WDT2, and is also set by WDT2CS[2-0].

| WDT2CS[2-0] | Clock SOSC/4 Divider | WDT3 Period (SOSC/4=32K) |
|-------------|----------------------|--------------------------|
| 000         | 2^8                  | 8 msec                   |

WR



| 001 | 2^8  | 8 msec    |  |  |  |
|-----|------|-----------|--|--|--|
| 010 | 2^8  | 8 msec    |  |  |  |
| 011 | 2^8  | 8 msec    |  |  |  |
| 100 | 2^12 | 128 msec  |  |  |  |
| 101 | 2^13 | 256 msec  |  |  |  |
| 110 | 2^14 | 512 msec  |  |  |  |
| 111 | 2^15 | 1024 msec |  |  |  |

Therefore the longest time of WDT3 is about 4 second time 2^16 approximately 72 hours.

#### WDT3CF (0xA0DBh) Watchdog Timer 3 Configure Registers R/W (0xD1) TB Protected

|                                                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                       | 6  | 5               | 4 | 3 | 2 | 1 | 0 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|---|---|---|---|---|--|
| RD                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                       | 95 | SLEPPDIS[2-0] - |   |   |   |   |   |  |
| WR                                                                                                                                                                                                                                                                                                                                                                                          | WDT3CLR                                                                                                                                                                                 | 93 | SLEPPDIS[2-0] - |   |   |   |   |   |  |
| WDT3CLR       WDT3 Counter Clear         Writing "1" to WDT3CLR clears the WDT3 count to 0. It is self-cleared by hardware.         SLEEPDIS[2-0]       Stop WDT3 increment in STOP/SLEEP mode         SLEEPDIS[2-0]=3b'101 stops WDT3 in STOP/SLEEP mode.         WDT3RF       WDT3 Reset Flag         WDT3PE is set to "1" offer a WDT3 reset accura. This must be cleared by acftware by |                                                                                                                                                                                         |    |                 |   |   |   |   |   |  |
| WDT3L                                                                                                                                                                                                                                                                                                                                                                                       | WDT3RF is set to "1" after a WDT3 reset occurs. This must be cleared by software by writing "0".<br>WDT3L (0xA0DCh) Watchdog Timer 3 Time Out Value Low Byte RO R/W (0xFF) TB Protected |    |                 |   |   |   |   |   |  |

# 7 6 5 4 3 2 1 0 RD WDT3CNT[7-0] WR WDT3[7-0]

#### WDT3H (0xA0DDh) Watchdog Timer 3 Time Out Value High Byte RO R/W (0x0F) TB Protected

|    | 7             | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |
|----|---------------|-----------------|--|--|--|--|--|--|--|--|
| RD | WDT3CNT[15-8] |                 |  |  |  |  |  |  |  |  |
| WR | WDT3[15-8]    |                 |  |  |  |  |  |  |  |  |

WDT3L and WDT3H hold the time out value for watchdog timer 3. When the counter reaches WDT3 time out value, a reset is generated. Reading this register returns the current count value.

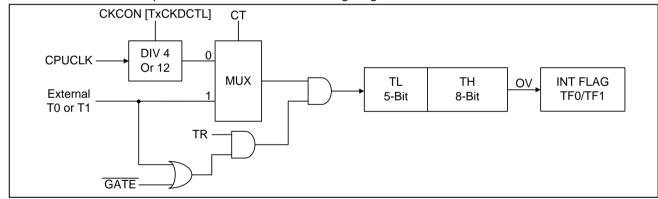
#### 1.9 System Timers – T0 and T1

The CPU contains three 16-bit timers/counters, Timer 0, Timer 1 and Timer 2. In timer mode, Timer 0, Timer 1 registers are incremented every 12 SYSCLK period when the appropriate timer is enabled. In the timer mode, Timer 2 registers are incremented every 12 or 2 SYSCLK period (depending on the operating mode). In the counter mode, the timer registers are incremented every falling edge on their corresponding inputs: T0, T1, and T2. These inputs are read every SYSCLK period.

Timer 0 and Timer 1 are fully compatible with the standard 8051. Timer 0 and 1 are controlled by TCON (0x88) and TMOD (0x89) registers while each timer consists of two 8-bit registers TH0 (0x8C), TL0 (0x8A), TH1 (0x8D), TL1 (0x8B).

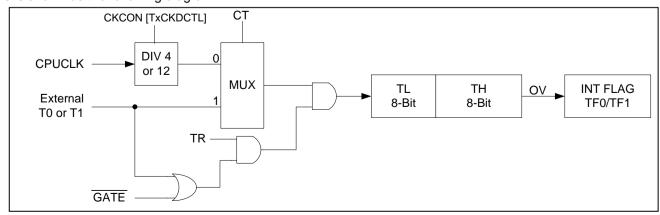
#### TCON (0x88h) Timer 0 and 1 Configuration Register R/W (0x00)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7   | 6   | 6 5                         |     | 3   | 2   | 1    | 0   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------------------------|-----|-----|-----|------|-----|--|
| RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TF1 | TR1 | TF0                         | TR0 | IE1 | IT1 | IE0  | IT0 |  |
| WR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TF1 | TR1 | TR1 TF0 TR0 IE1 IT1 IE0 IT0 |     |     |     |      |     |  |
| TF1Timer 1 Overflow Interrupt Flag bit. TF1 is cleared by hardware when entering ISR.TR1Timer 1 Run Control bit. Set to enable Timer 1, and clear to disable Timer 1.TF0Timer 0 Overflow Interrupt Flag bit. TF0 is cleared by hardware when entering ISR.TR0Timer 0 Run Control bit. Set to enable Timer 0, and clear to disable Timer 0.IE1,IT1,IE0,IT0These bits are related to configurations of expanded interrupt INT1 and INT0. The<br>described in the Interrupt System section. |     |     |                             |     |     |     | ISR. |     |  |




|                       | 7                                                    | 6                                                             |                                                                                    | 5                                                                                                  | 4                                                        | 3                                                                      | 2                         | 1                                 | 0            |
|-----------------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|---------------------------|-----------------------------------|--------------|
| RD                    | GATE1                                                | CT1                                                           | Т                                                                                  | 1M1                                                                                                | T1M0                                                     | GATE0                                                                  | CT0                       | T0M1                              | T0M0         |
| WR                    | GATE1                                                | CT1                                                           | Т                                                                                  | 1M1                                                                                                | T1M0                                                     | GATE0                                                                  | CT0                       | T0M1                              | T0M0         |
| C<br>T<br>G<br>C<br>T | ATE1<br>T1<br>1M1<br>1M0<br>ATE0<br>T0<br>0M1<br>0M0 | Counter o<br>CT1 to us<br>Timer 1 M<br>Timer 1 M<br>Timer 0 G | r Time<br>e inter<br>lode So<br>lode So<br>ate Co<br>r Time<br>ernal cl<br>lode So | er Mode<br>nal clock<br>elect bit.<br>elect bit.<br>ntrol bit.<br>r Mode \$<br>lock.<br>elect bit. | Select bit. Se<br>c.<br>Set to enable<br>Select bit. Set | e external T1 to<br>t CT1 to acce<br>e external T0 t<br>CT0 to use e   | ss external T             | 1 as the clock<br>gating control  | source. Clea |
| -                     |                                                      | M1                                                            | MO                                                                                 | Mode                                                                                               |                                                          | M                                                                      | ode Descriptio            | ons                               |              |
|                       |                                                      | 0                                                             | 0                                                                                  | 0                                                                                                  |                                                          | s a 5-bit pre-s<br>er. They form                                       |                           |                                   | an 8-bit     |
|                       |                                                      | 0                                                             | 1                                                                                  | 1                                                                                                  | TH and TL a                                              | are cascaded                                                           | to form a 16-             | bit counter/tim                   | ner.         |
|                       |                                                      | 1                                                             | 0                                                                                  | 2                                                                                                  | TL functions                                             | s as an 8-bit c                                                        | ounter/timer a            | and auto-reloa                    | ads from TH. |
|                       |                                                      | 1                                                             | 1                                                                                  | 3                                                                                                  | timer, which<br>configured i                             | s as an 8-bit c<br>n is controlled<br>n Mode 3. Wh<br>its interrupt is | by GATE1. O<br>this happe | only Timer 0 ca<br>ens, Timer 1 c | an be        |

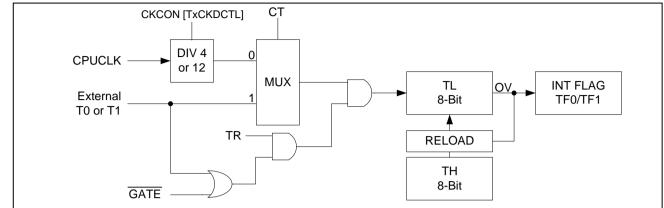
## TMOD (0x89h) Timer 0 and 1 Mode Control Register R/W (0x00)


#### Mode 0

In this mode, TL serves as a 5-bit pre-scaler and TH functions as an 8-bit counter/timer, together working as a 13-bit counter/timer. The Mode 0 operation is shown in the following diagram.

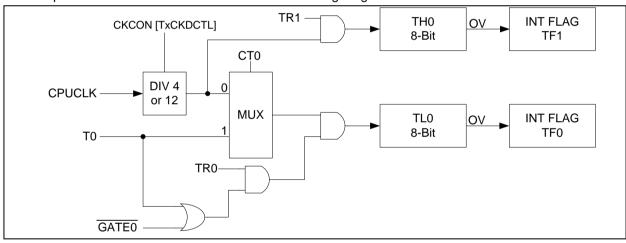


#### Mode 1


Mode 1 operates the same way Mode 0 does, except TL is configured as 8-bit and thus forming a 16-bit counter/timer. This is shown as the following diagram.






#### Mode 2

Mode 2 configures the timer as an 8-bit re-loadable counter. The counter is TL while TH stores the reload data. The reload occurs when TL overflows. The operation is shown in the following diagram:



#### Mode 3

Mode 3 is a special mode for Timer 0 only. In this mode, Timer 0 is configured as two separate 8-bit counters. TL uses control and interrupt flags of Timer 0 whereas TH uses control and interrupt flag of Timer 1. Since Timer 1's control and flag are occupied, Timer 2 can only be used for counting purposes such as Baud rate generating while Timer 0 is in Mode 3. The operation flow of Mode 3 is shown in the following diagram.



#### TL0 (0x8Ah) Timer 0 Low Byte Register R/W (0x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|----------|---|---|---|---|---|---|--|--|
| RD |   | TL0[7-0] |   |   |   |   |   |   |  |  |
| WR |   | TL0[7-0] |   |   |   |   |   |   |  |  |

#### TH0 (0x8Ch) Timer 0 High Byte Register 0 R/W (x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|----------|---|---|---|---|---|---|--|--|
| RD |   | TH0[7-0] |   |   |   |   |   |   |  |  |
| WR |   | TH0[7-0] |   |   |   |   |   |   |  |  |

#### TL1 (0x8Bh) Timer 1 Low Byte Register 0 R/W (0x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|----------|---|---|---|---|---|---|--|--|
| RD |   | TL1[7-0] |   |   |   |   |   |   |  |  |
| WR |   | TL1[7-0] |   |   |   |   |   |   |  |  |

#### TH1 (0x8Dh) Timer 1 High Byte Register 0 R/W (0x00)

| 7 | 6 | 5 | Λ | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 1 | 0 | 5 | 4 | 5 | 2 | I | 0 |

| RD | TH1[7-0] |
|----|----------|
| WR | TH1[7-0] |

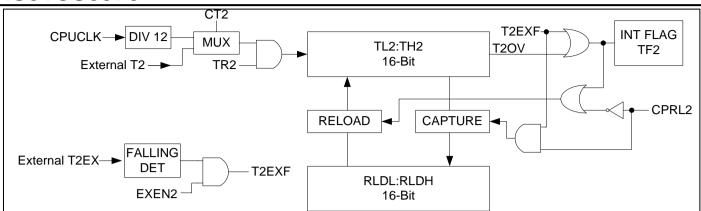
## 1.10 System Timer – T2

Timer 2 is fully compatible with the standard 8052 timer 2. Timer 2 can be used as the re-loadable counter, capture timer, or baud rate generator. Timer 2 uses five SFR as counter registers, capture registers and a control register.

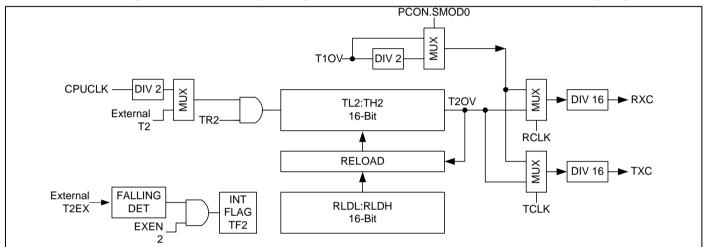
T2CON (0xC8h) Timer 2 Control and Configuration Register R/W (0x00)

|                                           | -    | 0                           | -                               | 4                               | 0               | 0                |                 | <u> </u>       |  |  |
|-------------------------------------------|------|-----------------------------|---------------------------------|---------------------------------|-----------------|------------------|-----------------|----------------|--|--|
|                                           | 7    | 6                           | 5                               | 4                               | 3               | 2                | 1               | 0              |  |  |
| RD                                        | TF2  | EXF2                        | RCLK                            | TCLK                            | EXEN2           | TR2              | CT2             | CPRL2          |  |  |
| WR                                        | TF2  | EXF2                        | EXF2 RCLK TCLK EXEN2 TR2 CT2 CF |                                 |                 |                  |                 |                |  |  |
| Т                                         | F2   | Timer 2 Interrupt Flag bit. |                                 |                                 |                 |                  |                 |                |  |  |
|                                           |      |                             |                                 |                                 |                 | en RCLK or T     | CLK is set (tha | t means Timer  |  |  |
| _                                         |      |                             |                                 | Baud rate ger                   | nerator).       |                  |                 |                |  |  |
| E                                         | XF2  |                             | ng Edge Flag                    |                                 |                 |                  |                 |                |  |  |
|                                           |      |                             | set when T2                     | EX has a fal                    | ling edge whe   | en EXEN2=1.      | EXF2 must       | be cleared by  |  |  |
| П                                         | CLK  | software.                   | ock Enable b                    | :4                              |                 |                  |                 |                |  |  |
| П                                         |      |                             |                                 |                                 | er 2 overflow   | nulana           |                 |                |  |  |
|                                           |      |                             |                                 | •                               | her 1 overflow  | •                |                 |                |  |  |
| т                                         | CLK  |                             | lock Enable                     | •                               |                 | puises           |                 |                |  |  |
|                                           | OLIX |                             |                                 |                                 | Fimer 2 overflo | w nulses         |                 |                |  |  |
|                                           |      |                             |                                 | •                               | Timer 1 overflo |                  |                 |                |  |  |
| E                                         | XEN2 |                             | tion Enable b                   | •                               |                 |                  |                 |                |  |  |
|                                           |      | 1 – Allows                  | capture or re                   | load as T2EX                    | falling edge a  | ppears           |                 |                |  |  |
|                                           |      |                             | T2EX events                     |                                 | 0 0             |                  |                 |                |  |  |
| Т                                         | R2   | Start/Stop                  | Timer 2 Cont                    | rol bit                         |                 |                  |                 |                |  |  |
|                                           |      | 1 – Start                   |                                 |                                 |                 |                  |                 |                |  |  |
|                                           |      | 0 – Stop                    |                                 |                                 |                 |                  |                 |                |  |  |
| С                                         | T2   | Timer 2 Tir                 | mer/Counter I                   | Node Select b                   | bit             |                  |                 |                |  |  |
|                                           |      |                             |                                 | •                               | n as the clock  | source           |                 |                |  |  |
| _                                         |      |                             | I clock timer r                 |                                 |                 |                  |                 |                |  |  |
| C                                         | PRL2 | Capture/Reload Select bit   |                                 |                                 |                 |                  |                 |                |  |  |
| 1 – Use T2EX pin falling edge for capture |      |                             |                                 |                                 |                 |                  |                 |                |  |  |
|                                           |      |                             |                                 |                                 |                 |                  |                 | l2=1). If RCLK |  |  |
|                                           |      |                             |                                 | s used as a b<br>r 2 overflows. |                 | rator), this bit | is ignored and  | d an automatic |  |  |
|                                           |      |                             |                                 |                                 | •               |                  |                 |                |  |  |

#### Note: This implementation does not support UART0


Timer 2 can be configured in three modes of operations –Auto-reload Counter, Capture Timer, or Baud Rate Generator. These modes are defined by RCLK, TCLK, CPRL2 and TR2 bits of T2CON registers. The definition is illustrated in the following table:

| RCLK or TCLK | CPRL2 | TR2 | Mode Descriptions                                                                                                                                                    |
|--------------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | 0     | 1   | 16-bit Auto-reload Counter mode. Timer 2 overflow sets the TF2 interrupt flag and TH2/TL2 is reloaded with RLDH/RLHL register.                                       |
| 0            | 1     | 1   | 16-bit Capture Timer mode. Timer 2's overflow sets TF2 interrupt flag.<br>When EXEN2=1, TH2/TL2 content is captured into RLDH/RLDL when<br>T2EX falling edge occurs. |
| 1            | Х     | 1   | Baud Rate Generator mode. Timer 2's overflow is used for configuring UART0.                                                                                          |
| Х            | Х     | 0   | Timer 2 is stopped.                                                                                                                                                  |


The block diagram of the Timer 2 operating in Auto-reload Counter and Capture Timer modes are shown in the following diagram. Please note External T2 and External T2EX are tied together in this product.

A Division of





The block diagram of the Timer 2 operating in Baud Rate Generator is shown in the following diagram:



#### TL2 (0xCCh) Timer 2 Low Byte Register 0 R/W (0x00)

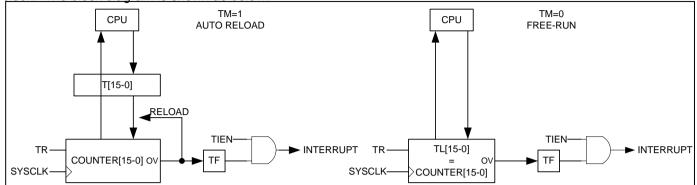
|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|----------|---|---|---|---|---|---|--|--|
| RD |   | TL2[7-0] |   |   |   |   |   |   |  |  |
| WR |   | TL2[7-0] |   |   |   |   |   |   |  |  |

#### TH2 (0xCDh) Timer 2 High Byte Register 0 R/W (0x00)

|    | 7 | 6        | 5 | 4   | 3     | 2 | 1 | 0 |  |
|----|---|----------|---|-----|-------|---|---|---|--|
| RD |   |          |   | TH2 | [7-0] |   |   |   |  |
| WR |   | TH2[7-0] |   |     |       |   |   |   |  |

#### RLDL (0xCAh) Timer 2 reload Low Byte Register 0 R/W (0x00)

|    | 7 | 6         | 5 | 4    | 3      | 2 | 1 | 0 |  |
|----|---|-----------|---|------|--------|---|---|---|--|
| RD |   |           |   | RLDI | _[7-0] |   |   |   |  |
| WR |   | RLDL[7-0] |   |      |        |   |   |   |  |


#### RLDH (0xCBh) Timer 2 reload High Byte Register 0 R/W (0x00)

|    | 7         | 6         | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|-----------|-----------|---|---|---|---|---|---|--|
| RD | RLDH[7-0] |           |   |   |   |   |   |   |  |
| WR |           | RLDH[7-0] |   |   |   |   |   |   |  |



#### 1.11 System Timer – T3 and T4

Both Timer 3 and Timer 4 are simple 16-Bit reload timers or free-run counters and are clocked by the system clock. The block diagram is shown as below.



#### T34CON (0xCFh) Timer 3 and Timer 4 Control and Status Register R/W (?????)

| C OII                                    |      |                                                                                              |                |               | <u> </u>     | ,            |                | _            |  |  |  |
|------------------------------------------|------|----------------------------------------------------------------------------------------------|----------------|---------------|--------------|--------------|----------------|--------------|--|--|--|
|                                          | 7    | 6                                                                                            | 5              | 4             | 3            | 2            | 1              | 0            |  |  |  |
| RD                                       | TF4  | TM4                                                                                          | TR4            | T4IEN         | TF3          | TM3          | TR3            | T3IEN        |  |  |  |
| WR                                       | TF4  | TM4                                                                                          | TR4            | T4IEN         | TF3          | TM3          | TR3            | T3IEN        |  |  |  |
| TF4 Timer 4 Overflow Interrupt Flag bit. |      |                                                                                              |                |               |              |              |                |              |  |  |  |
|                                          |      | TF4 is set                                                                                   | by hardware v  | when overflow | condition oc | curs. TF4 mu | ist be cleared | by software. |  |  |  |
| Т                                        | M4   | Timer 4 Mode Control bit. TM4 = 1 set timer 4 as auto reload, and TM4=0 set timer 4 as free- |                |               |              |              |                |              |  |  |  |
|                                          |      | run.                                                                                         |                |               |              |              |                |              |  |  |  |
| Т                                        | R4   | Timer 4 Run Control bit. Set to enable Timer 4, and clear to stop Timer 4.                   |                |               |              |              |                |              |  |  |  |
| T                                        | 4IEN | Timer 4 Interrupt Enable bit.                                                                |                |               |              |              |                |              |  |  |  |
|                                          |      | T4IEN=0 disable the Timer 4 overflow interrupt                                               |                |               |              |              |                |              |  |  |  |
|                                          |      | T4IEN=1 enable the Timer 4 overflow interrupt                                                |                |               |              |              |                |              |  |  |  |
| Т                                        | F3   | Timer 3 Ov                                                                                   | erflow Interru | ıpt Flag bit. |              |              |                |              |  |  |  |
|                                          |      | TF3 is set by hardware when overflow condition occurs. TF3 must be cleared by software.      |                |               |              |              |                |              |  |  |  |
| Т                                        | M3   | Timer 3 Mode Control bit. TM3 = 1 set timer 3 as auto reload, and TM3=0 set timer 3 as free- |                |               |              |              |                |              |  |  |  |
|                                          |      | run.                                                                                         |                |               |              |              |                |              |  |  |  |
| Т                                        | R3   | Timer 3 Run Control bit. Set to enable Timer 3, and clear to stop Timer 3.                   |                |               |              |              |                |              |  |  |  |
| T                                        | 3IEN | Timer 3 Interrupt Enable bit.                                                                |                |               |              |              |                |              |  |  |  |
|                                          |      | T3IEN=0 disable the Timer 3 overflow interrupt                                               |                |               |              |              |                |              |  |  |  |

TOILIN 1 apple the Timer 2 everflow interrupt

## T3IEN=1 enable the Timer 3 overflow interrupt

#### TL3 (0xAEh) Timer 3 Low Byte Register 0 R/W 00000000

|    | 7 | 6 | 5 | 4   | 3    | 2 | 1 | 0 |
|----|---|---|---|-----|------|---|---|---|
| RD |   |   |   | T3[ | 7-0] |   |   |   |
| WR |   |   |   | T3[ | 7-0] |   |   |   |

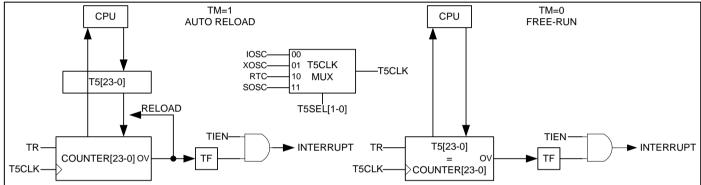
#### TH3 (0xAFh) Timer 3 High Byte Register 0 R/W 00000000

|    | 7 | 6        | 5 | 4    | 3    | 2 | 1 | 0 |  |  |
|----|---|----------|---|------|------|---|---|---|--|--|
| RD |   | T3[15-8] |   |      |      |   |   |   |  |  |
| WR |   |          |   | T3[1 | 5-8] |   |   |   |  |  |

#### TL4 (0xACh) Timer 4 Low Byte Register 0 R/W 00000000

|    | 7 | 6       | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|---------|---|---|---|---|---|---|--|
| RD |   | T4[7-0] |   |   |   |   |   |   |  |
| WR |   | T4[7-0] |   |   |   |   |   |   |  |




#### TH4 (0xADh) Timer 4 High Byte Register 0 R/W 00000000

|    | , | <u> </u> | 0 |   |   |   |   |   |  |  |
|----|---|----------|---|---|---|---|---|---|--|--|
|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
| RD |   | T4[15-8] |   |   |   |   |   |   |  |  |
| WR |   | T4[15-8] |   |   |   |   |   |   |  |  |

T3[15-0] and T4[15-0] function differently when been read or written. When written in auto-reload mode, its reload value register is written, and in free-run mode, the counter value is written immediately. When been read, the return value is always the present counter value. There is no snapshot buffer in the read operation, so software should always read the high byte then the low byte.

#### 1.12 System Timer – T5

T5 is a 24-Bit simple timer. It can select four different clock sources and can be used for extended sleep mode wake up. The clock sources include IOSC, XOSC and SOSC/4. T5 can be configured either as free-run mode or auto-reload mode. Timer 5 does not depend on the SYSCLK, therefore it continues to count under STOP or SLEEP mode if the clock source is present. The following diagram shows the block diagram of Timer 5.



#### T5CON (0xA068h) Timer 5 Control and Status Register R/W (?????)

|    | 7   | 6          | 5        | 4       | 3   | 2 | 1 | 0     |
|----|-----|------------|----------|---------|-----|---|---|-------|
| RD | TF5 | T5SEL[1]   | T5SEL[0] | TM5     | TR5 | - | - | T5IEN |
| WR | TF5 | T5SEL[1]   | T5SEL[0] | TM5     | TR5 | - | - | T5IEN |
|    |     | <b>T</b> ' |          | <b></b> |     |   |   |       |

| TF5        | Timer 5 Overflow Interrupt Flag bit.                                                       |
|------------|--------------------------------------------------------------------------------------------|
|            | TF5 is set by hardware when overflow condition occurs. TF5 must be cleared by software.    |
| T5SEL[1-0] | Timer 5 Clock Selection bits.                                                              |
|            | T5SEL[1-0] = 00, IOSC                                                                      |
|            | T5SEL[1-0] = 01, IOSC                                                                      |
|            | T5SEL[1-0] = 10, SOSC/4                                                                    |
|            | T5SEL[1-0] = 11, SOSC/4                                                                    |
| TM5        | Timer 5 Mode Control bit. TM5=1 set timer 5 as auto reload, and TM5=0 set timer 5 as free- |
|            | run.                                                                                       |
| TR5        | Timer 5 Run Control bit. Set to enable Timer 5, and clear to stop Timer 5.                 |
| T5IEN      | Timer 5 Interrupt Enable bit.                                                              |
|            | T5IEN=0 disable the Timer 5 overflow interrupt                                             |
|            | T5IEN=1 enable the Timer 5 overflow interrupt                                              |

#### TL5 (0xA069) Timer5 Low Byte Register 0 R/W (0x00)

|    | 7 | 6       | 5 | 4   | 3    | 2 | 1 | 0 |  |
|----|---|---------|---|-----|------|---|---|---|--|
| RD |   |         |   | T5[ | 7-0] |   |   |   |  |
| WR |   | T5[7-0] |   |     |      |   |   |   |  |

#### TH5 (0xA06A) Timer5 Medium Byte Register 0 R/W (0x00)

|    | 7         | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|-----------|---|---|---|---|---|---|---|
| RD | T5[15-8]  |   |   |   |   |   |   |   |
| WR | T5[15-8]] |   |   |   |   |   |   |   |



#### TT5 (0xA06B) Timer5 High Byte Register 0 R/W (0x00)

|    | ,         |           | 0 | · / |   |   |   |   |
|----|-----------|-----------|---|-----|---|---|---|---|
|    | 7         | 6         | 5 | 4   | 3 | 2 | 1 | 0 |
| RD |           | T5[23-16] |   |     |   |   |   |   |
| WR | T5[23-16] |           |   |     |   |   |   |   |

T5[23-0] functions differently when been read or written. When written in auto-reload mode, its reload value register is written, and in free-run mode, the counter value is written immediately. When been read, the return value is always the present counter value. There is no snapshot buffer in the read operation, so software should always read the high byte then the low byte.

#### 1.13 Multiplication and Division Unit (MDU)

MDU provides acceleration on unsigned integer operations of 16-bit multiplications, 32-bit division, and shifting and normalizing operations. The following table shows the execution characteristics of these operations. The MDU does not contain the operation completion status flag. Therefore the most efficient utilization of MDU uses NOP delay for the required clock time of the MDU operation types. The number of the clock cycles required for each operation is shown in the following table and it is counted from the last write of the writing sequence.

| Operations                      | Result | Reminder | # of Clock Cycle |
|---------------------------------|--------|----------|------------------|
| 32-bit division by 16-bit       | 32-bit | 16-bit   | 17               |
| 16-bit division by 16-bit       | 16-bit | 16-bit   | 9                |
| 16-bit multiplication by 16-bit | 32-bit | -        | 10               |
| 32-bit normalization            | -      | -        | 3 – 20           |
| 32-bit shift left/right         | -      | -        | 3 – 18           |

The MDU is accessed through MD0 to MD5 that contains the operands and the results, and the operation is controlled by ARCON register.

#### ARCON (0xFF) MDU Control R/W (0x00)

|    | 7            | 6                                                                                                                                                                                                                                                                                           | 5                               | 4                                                              | 3                                 | 2               | 1                               | 0                        |
|----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|-----------------------------------|-----------------|---------------------------------|--------------------------|
| RD | MDEF         | MDOV                                                                                                                                                                                                                                                                                        | SLR                             | SC4                                                            | SC3                               | SC2             | SC1                             | SC0                      |
| WR | MDEF         | MDOV                                                                                                                                                                                                                                                                                        | SLR                             | SC4                                                            | SC3                               | SC2             | SC1                             | SC0                      |
|    | idef<br>Idov | operation on MDU Over                                                                                                                                                                                                                                                                       | completes. MI<br>flow Flag bit. | by hardware t<br>DEF is automa<br>MDOV is set I<br>han 0x0000F | atically cleare<br>by hardware if | d after reading | g ARCON.                        |                          |
| S  | LR           |                                                                                                                                                                                                                                                                                             | 0                               | it. $SLR = 1$ inc                                              |                                   | to the right ar | nd SLR =0 ind                   | licates a shift          |
| S  | C4-0         | Shift Count Control and Result bit. If SC0-4 is written with 00000,<br>operation performed by MDU. When the normalization is complete<br>number of shift performed in the normalization. If SC4-0 is written<br>then the shift operation is performed by MDU with the number of s<br>value. |                                 |                                                                |                                   |                 | ted, SC4-0 co<br>n with a non-z | ntains the<br>ero value, |

#### MD0 (0xF9) MDU Data Register 0 R/W (0x00)

|    | 7 | 6        | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---|----------|---|---|---|---|---|---|
| RD |   | MD0[7-0] |   |   |   |   |   |   |
| WF | 2 | MD0[7-0] |   |   |   |   |   |   |

#### MD1 (0xFA) MDU Data Register 1 R/W (0x00)

|    | 7        | 6        | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----------|----------|---|---|---|---|---|---|
| RD |          | MD1[7-0] |   |   |   |   |   |   |
| WR | MD1[7-0] |          |   |   |   |   |   |   |





MD2 (0xFB) MDU Data Register 2 R/W (0x00)

|           | -B) MDU Data | 0              | - ( )                  |     |       |   |   |   |
|-----------|--------------|----------------|------------------------|-----|-------|---|---|---|
|           | 7            | 6              | 5                      | 4   | 3     | 2 | 1 | 0 |
| RD        |              |                |                        | MD2 | [7-0] |   |   |   |
| WR        |              |                |                        | MD2 | [7-0] |   |   |   |
| ID3 (0xF  | FC) MDU Data | a Register 3 I | R/W (0x00)             |     |       |   |   |   |
|           | 7            | 6              | 5                      | 4   | 3     | 2 | 1 | 0 |
| RD        |              |                | · · · · · · ·          | MD3 | 7-0]  |   |   |   |
| WR        |              |                |                        | MD3 | 7-0]  |   |   |   |
| /ID4 (0xF | D) MDU Data  | a Register 4   | R/W (0x00)             |     |       |   |   |   |
|           | 7            | 6              | 5                      | 4   | 3     | 2 | 1 | 0 |
| RD        |              |                |                        | MD4 | 7-0]  |   |   |   |
|           |              |                |                        |     |       |   |   |   |
| WR        |              |                |                        | MD4 |       |   |   |   |
| WR        | FE) MDU Data | Register 5 I   | R/W (0x00)             |     |       |   |   |   |
| WR        | FE) MDU Data | Register 5 I   | <b>R/W (0x00)</b><br>5 |     |       | 2 | 1 | 0 |

MDU operation consists of three phases.

1. Loading MD0 to MD5 data registers in an appropriate order depending on the operation.

2. Execution of the operations.

WR

3. Reading result from MD0 to MD5 registers.

The following list shows the MDU read and write sequences. Each operation has its unique writing sequence and reading sequence of MD0 to MD5 registers therefore a precise access sequence is required.

MD5[7-0]

#### Division – 32-bit divide by 16-bit or 16-bit divide by 16-bit

Follow the following write-sequence. The first write of MD0 resets the MDU and initiates the MDU error flag mechanism. The last write incites calculation of MDU.

Write MD0 with Dividend LSB byte

Write MD1 with Dividend LSB+1 byte

Write MD2 with Dividend LSB+2 byte (ignore this step for 16-bit divide by 16-bit)

Write MD3 with Dividend MSB byte (ignore this step for 16-bit divide by 16-bit)

Write MD4 with Divisor LSB byte

Write MD5 with Divisor MSB byte

Then follow the following read-sequence. The last read prompts MDU for the next operations.

Read MD0 with Quotient LSB byte

Read MD1 with Quotient LSB+1 byte

Read MD2 with Quotient LSB+2 byte (ignore this step for 16-bit divide by 16-bit)

Read MD3 with Quotient MSB byte (ignore this step for 16-bit divide by 16-bit)

Read MD4 with Remainder LSB byte

Read MD5 with Remainder MSB byte

Read ARCON to determine error or overflow condition

Please note if the sequence is violated, the calculation may be interrupted and result in errors.

#### Multiplication - 16-bit multiply by 16-bit

Follow the following write sequence.

Write MD0 with Multiplicand LSB byte Write MD4 with Multiplier LSB byte Write MD1 with Multiplicand MSB byte



Write MD5 with Multiplier MSB byte

Then follow the following read sequence.

Read MD0 with Product LSB byte

Read MD1 with Product LSB+1 byte

Read MD2 with Product LSB+2 byte

Read MD3 with Product MSB byte

Read ARCON to determine error or overflow condition

#### Normalization – 32-bit

Normalization is obtained with integer variables stored in MD0 to MD3. After normalization, all leading zeroes are removed by shift left operations. To start the normalization operation, SC4-0 in ARCON is first written with 00000. After completion of the normalization, SC4-0 is updated with the number of leading zeroes and the normalized result is restored on MD0 to MD3. The number of the shift of the normalization can be used as exponents. The following write sequence should be followed. The last write to ARCON initiates the normalization operations by MDU.

Write MD0 with Operand LSB byte Write MD1 with Operand LSB+1 byte Write MD2 with Operand LSB+2 byte Write MD3 with Operand MSB byte Write ARCON with SC4-0 = 00000

Then follow the following read sequence.

Read MD0 with Result LSB byte Read MD1 with Result LSB+1 byte Read MD2 with Result LSB+2 byte Read MD3 with Result MSB byte Read SC[4-0] from ARCON for normalization count or error flag

#### Shift – 32-bit

Shift is done with integer variables stored in MD0 to MD3. To start the shift operation, SC4-0 in ARCON is first written with shift count and SLR with shift direction. After completion of the Shift, the result is stored back to MD0 to MD3. The following write sequence should be followed. The last write to ARCON initiates the normalization operations by MDU.

Write MD0 with Operand LSB byte

Write MD1 with Operand LSB+1 byte

Write MD2 with Operand LSB+2 byte

Write MD3 with Operand MSB byte

Write ARCON with SC4-0 = Shift count and SLR with shift direction

Then follow the following read sequence.

Read MD0 with Result LSB byte

Read MD1 with Result LSB+1 byte

Read MD2 with Result LSB+2 byte

Read MD3 with Result MSB byte

Read ARCON's for error flag

#### MDU Flag

The error flag (MDEF) of MDU indicates improperly performed operations. The error mechanism starts at the first MD0 write and finishes with the last read of MD result register. MDEF is set if current operation is interrupted or restarted by improper write of MD register before the operation completes. MDEF is cleared if the operations and proper write/read sequences successfully complete. The overflow flag (MDOV) of MDU indicates an error of operations. MDOV is set if

The divisor is zero

Multiplication overflows

Normalization operation is performed on already normalized variables (MD3.7 =1)

#### 1.14 I<sup>2</sup>C Master

The I<sup>2</sup>C master controller provides the interface to I<sup>2</sup>C slave devices. It can be programmed to operate with arbitration and clock synchronization to allow it to operate in multi-master configurations. The master uses SCL and



SDA pins. The controller contains a built-in 8-bit timer to allow various I<sup>2</sup>C bus speed. The maximum I<sup>2</sup>C bus speed is limited to SYSCLK/12.

#### I2CMTP (0xF7h) I<sup>2</sup>C Master Time Period R/W (x00)

|    | 7           | 6           | 5 | 4 | 3 | 2 | 1 | 0 |
|----|-------------|-------------|---|---|---|---|---|---|
| RD |             | I2CMTP[7-0] |   |   |   |   |   |   |
| WR | I2CMTP[7-0] |             |   |   |   |   |   |   |

This register set the frequency of I<sup>2</sup>C bus clock. If I2CMTP[7-0] is equal to or larger than 0x01, then SCL\_FREQ = SYSCLK\_FREQ/8/(1 + I2CMTP). If I2CMTP[7-0] = 0x00, SCL\_FREQ = SYSCLK\_FREQ /12.

#### I2CMSA (0xF4) I<sup>2</sup>C Master Slave Address R/W (0x00)

|    | 7                                                                                                       | 6       | 5 | 4 | 3 | 2 | 1        | 0 |
|----|---------------------------------------------------------------------------------------------------------|---------|---|---|---|---|----------|---|
| RD | SA[6-0]                                                                                                 |         |   |   |   |   | RS       |   |
| WR |                                                                                                         | SA[6-0] |   |   |   |   | RS       |   |
| S  | SAI6-01 Slave Address SAI6-01 defines the slave address the I <sup>2</sup> C master uses to communicate |         |   |   |   |   | municate |   |

SA[6-0] RS

Slave Address. SA[6-0] defines the slave address the I<sup>2</sup>C master uses to communicate. Receive/Send Bit. RS determines if the following operation is to RECEIVE (RS=1) or SEND (RS=0).

#### I2CMBUF (0xF6) I<sup>2</sup>C Master Data Buffer Register R/W (0x00)

|    | 7       | 6       | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---------|---------|---|---|---|---|---|---|
| RD |         | RD[7-0] |   |   |   |   |   |   |
| WR | TD[7-0] |         |   |   |   |   |   |   |

I2CMBUF functions as a transmit-data register when written and as a receive-data register when read. When written, TD is sent to the bus by the next SEND or BURST SEND operations. TD[7] is sent first. When read, RD contains the 8-bit data received from the bus upon the last RECEIVE or BURST RECEIVE operation.

#### I2CMCR (0xF5) I<sup>2</sup>C Master Control and Status Register R/W (0x00)

|    | 7     | 6       | 5    | 4       | 3        | 2        | 1     | 0    |
|----|-------|---------|------|---------|----------|----------|-------|------|
| RD | -     | BUSBUSY | IDLE | ARBLOST | DATANACK | ADDRNACK | ERROR | BUSY |
| WR | CLEAR | INFILEN | -    | HS      | ACK      | STOP     | START | RUN  |

The I2CMCR register is used for setting control when it is written, and as a status signal when read.

| CLEAR    | Reset I2C Master State Machine                                                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Set CLEAR=1 will reset the state machine. CLEAR is self-cleared when reset is completed.                                                                                                                   |
| INFILEN  | Input Noise Filter Enable. When IFILEN is set, pulses shorter than 50 nsec on inputs of SDA and SCL are filtered out.                                                                                      |
| IDLE     | This bit indicates that I <sup>2</sup> C master is in the IDLE mode.                                                                                                                                       |
| BUSY     | This bit indicates that I <sup>2</sup> C master is receiving or transmitting data, and other status bits are not valid.                                                                                    |
| BUSBUSY  | This bit indicates that the external I <sup>2</sup> C bus is busy and access to the bus is not possible. This bit is set/reset by START and STOP conditions.                                               |
| ERROR    | This bit indicates that an error occurs in the last operation. The errors include slave address was not acknowledged, or transmitted data is not acknowledged, or the master controller loses arbitration. |
| ADDRNACK | This bit is automatically set when the last operation slave address transmitted is not acknowledged.                                                                                                       |
| DATANACK | This bit is automatically set when the last operation transmitted data is not acknowledged.                                                                                                                |
| ARBLOST  | This bit is automatically set when the last operation I <sup>2</sup> C master controller loses the bus arbitration.                                                                                        |
|          |                                                                                                                                                                                                            |

START, STOP, RUN and HS, RS, ACK bits are used to drivel<sup>2</sup>C Master to initiate and terminate a transaction. The Start bit generates START, or REPEAT START protocol. The Stop bit determines if the cycle stops at the end of the data cycle or continues to a burst. To generate a single read cycle, the designated address is written in SA, RS is set to 1, ACK=0, STOP=1, START=1, RUN=1 are set in I2CMCR to perform the operation and then STOP. When the operation is completed (or aborted due to errors), I<sup>2</sup>C master generates an interrupt. The ACK bit must be set to 1. This causes the controller to send an ACK automatically after each byte transaction. The ACK bit must be reset when set to 0 when the master operates in receive mode and not to receive further data from the slave devices.



The following table lists the permitted control bits combinations in master IDLE mode.

|    | -  |     | -    |       |     |                                                                                                  |  |  |  |
|----|----|-----|------|-------|-----|--------------------------------------------------------------------------------------------------|--|--|--|
| HS | RS | ACK | STOP | START | RUN | OPERATIONS                                                                                       |  |  |  |
| 0  | 0  | -   | 0    | 1     | 1   | START condition followed by SEND. Master remains in TRANSMITTER mode                             |  |  |  |
| 0  | 0  | -   | 1    | 1     | 1   | START condition followed by SEND and STOP                                                        |  |  |  |
| 0  | 1  | 0   | 0    | 1     | 1   | START condition followed by RECEIVE operation w<br>negative ACK. Master remains in RECEIVER mode |  |  |  |
| 0  | 1  | 0   | 1    | 1     | 1   | START condition followed by RECEIVE and STOP                                                     |  |  |  |
| 0  | 1  | 1   | 0    | 1     | 1   | START condition followed by RECEIVE. Master<br>remains in RECEIVER mode                          |  |  |  |
| 0  | 1  | 1   | 1    | 1     | 1   | Illegal command                                                                                  |  |  |  |
| 1  | 0  | 0   | 0    | 0     | 1   | Master Code sending and switching to HS mode                                                     |  |  |  |

The following table lists the permitted control bits combinations in master TRANSMITTER mode.

| HS | RS | ACK | STOP | START | RUN | OPERATIONS                                                                                                 |  |  |  |
|----|----|-----|------|-------|-----|------------------------------------------------------------------------------------------------------------|--|--|--|
| 0  | -  | -   | 0    | 0     | 1   | SEND operation. Master remains in TRANSMITTER mode                                                         |  |  |  |
| 0  | -  | -   | 1    | 0     | 0   | STOP condition                                                                                             |  |  |  |
| 0  | -  | -   | 1    | 0     | 1   | SEND followed by STOP condition                                                                            |  |  |  |
| 0  | 0  | -   | 0    | 1     | 1   | REPEAT START condition followed by SEND. Master<br>remains in TRANSMITTER mode                             |  |  |  |
| 0  | 1  | -   | 1    | 1     | 1   | REPEAT START condition followed by SEND and STOP condition                                                 |  |  |  |
| 0  | 1  | 0   | 0    | 1     | 1   | REPEAT START condition followed by RECEIVE operation with negative ACK. Master remains in TRANSMITTER mode |  |  |  |
| 0  | 1  | 0   | 1    | 1     | 1   | REPEAT START condition followed by SEND and STOP condition.                                                |  |  |  |
| 0  | 1  | 1   | 0    | 1     | 1   | REPEAT START condition followed by RECEIVE.<br>Master remains in RECEIVER mode.                            |  |  |  |
| 0  | 1  | 1   | 1    | 1     | 1   | Illegal command                                                                                            |  |  |  |

The following table lists the permitted control bits combinations in master RECEIVER mode.

| HS | RS | ACK | STOP | START | RUN | OPERATIONS                                                                                              |
|----|----|-----|------|-------|-----|---------------------------------------------------------------------------------------------------------|
| 0  | -  | 0   | 0    | 0     | 1   | RECEIVE operation with negative ACK. Master<br>remains in RECEIVE mode                                  |
| 0  | -  | -   | 1    | 0     | 0   | STOP condition                                                                                          |
| 0  | -  | 0   | 1    | 0     | 1   | RECEIVE followed by STOP condition                                                                      |
| 0  | -  | 1   | 0    | 0     | 1   | RECEIVE operation. Master remains in RECEIVER mode                                                      |
| 0  | -  | 1   | 1    | 0     | 1   | Illegal command                                                                                         |
| 0  | 1  | 0   | 0    | 1     | 1   | REPEAT START condition followed by RECEIVE operation with negative ACK. Master remains in RECEIVER mode |
| 0  | 1  | 0   | 1    | 1     | 1   | REPEAT START condition followed by RECEIVE and STOP conditions                                          |
| 0  | 1  | 0   | 1    | 1     | 1   | REPEAT START condition followed by RECEIVE.<br>Master remains in RECEIVER mode                          |
| 0  | 0  | -   | 0    | 1     | 1   | REPEAT START condition followed by SEND. Master remains in TRANSMITTER mode.                            |
| 0  | 0  | -   | 1    | 1     | 1   | REPEAT START condition followed by SEND and STOP conditions.                                            |

All other control-bit combinations not included in three tables above are NOP. In Master RECEIVER mode, STOP should be generated only after data negative ACK executed by Master or address negative ACK executed by slave. Negative ACK means SDA is pulled low when the acknowledge clock pulse is generated.



| I2CMTO (0xC3) I | <sup>2</sup> CTime Out | <b>Control Register</b> | r R/W (0x00) |
|-----------------|------------------------|-------------------------|--------------|

| 1                                                                                                                                                                                                                                                                                     | 7        | 7 0              | Г           | 4 | 2 | 0 | 4 | 0 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------------|---|---|---|---|---|--|--|--|--|
|                                                                                                                                                                                                                                                                                       | 1        | 7 6              | 5           | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
| RD                                                                                                                                                                                                                                                                                    | I2CMTOF  | 2CMTOF           | I2CMTO[6-0] |   |   |   |   |   |  |  |  |  |
| WR                                                                                                                                                                                                                                                                                    | I2CMTOEN | CMTOEN           | I2CMTO[6-0] |   |   |   |   |   |  |  |  |  |
| I2CMTOEN I2CM Time Out Enable                                                                                                                                                                                                                                                         |          |                  |             |   |   |   |   |   |  |  |  |  |
| 12                                                                                                                                                                                                                                                                                    | 2CMTOF   | ITOF I2CM Time C | Dut Flag    |   |   |   |   |   |  |  |  |  |
| I2CMTOF       I2CM Time Out Flag         This bit is set when a time out occurs. It is cleared when I2CM CLEAR command is is         I2CMTO[6-0]       I2CM Time Out Setting         The TO time is set to (I2CMTO[6-0]+1)*2*BT. When time out occurs, an I2CM interrup be generated. |          |                  |             |   |   |   |   |   |  |  |  |  |

#### 1.15 Checksum/CRC Accelerator

To enhance the performance, a hardware Checksum/CRC Accelerator is included and closely coupled with CPU. This provides most commonly used checksum and CRC operation for 8/16/24/32-bit data width. For 8-bit data, one SYSCLK cycle is used, and for 16-bit data two cycles is used, and 32-bit takes four cycles.

#### CCCFG (0xA078h) Checksum/CRC Accelerator Configuration Register R/W (0x00)

|          |            |                                                                                                                                      |                                                                                            | -                |                |                            |                 |             |  |  |  |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|----------------|----------------------------|-----------------|-------------|--|--|--|
|          | 7          | 6                                                                                                                                    | 5                                                                                          | 4                | 3              | 2                          | 1               | 0           |  |  |  |
| RD       | DWIDT      | H[1-0]                                                                                                                               | REVERSE                                                                                    | NOCARRY          | SEED           | -                          | -               | BUSY        |  |  |  |
| WR       | DWIDT      | H[1-0]                                                                                                                               | REVERSE                                                                                    | NOCARRY          | SEED           | C                          | RCMODE[2-0      | )]          |  |  |  |
| D        | WIDTH[1-0] | Data Input                                                                                                                           | Width                                                                                      |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | 00 – set input as 8-bit wide                                                               |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | out as 16-bit w                                                                            |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | e input as 24-b                                                                            |                  |                |                            |                 |             |  |  |  |
| _        |            | 11 – set the input as 32-bit wide                                                                                                    |                                                                                            |                  |                |                            |                 |             |  |  |  |
| R        | EVERSE     | Reverse input MSB/LSB Sequence                                                                                                       |                                                                                            |                  |                |                            |                 |             |  |  |  |
|          |            | REVERSE=0 is for LSB first operations.                                                                                               |                                                                                            |                  |                |                            |                 |             |  |  |  |
|          |            | REVERSE=1 is for MSB first operation.<br>The reverse order is based on the data width. For example, if the data width is 32-bit, and |                                                                                            |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      |                                                                                            | ATA[0] holds N   |                |                            |                 | JZ-DIL, AND |  |  |  |
|          |            |                                                                                                                                      |                                                                                            | ct output result |                |                            |                 | ways holds  |  |  |  |
|          |            | MSB, CCD                                                                                                                             | ATA[0] always                                                                              | s holds MSB.     |                | U                          |                 | 2           |  |  |  |
|          |            |                                                                                                                                      |                                                                                            | s the MSB/LSE    | 3 relationship |                            |                 |             |  |  |  |
|          |            | DWIDTH                                                                                                                               |                                                                                            | REVERSE=0        |                | REVERSE=1                  |                 |             |  |  |  |
|          |            | 0                                                                                                                                    |                                                                                            | 7-0] = CCDAT     |                | CRCIN[7-0] = CCDATA[0-7]   |                 |             |  |  |  |
|          |            | 1                                                                                                                                    | -                                                                                          | 5-0] = CCDAT     |                | -                          | 5-0] = CCDAT    |             |  |  |  |
|          |            | 2                                                                                                                                    |                                                                                            | 3-0] = CCDAT     |                | CRCIN[23-0] = CCDATA[0-23] |                 |             |  |  |  |
|          |            | _                                                                                                                                    | 3 CRCIN[31-0] = CCDATA[31-0] CRCIN[31-0] = CCDATA[0-31]                                    |                  |                |                            |                 |             |  |  |  |
| N        | OCARRY     | Carry Setting for Checksum                                                                                                           |                                                                                            |                  |                |                            |                 |             |  |  |  |
|          |            | NOCARRY=0 uses previous carry result for new result<br>NOCARRY=1 discard previous carry result.                                      |                                                                                            |                  |                |                            |                 |             |  |  |  |
| <u> </u> |            |                                                                                                                                      | •                                                                                          | evious carry re  | sult.          |                            |                 |             |  |  |  |
| 3        | EED        |                                                                                                                                      | Seed Entry                                                                                 |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | SEED=1 results writing into CCDATA to become SEED value<br>SEED=0 for normal data inputs.  |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      |                                                                                            |                  | SEED entry f   | rom CCDATA                 | is not affected | d by        |  |  |  |
|          |            |                                                                                                                                      | Please note, the MSB/LSB ordering of SEED entry from CCDATA is not affected by<br>REVERSE. |                  |                |                            |                 |             |  |  |  |
| С        | RCMODE[2-0 | ] Defines CR                                                                                                                         | C/Checksum                                                                                 | Mode             |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      |                                                                                            | bled and clock   | gated off      |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | 001 – 8-bit Checksum                                                                       |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | 010 – 32-bit Checksum                                                                      |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | 011 – CRC-16 (IBM 0x8005)                                                                  |                  |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | +X15+X2+1                                                                                  | (1021)           |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | -16 (CCITT 0:<br>+X12+X5+1                                                                 | (1021)           |                |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      |                                                                                            | 2.3 0x104C11E    | )B7)           |                            |                 |             |  |  |  |
|          |            |                                                                                                                                      | 52 (7 11 00 002                                                                            |                  |                |                            |                 |             |  |  |  |



#### X32+X26+C23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1

110 - Reserved

111 – CRC and Checksum Clear

Writing "111" to CRCMODE[1-0] resets the CS/CRC states and restore default seed value (for checksum, seed value=0x00 or 0x00000000, for CRC seed value = 0xFFFF or 0xFFFFFFF). Writing "111" does not affect the previously set mode selection. **CRC Status** 

BUSY BUSY=1 indicates the results is not yet completed. Since only up to four cycles are used to calculate the Checksum or CRC, there is no need to check BUSY status before next data entry and reading the results.

CCDATA registers are the data I/O port for Checksum/CRC Accelerator. For 8-bit data width only CCDATAI7-0] should be used. For data width wider than 8-bit, high byte should always be written first, writing the low byte (CCDATA0) completes the data entry and starts the calculations. When SEED=1, the data been written goes to CRC seed value. The SEED value entry bit ordering is not affected by REVERSE setting. The result of accelerator can be directly read out from CCDATA registers also not affected by REVERSE setting.

#### CCDATA0 (0xA07Ch) Chceksum/CRC Data Register 0 R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|--|
| RD |   | CCDATA[7-0] |   |   |   |   |   |   |  |  |  |
| WR |   | CCDATA[7-0] |   |   |   |   |   |   |  |  |  |

#### CCDATA1 (0xA07Dh) Chceksum/CRC Data Register 1 R/W (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|--|
| RD |   | CCDATA[15-0] |   |   |   |   |   |   |  |  |  |
| WR |   | CCDATA[15-0] |   |   |   |   |   |   |  |  |  |

#### CCDATA2 (0xA07Eh) Chceksum/CRC Data Register 2 R/W (0x00)

|    | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---------------|---|---|---|---|---|---|---|--|--|
| RD | CCDATA[23-16] |   |   |   |   |   |   |   |  |  |
| WR | CCDATA[23-16] |   |   |   |   |   |   |   |  |  |

#### CCDATA3 (0xA07Fh) Chceksum/CRC Data Register 2 R/W (0x00)

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | CCDATA[31-24] |   |   |   |   |   |   |  |  |
| WR |   | CCDATA[31-24] |   |   |   |   |   |   |  |  |

#### 1.16 **Break Point and Debug Controller**

The CPU core also includes a Break Point Controller for software debugging purposes and handling exceptions. Program Counter break point triggers at PC address matching, and there are seven PC matching settings available. Single Step break point triggers at interaction return from an interrupt routine.

Upon the matching of break point conditions, the Break Point Controller issues BKP Interrupt for handling the break points. The BKP Interrupt vector is located at 0x7B. Upon entering the BKP ISR (Break Point Interrupt Service Routine), all interrupts and counters (WDT1, T0, T1, and T2) are disabled. To allow further interrupts and continuing counting, the BKP ISR must be enabled. At exiting, the BKP ISR setting must be restored to resume normal operations.

#### BPINTF (A0E0h) Break Point Interrupt Flag Register R/W (0x00)

|    | 7       | 6 | 5 | 4 | 3 | 2 | 1     | 0     |
|----|---------|---|---|---|---|---|-------|-------|
| RD | STEP_IF | - | - | - | - | - | PC2IF | PC1IF |
| WR | STEP_IF | - | - | - | - | - | PC2IF | PC1IF |

This register is for reading the Break Points interrupt flags.

STEP IF

This bit is set when the Break Point conditions are met by a new instruction fetching from an interrupt routine. This bit must be cleared by software.

These bits are set when Break Point conditions are met by PC2 - PC1 address. These bits PC2IF - PC1IF must be cleared by software.



### BPINTE (A0E1h) Break Point Interrupt Enable Register R/W (0x00) TB Protected

|    | 7       | 6 | 5 | 4 | 3 | 2 | 1     | 0     |
|----|---------|---|---|---|---|---|-------|-------|
| RD | STEP_IE | - | - | - | - | - | PC2IE | PC1IE |
| WR | STEP_IE | - | - | - | - | - | PC2IE | PC1IE |

This register controls the enabling of individual Break Points interrupt.

STEP\_IE Set this bit to enable Single Step event break point interrupt.

PC2IE – PC1IE Set these bits to enable PC2 to PC1 address match break point interrupts.

#### BPINTC (A0E2h) Break Point Interrupt Control Register R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---|---|---|---|---|---|---|---|
| RD | - | - | - | - | - | - | - | - |
| WR | - | - | - | - | - | - | - | - |

This register is reserved for other applications.

### BPCTRL (A0E3h) DBG and BKP ISR Control and Status Register R/W (0xFC)

|    | 7        | 6             | 5       | 4       | 3       | 2 | 1 | 0      |
|----|----------|---------------|---------|---------|---------|---|---|--------|
| RD | DBGINTEN | DBGWDT1E<br>N | DBGT2EN | DBGT1EN | DBGT0EN | - | - | DBGGST |
| WR | DBGINTEN | DBGWDT1E<br>N | DBGT2EN | DBGT1EN | DBGT0EN | - | - | DBGGST |

When entering the DBG or BKP ISR (Interrupt Service Routine), all interrupts and timers are disabled. The enabled bits are cleared by hardware reset in this register. As the interrupts and timers are disabled, the ISR can process debugging requirement in a suspended state. If a specific timer should be kept active, it must be enabled by ISR after ISR entry. Before exit of DBG and BKP ISR, the control bits should be enabled to allow the timers to resume operating. This register should be modified only in Debug ISR.

- DBGINTEN Set this bit to enable all interrupts (except WDT1 interrupt). This bit is cleared automatically at the entry of DBG and BKP ISR. Set this bit to allow ISR to be further interrupted by other interrupts. This is sometimes necessary if DBG or BKP ISR needs to use UART or I<sup>2</sup>C, for example.
- DBGWDT1EN Set this bit to allow WDT1 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR.
- DBGT2EN Set this bit to allow T2 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T2 interrupt.
- DBGT1EN Set this bit to allow T1 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T1 interrupt.
- DBGT0EN Set this bit to allow T0 counting during the DBG and BKP ISR. This bit should always be set before exiting the ISR. This bit only controls the counting but not T0 interrupt.
- DBGST This bit indicates the DBG and BKP ISR status. It is set to 1 when entering DBG and BKP ISR. It should be cleared when exiting the DBG and BKP ISR. Checking this bit allows other interrupt routine to determine whether it is a sub-service of the DBG and BKP ISR.

#### PC1AL (A0F0h) Program Counter Break Point 1 Low Address Register R/W (0x00)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|------------|---|---|---|---|---|---|--|--|
| RD |   | PC1AL[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PC1AL[7-0] |   |   |   |   |   |   |  |  |

This register defines the PC low address for PC match break point 1.

#### PC1AH (A0F1h) Program Counter Break Point 1 High Address Register R/W (0x00)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|---|------------|---|---|---|---|---|---|--|--|--|
| RD |   | PC1AH[7-0] |   |   |   |   |   |   |  |  |  |
| WR |   | PC1AH[7-0] |   |   |   |   |   |   |  |  |  |

This register defines the PC high address for PC match break point 1.



PC1AT (A0F2h) Program Counter Break Point 1 Top Address Register R/W (0x00)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|------------|---|---|---|---|---|---|--|--|
| RD |   | PC1AT[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PC1AT[7-0] |   |   |   |   |   |   |  |  |

This register defines the PC top address for PC match break point 1. PC1AT:PC1HT:PC1LT together form a 24 bit compare value of break point 1 for Program Counter.

### PC2AL (A0F4h) Program Counter Break Point 2 Low Address Register R/W (0x00)

|    | 7          | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|------------|------------|---|---|---|---|---|---|--|
| RD | PC2AL[7-0] |            |   |   |   |   |   |   |  |
| WR |            | PC2AL[7-0] |   |   |   |   |   |   |  |

This register defines the PC low address for PC match break point 2.

### PC2AH (A0F5h) Program Counter Break Point 2 High Address Register R/W (0x00)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|------------|---|---|---|---|---|---|--|--|
| RD |   | PC2AH[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PC2AH[7-0] |   |   |   |   |   |   |  |  |

This register defines the PC high address for PC match break point 2.

### PC2AT (A0F6h) Program Counter Break Point 2 Top Address Register R/W (0x00)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|------------|---|---|---|---|---|---|--|--|
| RD |   | PC2AT[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PC2AT[7-0] |   |   |   |   |   |   |  |  |

This register defines the PC top address for PC match break point 2. PC2AT:PC2HT:PC2LT together form a 24-bit compare value of PC break point 2 for Program Counter.

Host or program can obtain the status of the break point controller through the current break point address and next PC address register. DBPCID[23-0] contains the PC address of just executed instruction when the break point occurs. DBNXPC[23-0] contains the next PC address to be executed when the break point occurs, therefore, it is usually exactly the same value of the break pointer setting.

#### DBPCIDL (A098h) Debug Program Counter Address Low Register RO (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|
| RD |   | DBPCID[7-0] |   |   |   |   |   |   |  |  |
| WR |   | -           |   |   |   |   |   |   |  |  |

#### DBPCIDH (A099h) Debug Program Counter Address High Register RO (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|
| RD |   | DBPCID[15-8] |   |   |   |   |   |   |  |  |
| WR |   | -            |   |   |   |   |   |   |  |  |

#### DBPCIDT (A09Ah) Debug Program Counter Address Top Register RO (0x00)

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | DBPCID[23-16] |   |   |   |   |   |   |  |  |
| WR |   | -             |   |   |   |   |   |   |  |  |

### DBPCNXL (A09Bh) Debug Program Counter Next Address Low Register RO (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|
| RD |   | DBPCNX[7-0] |   |   |   |   |   |   |  |  |
| WR |   | -           |   |   |   |   |   |   |  |  |



DBPCNXH (A09Ch) Debug Program Counter Next Address High Register RO (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|--|
| RD |   | DBPCNX[15-8] |   |   |   |   |   |   |  |  |  |
| WR |   | -            |   |   |   |   |   |   |  |  |  |

#### DBPCNXT (A09Dh) Debug Program Counter Next Address Top Register RO (0x00)

|    | · / |                 |  |  |  |  |  |  |  |  |  |  |
|----|-----|-----------------|--|--|--|--|--|--|--|--|--|--|
|    | 7   | 7 6 5 4 3 2 1 0 |  |  |  |  |  |  |  |  |  |  |
| RD |     | DBPCNX[23-16]   |  |  |  |  |  |  |  |  |  |  |
| WR |     | -               |  |  |  |  |  |  |  |  |  |  |

### STEPCTRL (A09Eh) Single Step Control Enable Register R/W (0x00)

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | STEPCTRL[7-0] |   |   |   |   |   |   |  |  |
| WR |   | STEPCTRL[7-0] |   |   |   |   |   |   |  |  |

To enable single-step debugging, STEPCTRL must be written with value 0x96.

### 1.17 Debug I<sup>2</sup>C Port

The I<sup>2</sup>C Slave 2 (I2CS2) can be configured as the debug and ISP port. This is achieved by assigning a predefined debug ID for the I<sup>2</sup>CSlave address. When a host issues an I<sup>2</sup>C access to this special address, a DBG interrupt is generated. DBG Interrupt has the highest priority. The DBG interrupt vector is located at 0x83. DBG ISR is used to communicate with the host and is usually closely associated with BKP ISR.

#### SI2CDBGID (A09Fh) Slave I<sup>2</sup>C Debug ID Register R/W (0x36) TB Protected

|    | 7          | 6 | 5              | 4 | 3 | 2 | 1 | 0 |  |
|----|------------|---|----------------|---|---|---|---|---|--|
| RD | DBGSI2C2EN |   | SI2CDBGID[6:0] |   |   |   |   |   |  |
| WR | DBGSI2C2EN |   | SI2CDBGID[6:0] |   |   |   |   |   |  |

DBGSI2C2EN DBGSI2C2EN=1 enables I2CS2 as debug port. When I2CS2 receives an access of I<sup>2</sup>C address matching SI2CDBGID[6:0], a debug interrupt is generated.

SI2CDBGID[6:0] Slave I<sup>2</sup>C ID address for debug function.

### 1.18 Data SRAM ECC Handling

The data SRAM (IRAM and XRAM) is configured as 1024 x 16-bit. In default, the low byte is at even address and the high byte is at odd address. For higher system integrity, ECC can be enabled, then the high byte is used for ECC code, and low byte is for data. The ECC is based on 4-bit nibble bases, therefore it can correct 1-bit error in each nibble, and detect 2-bit error in each nibble. All generation and checking are done in hardware. It is strongly recommended all SRAM data should be initialized if ECC is enabled to avoid initial ECC error. If ECC encounters either an uncorrectable error, hardware will latch the address and triggers an interrupt. Software needs to examine the severity of data corruption and determine appropriate actions. Please also note, switching between ECC and non-ECC mode, all the data in SRAM will be corrupted thus require re-initialization. It is strongly suggested keeping ECC enabled for best reliability as well as noise immunity.

#### DECCCFG (0xA02Dh) Data ECC Configuration Register R/W (0x80) TB Protected

|    | · ·                                                  |                                                                            | -                                                                                                                        | 0                                                                                                                                        |                                                                              |                               |                                 |          |  |  |  |
|----|------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|---------------------------------|----------|--|--|--|
|    | 7                                                    | 6                                                                          | 5                                                                                                                        | 4                                                                                                                                        | 3                                                                            | 2                             | 1                               | 0        |  |  |  |
| RD | DECCEN                                               | -                                                                          | - DECCIEN2 DECCIEN1 DECCIF2 DECC                                                                                         |                                                                                                                                          |                                                                              |                               |                                 |          |  |  |  |
| WR | DECCEN                                               | -                                                                          | - DECCIEN2 DECCIEN1 DECCIF2 DECCI                                                                                        |                                                                                                                                          |                                                                              |                               |                                 |          |  |  |  |
|    | DECCEN<br>DECCIEN2<br>DECCIEN1<br>DECCIF2<br>DECCIF1 | Data ECC<br>Data ECC<br>DECCIF2 is<br>DECCIF2 is<br>Data ECC<br>DECCIF1 is | Uncorrectable<br>Correctable E<br>Uncorrectable<br>s set to 1 by h<br>s set independ<br>Correctable E<br>s set to 1 by h | Error Interrup<br>rror Interrupt F<br>Error Interrup<br>ardware wher<br>dent of DECC<br>rror Interrupt F<br>ardware wher<br>dent of DECC | Enable<br>of Flag<br>of reading SRA<br>IEN2. DECCI<br>Flag<br>of reading SRA | F2 needs to b<br>M encounters | e cleared by s<br>correctable e | oftware. |  |  |  |



Please note if a correctable error is encountered, the data will be automatically corrected. To prevent further corruption, software upon DECIF1 interrupt should read and rewrite the data into the SRAM.

#### DECCADL (0xA02Eh) Data ECC Configuration and Address Register Low RO (0x00)

|    | 7           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|-------------|---|---|---|---|---|---|---|--|
| RD | DECCAD[7-0] |   |   |   |   |   |   |   |  |
| WR |             |   |   | - |   |   |   |   |  |

### DECCADH (0xA02Fh) Data ECC Configuration and Address Register High R/W (0x80)

|    | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|--------------|---|---|---|---|---|---|---|--|
| RD | DECCAD[15-8] |   |   |   |   |   |   |   |  |
| WR | -            |   |   |   |   |   |   |   |  |

DECCAD[15-0] records the address of ECC fault when data SRAM ECC error occurs. It is read-only and reflects the error address that causes DECCIF to be set. If DECCIF is set and not cleared, DECCAD will not be updated if further error is detected.

### 1.19 Program ECC Handling

The program code stored in e-Flash has built-in ECC checking. The e-Flash is in 16-bit width, and when read by CPU program space accesses, the lower LSB 8-bit is read for instruction and the upper MSB 8-bit contains the ECC value of the LSB 8-bit. The ECC is nibble based, [15-12] is ECC for [7-4], and [11-8] is ECC for [3-0]. Four bits ECC for four bits data allows one bit error correction and two bits error detection. This means for an 8-bit code stored, 2-bit error corrects is possible, and this greatly increases the reliability of the overall program robustness.

During program fetch and execution, ECC is performed simultaneously by hardware. If any ECC correctable error is detected, the value fetched is corrected, and optionally a PECCIEN1 interrupt can be generated. If any ECC non-correctable error is detected, two options can be configured, either a PECCIEN2 interrupt can be generated or software reset can be generated. In both PECCIEN interrupt, the address of the error encountered is latched in PECCADL[15-0].

| 76543210RDFCECCEN-PECCIEN2PECCIEN1-PECCIF2PECCIF1WRFCECCEN-PECCIEN2PECCIEN1-PECCIF2PECCIF1FCECCENFlash Controller Read ECC Control<br>This bit controls the Flash Controller Read command. If FCECCEN=1, then the Flash<br>Controller read low byte contains ECC corrected data. If FCECCEN=0, then the read<br>operation returns the raw data from e-Flash.PECCIEN2Program ECC Uncorrectable Error Interrupt Enable<br>PECCIF2Program ECC Correctable Error Interrupt Enable<br>PECCIF2PECCIF2Program ECC Uncorrectable Error Interrupt Flag<br>PECCIF2 is set to 1 by hardware when program fetching from e-Flash encounters<br>uncorrectable error. PECCIF2 is set independent of PECCIEN2. PECCIF2 needs to be<br>cleared by software.PECCIF1Program ECC Correctable Error Interrupt Flag<br>PECCIF1 is set to 1 by hardware when program fetching from e-Flash encounters<br>correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be<br>cleared by software.                                                                                                                                                                                                                                                                                                                                                    |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |          |   |   |         |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|----------|---|---|---------|---------|
| WR         FCECCEN         -         PECCIEN2         PECCIEN1         -         PECCIF2         PECCIF1           FCECCEN         Flash Controller Read ECC Control<br>This bit controls the Flash Controller Read command. If FCECCEN=1, then the Flash<br>Controller read low byte contains ECC corrected data. If FCECCEN=0, then the read<br>operation returns the raw data from e-Flash.           PECCIEN2         Program ECC Uncorrectable Error Interrupt Enable           PECCIF2         Program ECC Uncorrectable Error Interrupt Enable           PECCIF2         Program ECC Uncorrectable Error Interrupt Flag           PECCIF2         Program ECC Uncorrectable Error Interrupt Flag           PECCIF2         Program ECC Correctable Error Interrupt Flag           PECCIF1         PECCIF1 is set to 1 by hardware when program fetching from e-Flash encounters<br>correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be |                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 | 5        | 4        | 3 | 2 | 1       | 0       |
| FCECCEN       Flash Controller Read ECC Control         This bit controls the Flash Controller Read command. If FCECCEN=1, then the Flash         Controller read low byte contains ECC corrected data. If FCECCEN=0, then the read         operation returns the raw data from e-Flash.         PECCIEN2       Program ECC Uncorrectable Error Interrupt Enable         PECCIEN1       Program ECC Correctable Error Interrupt Enable         PECCIF2       Program ECC Uncorrectable Error Interrupt Flag         PECCIF2       Program ECC Uncorrectable Error Interrupt Flag         PECCIF2       PECCIF2 is set to 1 by hardware when program fetching from e-Flash encounters uncorrectable error. PECCIF2 is set independent of PECCIEN2. PECCIF2 needs to be cleared by software.         PECCIF1       Program ECC Correctable Error Interrupt Flag         PECCIF1       Program ECC Correctable Error Interrupt Flag         PECCIF1       Program ECC Correctable Error Interrupt Flag         PECCIF1       PECCIF1 is set to 1 by hardware when program fetching from e-Flash encounters correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be                                                                                                                                                      | RD                                                                             | FCECCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - | PECCIEN2 | PECCIEN1 |   | - | PECCIF2 | PECCIF1 |
| <ul> <li>This bit controls the Flash Controller Read command. If FCECCEN=1, then the Flash<br/>Controller read low byte contains ECC corrected data. If FCECCEN=0, then the read<br/>operation returns the raw data from e-Flash.</li> <li>PECCIEN2 Program ECC Uncorrectable Error Interrupt Enable</li> <li>PECCIF2 Program ECC Uncorrectable Error Interrupt Flag</li> <li>PECCIF2 Program ECC Uncorrectable Error Interrupt Flag</li> <li>PECCIF2 is set to 1 by hardware when program fetching from e-Flash encounters<br/>uncorrectable error. PECCIF2 is set independent of PECCIEN2. PECCIF2 needs to be<br/>cleared by software.</li> <li>PECCIF1 Program ECC Correctable Error Interrupt Flag</li> <li>PECCIF1 is set to 1 by hardware when program fetching from e-Flash encounters<br/>correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be</li> </ul>                                                            | WR                                                                             | FCECCEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - | PECCIEN2 | PECCIEN1 |   | - | PECCIF2 | PECCIF1 |
| correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F<br>F<br>F                                                                    | FCECCEN       Flash Controller Read ECC Control         This bit controls the Flash Controller Read command. If FCECCEN=1, then the Flash Controller read low byte contains ECC corrected data. If FCECCEN=0, then the read operation returns the raw data from e-Flash.         PECCIEN2       Program ECC Uncorrectable Error Interrupt Enable         PECCIEN1       Program ECC Correctable Error Interrupt Enable         PECCIF2       Program ECC Uncorrectable Error Interrupt Flag         PECCIF2       Program ECC Uncorrectable Error Interrupt Flag         PECCIF2 is set to 1 by hardware when program fetching from e-Flash encounters uncorrectable error. PECCIF2 is set independent of PECCIEN2. PECCIF2 needs to be cleared by software. |   |          |          |   |   |         |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | correctable error. PECCIF1 is set independent of PECCIEN1. PECCIF1 needs to be |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |          |          |   |   |         |         |

### PECCCFG (0xA00Dh) Program ECC Configuration Register R/W (0x80) TB Protected

#### PECCADL (0xA00Eh) Program ECC Fault Address Register Low RO (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|
| RD |   | PECCAD[7-0] |   |   |   |   |   |   |  |  |
| WR |   | -           |   |   |   |   |   |   |  |  |



PECCADH (0xA00Fh) Program ECC Fault Address Register High R/W (0x80)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|--|
| RD |   | PECCAD[15-8] |   |   |   |   |   |   |  |  |  |
| WR |   | -            |   |   |   |   |   |   |  |  |  |

PECCAD[15-0] records the address of ECC fault when Flash ECC error occurs. It is read-only and reflects the last error address.

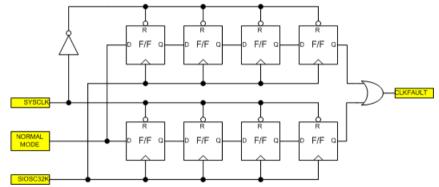
### 1.20 Memory and Logic BIST Test

#### BSTCMD (0xA016h) SRAM Built-In and Logic Self Test R/W (0x00) TB Protected

|     | 7                 | 6                                                                                                                                                                            | 5                                     | 4           | 3               | 2     | 1       | 0           |  |  |  |  |
|-----|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|-----------------|-------|---------|-------------|--|--|--|--|
| RD  |                   | MOD                                                                                                                                                                          | E[3-0]                                | •           | BST             | -     | FAIL    | FINISH      |  |  |  |  |
| WR  |                   | MOD                                                                                                                                                                          | Ξ[3-0]                                |             |                 | BSTCI | MD[3-0] | •           |  |  |  |  |
|     | MODE[3-0]         | BIST Mode                                                                                                                                                                    | Selection                             |             |                 |       |         |             |  |  |  |  |
|     |                   | 0000 – Nor                                                                                                                                                                   | mal Mode                              |             |                 |       |         |             |  |  |  |  |
|     |                   | 0001 – SR/                                                                                                                                                                   | AM MBIST                              |             |                 |       |         |             |  |  |  |  |
|     |                   | 0010 – Reserved                                                                                                                                                              |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 0011 – Reserved                                                                                                                                                              |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 0100 – Register LBIST                                                                                                                                                        |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 0101 – Reserved                                                                                                                                                              |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 0110 – Res                                                                                                                                                                   |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 0111 – Res                                                                                                                                                                   |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 1000 – Nor                                                                                                                                                                   |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   |                                                                                                                                                                              | 1001 – SRAM MBIST and monitor on pins |             |                 |       |         |             |  |  |  |  |
|     |                   | 1010 – Reserved<br>1011 – Reserved                                                                                                                                           |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 1100 – Register LBIST and monitor on pins                                                                                                                                    |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 1100 – Register LBIST and monitor on pins<br>1101 – Reserved                                                                                                                 |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 1110 – Reserved                                                                                                                                                              |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 1110 – Reserved                                                                                                                                                              |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | Please note MODE[3-0] is cleared only by POR and RSTN. Software can read this setting                                                                                        |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | along with the Pass/Fail status to determine which BIST was performed and its result even                                                                                    |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | after a software reset.                                                                                                                                                      |                                       |             |                 |       |         |             |  |  |  |  |
|     | BST               | BIST Status                                                                                                                                                                  |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | BST is set to 1 by hardware when BIST in ongoing.                                                                                                                            |                                       |             |                 |       |         |             |  |  |  |  |
|     | FAIL              | BIST Test I                                                                                                                                                                  | Fail Flag                             |             |                 |       |         |             |  |  |  |  |
|     |                   | FAIL is set to 1 by hardware when BIST error has occurred. FAIL is cleared to 0 by                                                                                           |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   |                                                                                                                                                                              |                                       | IST command | l is issued.    |       |         |             |  |  |  |  |
|     | FINISH            | BIST Comp                                                                                                                                                                    | •                                     |             |                 |       |         |             |  |  |  |  |
|     |                   | FINISH is set to 1 by hardware when BIST controller finishes the test. FINISH is cleared to                                                                                  |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | 0 by hardware when a new BIST command is issued.                                                                                                                             |                                       |             |                 |       |         |             |  |  |  |  |
|     | BSTCMD[3-0]       | Memory BIST Command<br>Writing BSTCMD[3-0] with value 4b'0101 causes the BIST controller to perform BIST.                                                                    |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | Writing BSTCMD[3-0] with value 4b 0101 causes the BIST controller to perform BIST.<br>Writing BSTCMD[3-0] with value 4b 1010 causes the BIST controller to perform BIST, and |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   | after BIST is completed, it automatically generates a software reset.                                                                                                        |                                       |             |                 |       |         |             |  |  |  |  |
|     |                   |                                                                                                                                                                              |                                       |             | 000 causes FA   |       |         | eared to 0. |  |  |  |  |
|     |                   | -                                                                                                                                                                            |                                       |             | ect or abort an |       |         |             |  |  |  |  |
| 200 | note after the BS | •                                                                                                                                                                            |                                       |             | IST is complet  |       |         | ns will     |  |  |  |  |

Please note after the BSTCMD is issued, CPU is paused until BIST is completed. And any BIST operations will results the state of CPU in undefined states, and the content of the SRAM undefined. Therefore it is highly recommended that a software reset or initiation should be performed after any BIST operation. Please also note MODE[3-0], FINISH, FAIL bits are not cleared by software resets.



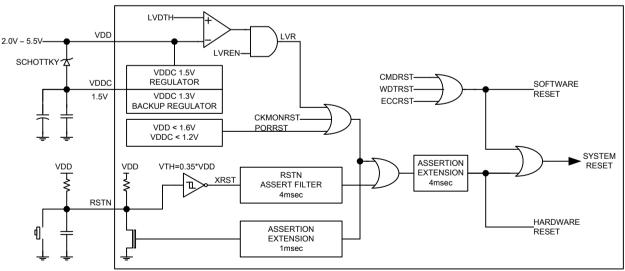

| TSTMON | (0xA014h) | Test Monitor | Flag | R/W (0x00) | ) |
|--------|-----------|--------------|------|------------|---|

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|
| RD |   | TSTMON[7-0] |   |   |   |   |   |   |  |  |
| WR |   | TSTMON[7-0] |   |   |   |   |   |   |  |  |

TSTMON register stores temporary status and is initialized by power-on reset only.

### 1.21 System Clock Monitoring

SYSCLK in normal running mode is monitored by SOSC/4 (32KHz). If SYSCLK is not present in normal mode for four SOSC/4 cycles, a hardware reset is triggered.




The clock monitoring is default turned off after reset.

### 1.22 <u>Reset</u>

There are several reset sources and includes both software resets and hardware resets. Software resets include command reset, WDT reset and ECC error reset. Hardware resets include power-on reset (low voltage detect on VDDC), LVD reset (low voltage detect on VDD), SYSCLK monitor reset, and external RSTN reset. Software reset only restores some registers to default values, and hardware reset restore all registers to its default values.

RSTN reset is filtered that ignores any low going glitch on RSTN with less than 4msec. All hardware reset condition once being met will be extended by 4 msec when exiting reset. Internal hardware resets also has feedback to RSTN pin and extend the reset duration by external RSTN R/C time. The reset scheme is shown in the following diagram.



### RSTCMD (0xA017h) Reset Command Register R/W (0x00) TB Protected

|    | 7      | 6      | 5 | 4    | 3     | 2     | 1        | 0     |
|----|--------|--------|---|------|-------|-------|----------|-------|
| RD | RSTCKM | RSTECC | - | -    | CKMRF | ECCRF | WDTRF    | CMDRF |
| WR | RSTCKM | RSTECC | - | CLRF |       | RSTC  | /ID[3-0] |       |

RSTCKM

Reset Enable for Clock Monitor Fault

RENCKM=1 enables reset after clock fault detection. RSTCKM is cleared to 0 after any reset. Default RSTCKM is 0.



| RSTECC      | Reset Enable for Uncorrectable Code Fetch ECC Error                                       |
|-------------|-------------------------------------------------------------------------------------------|
|             | RSTECC=1 enables reset at e-Flash code fetch ECC error. Default RSTECC is 0.              |
| CKMRF       | Clock Monitor Fault Reset Flag                                                            |
|             | CKMRF is set to 1 by hardware when a clock fault reset has occurred. CKMRF is not         |
|             | cleared by reset except power-on reset.                                                   |
| ECCRF       | ECC Error Reset Flag                                                                      |
|             | ECCRF is set to 1 by hardware when an ECC error reset has occurred. ECCRF is cleared      |
|             | to 0 when writing CLRF=0. ECCRF is not cleared by reset except power-on reset.            |
| WDTRF       | WDT Reset Flag                                                                            |
|             | WDTRF is set to 1 by hardware when WTRF, WT1RF or WT2RF is set.                           |
| CLRF        | Clear Reset Flag                                                                          |
|             | Writing 1 to CLRF will clear CKMRF, ECCRF, WDTRF, and CMDRF. It is self-cleared.          |
| RSTCMD[3-0] | Software Reset Command                                                                    |
|             | Writing RSTCMD[3-0] with consecutive 4b'0101, 4b'1010 sequences will cause a software     |
|             | reset. Any other value will clear the sequence state. These bits are write-only and self- |
|             | cleared.                                                                                  |
|             |                                                                                           |

### 2. Flash Controller

The flash controller connects the CPU to the on-chip embedded FLASH memory. The FLASH memory functions as the program storage as well as non-volatile data storage. The program access of the FLASH does not require any special attention. When an ECC error during program fetch occurs, this cause ECC interrupt or reset.

When the FLASH is used as data storage, the software issues commands to the FLASH controller through the XFR registers. And when the FLASH controller processes these commands, CPU is held idle until the command is completed. There is a time-out mechanism for holding CPU in idle to prevent hanged operations.

From FLASH controller point of view, the embedded Flash is always in 16-bit width with no distinction between ECC and data information. For code storage through FLASH controller, ECC byte (upper MSB 8-bit) must be calculated by software. During read command, ECC is detected but not corrected, the raw content is loaded into FLSHDAT[15-0]. If ECC error is detected, FAIL status is set after the read command execution.

The e-Flash contains 32 pages (also referred as Sector), and each page is 512x16. It also contains two IFB (Information Blocks) pages. In Flash operation, the erase command only operates on unit of page.

| LOHOW |                                                                                                                                                                                                         |                                          |                                           |                                              |                                         |                                             | ecieu                            |                                                                                    |                                          |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|-----------------------------------------|---------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|------------------------------------------|
|       | 7                                                                                                                                                                                                       | 6                                        | 5                                         | 4                                            | 3                                       |                                             | 2                                | 1                                                                                  | 0                                        |
| RD    | WRVFY                                                                                                                                                                                                   | BUSY                                     | FAIL                                      | CMD4                                         | CMI                                     | D3 CI                                       | MD2                              | CMD1                                                                               | CMD0                                     |
| WR    |                                                                                                                                                                                                         | CYC[2-0]                                 |                                           | CMD4                                         | CMI                                     | D3 CI                                       | MD2                              | CMD1                                                                               | CMD0                                     |
| V     | WRVFY                                                                                                                                                                                                   | compares i                               | t with which                              | should be w                                  | ritten to th                            | e flash. If th                              | ere is a                         | back the data<br>mismatch, th<br>mand is exect                                     | is bit                                   |
| E     | BUSY                                                                                                                                                                                                    | Flash comr                               | nand is in pr                             | •                                            | his bit ind                             | icates that F                               | lash Co                          | ontroller is exe                                                                   |                                          |
| F     | FAIL                                                                                                                                                                                                    | reasons. It<br>issuing a co<br>command i | is recomme<br>ommand to t<br>s issued. Po | ended that th<br>he Flash co<br>ssible cause | e program<br>ntroller. It<br>es of FAIL | n should ver<br>is not clear<br>include add | ify the c<br>ed by re<br>ress ov | xecution fails<br>command exect<br>ading but whe<br>er range, or a<br>command time | cution after<br>en a new<br>ddress falls |
| C     | CYC[2-0] Flash Command Time Out<br>CYC[2-0] defines command time out cycle count. Cycle period is defined by ISPCLK,<br>is SYSCLK/256/(ISPCLKF[7-0]+1). The number of cycles is tabulated as following. |                                          |                                           |                                              |                                         |                                             |                                  |                                                                                    |                                          |
|       |                                                                                                                                                                                                         |                                          | CYC[2-0]                                  |                                              | V                                       | VRITE                                       |                                  | ERAS                                                                               | SE                                       |
|       |                                                                                                                                                                                                         | 0                                        | 0                                         | 0                                            |                                         | 55                                          |                                  | 543                                                                                | 5                                        |
|       |                                                                                                                                                                                                         | 0                                        | 0                                         | 1                                            |                                         | 60                                          |                                  | 595                                                                                | 3                                        |
|       |                                                                                                                                                                                                         | 0                                        | 1                                         | 0                                            |                                         | 65                                          |                                  | 645                                                                                | 2                                        |
|       |                                                                                                                                                                                                         | 0                                        | 1                                         | 1                                            |                                         | 69                                          |                                  | 689                                                                                | 7                                        |
|       |                                                                                                                                                                                                         | 1                                        | 0                                         | 0                                            |                                         | 75                                          |                                  | 740                                                                                | 8                                        |
|       |                                                                                                                                                                                                         | 1                                        | 0                                         | 1                                            |                                         | 80                                          |                                  | 790                                                                                | 6                                        |
|       |                                                                                                                                                                                                         | 1                                        | 1                                         | 0                                            |                                         | 85                                          |                                  | 840                                                                                | 4                                        |
|       |                                                                                                                                                                                                         | 1                                        | 1                                         | 1                                            |                                         | 89                                          |                                  | 888                                                                                | 9                                        |
| (     | CMD4 – CMD0                                                                                                                                                                                             | Flash Com<br>These bits                  | mand<br>define comm                       |                                              | e Flash co                              | ntroller. The                               |                                  | commands are<br>eturn with a F                                                     |                                          |
|       |                                                                                                                                                                                                         | CMD4                                     |                                           | CMD2                                         | CMD1                                    | CMD0                                        |                                  | COMMA                                                                              |                                          |
|       |                                                                                                                                                                                                         | 1                                        | 0                                         | 0                                            | 0                                       | 0                                           |                                  | Main Memor                                                                         |                                          |
|       |                                                                                                                                                                                                         | 0                                        | 1                                         | 0                                            | 0                                       | 0                                           | Ма                               | in Memory Se                                                                       |                                          |
|       |                                                                                                                                                                                                         | 0                                        | 0                                         | 1                                            | 0                                       | 0                                           |                                  | Main Memor                                                                         |                                          |
|       |                                                                                                                                                                                                         | 0                                        | 0                                         | 0                                            | 1                                       | 0                                           |                                  | IFB Rea                                                                            |                                          |
|       |                                                                                                                                                                                                         |                                          |                                           |                                              |                                         |                                             |                                  |                                                                                    |                                          |

#### FLSHCMD (0xA025h) Flash Controller Command Register R/W (0x80) TB Protected

IFB1 contains manufacture data and user OTP, therefore IFB write command are limited to IFB1 (0x0040-0x01FF) and IFB2. IFB Sector Erase is limited to IFB2.

1

1

0

0

1

1

0

0

1

0

0

0

0

0

0

IFB Write

**IFB Sector Erase** 



For any Read command, the result high byte contains the ECC code, and low byte contains the data that is ECC corrected. If there is ECC error, then FAIL bit is set. To find out what ECC error occurs, software can inspect PECCIF1 and PEECIF2 bits in PECCCFG register. To read the e-Flash raw data, the FCECCEN in PECCFG register can bit set to 0.

### FLSHDATL (0xA020h) Flash Controller Data Register R/W (0x00) TB Protected

|   |    | 7 | 6                                   | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|---|----|---|-------------------------------------|---|---|---|---|---|---|--|--|--|
| R | RD |   | Flash Read Data Register DATA[7-0]  |   |   |   |   |   |   |  |  |  |
| V | VR |   | Flash Write Data Register DATA[7-0] |   |   |   |   |   |   |  |  |  |

Please note DATA[7-0] in READ operation will returns either ECC corrected data or e-Flash raw data depends on FCECEEN bit setting in PECCCFG register.

### FLSHDATH (0xA021h) Flash Controller Data Register R/W (0x00) TB Protected

|    | 7 | 6                                    | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|--------------------------------------|---|---|---|---|---|---|--|--|
| RD |   | Flash Read Data Register DATA[15-8]  |   |   |   |   |   |   |  |  |
| WR |   | Flash Write Data Register DATA[15-8] |   |   |   |   |   |   |  |  |

### FLSHADL (0xA022h) Flash Controller Low Address Data Register R/W (0x00) TB Protected

|    |   | 7                                         | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-------------------------------------------|---|---|---|---|---|---|---|--|
| RD | ) | Flash Address Low Byte Register ADDR[7-0] |   |   |   |   |   |   |   |  |
| WF | २ | Flash Address Low Byte Register ADDR[7-0] |   |   |   |   |   |   |   |  |

### FLSHADH (0xA023h) Flash Controller High Address Data Register R/W (0x00) TB Protected

|    | 7 | 6                                           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------------------------------------|---|---|---|---|---|---|--|--|
| RD |   | Flash Address High Byte Register ADDR[15-8] |   |   |   |   |   |   |  |  |
| WR |   | Flash Address High Byte Register ADDR[15-8] |   |   |   |   |   |   |  |  |

#### FLSHECC (0xA024h) Flash ECC Accelerator Register R/W (????)

|    | 7         | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|-----------|---|---|---|---|---|---|---|--|
| RD | ECC[7-0]  |   |   |   |   |   |   |   |  |
| WR | DATA[7-0] |   |   |   |   |   |   |   |  |

FLSHECC aids the calculation of ECC value of an arbitrary 8-bit data. The data is written to FLSHECC, and its corresponding ECC value can be read out from ECC.

### ISPCLKF (0xA026h) Flash Command Clock Scaler R/W (0x25) TB Protected

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|--|
| RD |   | ISPCLKF[7-0] |   |   |   |   |   |   |  |  |  |
| WR |   | ISPCLKF[7-0] |   |   |   |   |   |   |  |  |  |

ISPCLKF[7-0] configures the clock time base for generation of Flash erase and write timing. ISPCLK = SYSCLK \* (ISPCLKF[7-0]+1)/256. For correct timing, ISPCLK should be set to approximately at 2MHz.

### FLSHPRT0 (0xA030h) Flash Controller Zone Protection Register 0 R/W (0xFF) TB Protected

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|
| RD |   | FLSHPRT[7-0] |   |   |   |   |   |   |  |  |
| WR |   | FLSHPRT[7-0] |   |   |   |   |   |   |  |  |

### FLSHPRT1 (0xA031h) Flash Controller Zone Protection Register 1 R/W (0xFF) TB Protected

|    | 7 | 6 | 5 | 4      | 3        | 2 | 1 | 0 |
|----|---|---|---|--------|----------|---|---|---|
| RD |   |   |   | FLSHPF | RT[15-8] |   |   |   |
| WR |   |   |   | FLSHPF | RT[15-8] |   |   |   |



FLSHPRT2 (0xA032h) Flash Controller Zone Protection Register 2 R/W (0xFF) TB Protected 6 4 3 2 5 1 0 7 FLSHPRT[23-16] RD WR FLSHPRT[23-16] FLSHPRT3 (0xA033h) Flash Controller Zone Protection Register 3 R/W (0xFF) TB Protected 7 6 5 4 3 2 1 0 RD FLSHPRT[31-24] WR FLSHPRT[31-24] FLSHPRT4 (0xA034h) Flash Controller Zone Protection Register 4 R/W 0xFF) TB Protected 7 6 5 4 0 3 2 1 FLSHPRT[39-32] RD WR FLSHPRT[39-32] FLSHPRT5 (0xA035h) Flash Controller Zone Protection Register 5 R/W (0xFF) TB Protected 7 6 5 4 3 2 0 1 FLSHPRT[47-40] RD WR FLSHPRT[47-40] FLSHPRT6 (0xA036h) Flash Controller Zone Protection Register 6 R/W (0xFF) TB Protected 7 6 5 4 3 2 1 0 FLSHPRT[55-48] RD WR FLSHPRT[55-48] FLSHPRT7 (0xA037h) Flash Controller Zone Protection Register 7 R/W (0xFF) TB Protected 7 6 5 4 3 2 1 0 RD FLSHPRT[63-56]

WR FLSHPRT[63-56]

NOTE: FLSHPRT3~7 are not supported.

FLSHPRT partitions the total code space of 64K into 64 uniform 1K zones for protection. If the corresponding bit in the FLSHPRT is 0, the zone protection is on. All bits in FLSHPRT are set to 1 by any reset. A "1" state corresponds to unprotected state. A bit can only be written to "0" by software and cannot be set to "1". When a bit is "0", the protection is on and disallowed erasure or modifications. For contents reliability, the user program should turn off the corresponding access after initialization as soon as possible.

| FLSHPRT[63]<br>FLSHPRT[30] | Flash Zone Protect 63<br>This bit protect area 0xFC00 – 0xFFFF<br>Flash Zone Protect 62<br>This bit protect area 0xF800 – 0xFBFF |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <br>FLSHPRT[4]             | <br>Flash Protect 4                                                                                                              |
|                            | This bit protect area 0x1000 – 0x13FF                                                                                            |
| FLSHPRT[3]                 | Flash Protect 3                                                                                                                  |
|                            | This bit protect area 0x0C00 – 0x0FFF                                                                                            |
| FLSHPRT[2]                 | Flash Protect 2                                                                                                                  |
|                            | This bit protect area 0x0800 – 0x0BFF                                                                                            |
| FLSHPRT[1]                 | Flash Protect 1                                                                                                                  |
|                            | This bit protect area 0x0400 – 0x07FF                                                                                            |
| FLSHPRT[0]                 | Flash Protect 0                                                                                                                  |
|                            | This bit protect area 0x0000 – 0x03FF                                                                                            |



FLSHPRTC (0xA027h) Flash Controller Code Protection Register R/W (0x00) TB Protected

|    | 7 | 6 | 5 | 4      | 3        | 2 | 1 | 0    |
|----|---|---|---|--------|----------|---|---|------|
| RD |   |   |   | -      |          |   |   | STAT |
| WR |   |   |   | FLSHPF | RTC[7-0] |   |   |      |

This register further protects the code space (0x0000 – 0xFFFF). The protection is on after any reset. Software write "55" into this register turns off protection. However, protection is maintained on until a wait time (approximately 300msec) has expired. The 300msec delay prevents any false action due to power or interface transient. Any write other than "55" will turn on the protection immediately. STAT indicates the protection, STAT=1 indicates the protection is off, and STAT=0 indicates the protection is on.

Please note, in order to modify or erase the flash (not including IFB) both FLSHPRT and FLSHPRTC conditions needs to be satisfied at the same time. IFB1's manufacturing data is always protected while user data can only be written "0". IFB2 are user application data and thus not protected.

### FLSHVDD (0xA015h) Flash VDD Switch Control Register R/W (0x00) TB Protected

| -  |   |   |   |       |         |   |   |         |
|----|---|---|---|-------|---------|---|---|---------|
|    | 7 | 6 | 5 | 4     | 3       | 2 | 1 | 0       |
| RD |   |   |   | -     |         |   |   | SLEEPSW |
| WR |   |   |   | FLSHV | DD[7-0] |   |   |         |

FLSHVDD is used to control the supply voltage to the e-Flash during sleep mode. Writing FLSHVDD with 0x55 will set configure the SLEEPSW to 1. If SLEEPSW=1, the power supply to the e-Flash is turned off during sleep mode. Default SLEEPSW is 0 and the e-Flash supply is always on.



### 3. <u>I<sup>2</sup>C Slave Controller 2 (I2CS2)</u>

The I<sup>2</sup>C Slave Controller 2 has dual functions – as a debug port for communication with host or as a regular I<sup>2</sup>C slave port. Please note both functions can coexist. I<sup>2</sup>C Slave 2 controller also supports the clock stretching functions.

The debug accessed by the host is through I<sup>2</sup>C slave address defined by SI2CSDBGID register and enabled by DBGSI2C2EN=1. When I2CS2 received this address match, a DBG interrupt is generated. This is described in the Debug and ISP sections. If DBGSI2C2EN=0, then I2CS2 functions as a regular I<sup>2</sup>C slave. The address of the slave is set by I2CSADR2 register. The MSB in I2CSADDR2 is the enable bit for the I<sup>2</sup>C slave controller and I2CSADR2[6-0] specifies the actual slave address.

In receive mode, the controller detects a valid matching address and issues an ADDRMI interrupt. At the same time, the data bit on SDA line is shifted into receive buffer. The RCBI interrupt is generated whenever a complete byte is received and is ready to be read from I2CSDAT. If for any reason, the software does not respond to RCBI interrupt in time (i.e. RCBI is not cleared), and a new byte is received, the controller either forces an NACK response on I<sup>2</sup>C (if CLKSTREN bit is not set) or by pulling and holding SDA low (if CLKSTREN bit is set) to stretch the SCL low duration to force the master into a wait state. In clock stretching mode, SCL is released when the software responds to RCBI interrupt and cleared RCBI flag.

In transmit mode, the controller detects a valid matching address and issue an ADDRMI interrupt. At the same time, the data preloaded in the transmit data register through I2CSDAT is transferred to the transmit shift register and is serially shifted out onto SDA line. When this occurs, the controller generates a TXBI interrupt to inform the software that a new byte can be written into I2CSDAT. When the shift register is empty and ready for the next transmit, the slave controller checks if the new byte is written to the I2CSDAT. If TXBI is not cleared, it indicates lack of new data and the slave controller holds SCL line low to stretch the current clock cycle if CLKSTREN is set. If the clock stretching is not enabled, the slave controller takes the old byte into the shift register and replies with NACK, thus causing data corruption. On the other hand, if the master returns the NACK after the byte transfer, this indicates the end of data to the I<sup>2</sup>C slave. In this case, the I<sup>2</sup>C slave releases the data line to allow the master to generate a STOP or REPEAT START.

The I<sup>2</sup>C slave controller also implements the input noise spike filter, and this is enabled by INFILEN bit in the I2CSCON register. The filter is implemented using digital circuit. When INFILEN is set, the spikes less than 1/2 SYSCLK period on the input of SDA and SCL lines are filtered out. If INFILEN is low, no input filtering is done. The following registers are related to I<sup>2</sup>C Slave Controller. Also please note the I<sup>2</sup>C slave controller uses SYSCLK to sample the SCL and SDA signals, therefore, the maximum allowable I<sup>2</sup>C bus speed is limited to SYSCLK/8 with conforming data setup and hold times. If setup and hold time cannot be guaranteed, then it is recommended the bus speed is limited to 1/40 SYSCLK.

|    | 7                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                  | 4                           | 3                                             | 2                          | 1                                               | 0       |  |  |
|----|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------------------------|----------------------------|-------------------------------------------------|---------|--|--|
| RD | -                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                  | START                       | -                                             | -                          | -                                               | XMT     |  |  |
| WR | I2CSRST                  | EADDRMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ESTOPI                                                             | ERPSTARTI                   | ETXBI                                         | ERCBI                      | CLKSTREN                                        | INFILEN |  |  |
|    | ADDRMI                   | normal ope<br>ADDRMI In<br>Set this bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | causes the SI<br>rations. Settin<br>terrupt Enable<br>to set ADDRM | ig this bit clear<br>e bit. | rs the I2CSAD<br>the I <sup>2</sup> C slave i | R2 (I <sup>2</sup> C slave | achine. Clear<br>address x).<br>interrupt is ge |         |  |  |
| E  | STOPI                    | STOPI Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rrupt Enable b                                                     | bit.                        | e I <sup>2</sup> C slave int                  | errupt.                    |                                                 |         |  |  |
| E  | RPSTARTI                 | RPTSTART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I Interrupt En                                                     | able Bit.                   |                                               | ·                          |                                                 |         |  |  |
| E  | TXBI<br>RCBI<br>CLKSTREN | Set this bit to set RPTSTARTI interrupt as the I <sup>2</sup> C slave interrupt.<br>TXBI Interrupt Enable bit. Set this bit to allow TXBI interrupt as the I <sup>2</sup> C slave interrupt.<br>RCBI Interrupt Enable bit. Set this bit to allow RCBI interrupt as the I <sup>2</sup> C slave interrupt.<br>Clock Stretching Enable bit. Set to enable the clock stretching function of the slave<br>controller. Clock stretching is an optional feature defined in I <sup>2</sup> C specification.<br>If the clock stretching option is enabled (for slave I <sup>2</sup> C), the data written into transmit buffer is<br>shifted out only after the occurrence of clock stretching, and the data cannot be loaded to<br>transmit shift register. The programmer must write the same data again to the transmit |                                                                    |                             |                                               |                            |                                                 |         |  |  |
| 11 | NFILEN                   | buffer.<br>Input Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Filter Enable                                                      | bit.                        |                                               |                            |                                                 |         |  |  |

### I2CSCON2 (0xDB) I2CS2 Configuration Register R/W (0x00)



Set this bit to enable the input noise filter of SDA and SCL lines. When the filter is enabled, it filters out the spike of less than 50nsec.

XMT

This bit is set by the controller when the  $I^2C$  slave is in transmit operation; is clear when the  $I^2C$  slave controller is in receive operation.

### I2CSST2 (0xDC) I2CS2 Status Register R/W (0x00)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7              | 6                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                | 4                                                  | 3                              | 2                               | 1                                           | 0                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|---------------------------------|---------------------------------------------|-----------------------------------------------------|--|--|
| RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FIRSTBT        | ADDRMI                                                                                                                                                                                                                                                              | STOPI                                                                                                                                                                                                                                                            | RPSTARTI                                           | TXBI                           | RCBI                            | START                                       | NACK                                                |  |  |
| WR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DADDR          | ADDRMI                                                                                                                                                                                                                                                              | STOPI                                                                                                                                                                                                                                                            | RPSTARTI                                           | HOLDT[3]                       | HOLDT[2]                        | HOLDT[1]                                    | HOLDT[0]                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IRSTBT<br>ADDR | This bit is set to indicate the data in the data register as the first byte received after address match. This bit is cleared after the first byte of the transaction is read. The bit is read only and generated by the slave controller.<br>Double Address Enable |                                                                                                                                                                                                                                                                  |                                                    |                                |                                 |                                             |                                                     |  |  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DDRMI          | consecutive<br>Slave Addre<br>This bit is se                                                                                                                                                                                                                        | e slave addres<br>ess Match Inte<br>et when the re                                                                                                                                                                                                               | sses, for exam<br>errupt Flag bit<br>eceived addre | ple, 0x101000<br>ss matches th | 00 and 0x1010<br>e address def  | ined in I2CSA                               | DR2. If                                             |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΤΟΡΙ           | Stop Condit<br>This bit is se                                                                                                                                                                                                                                       | EADDMI is set, this generates an interrupt. This bit must be cleared by software.<br>Stop Condition Interrupt Flag bit.<br>This bit is set when the slave controller detects a STOP condition on the SCL and SDA<br>lines. This bit must be cleared by software. |                                                    |                                |                                 |                                             |                                                     |  |  |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PTSARTI        | Repeat Stat<br>This bit is se                                                                                                                                                                                                                                       | rt Condition Ir<br>et when the s                                                                                                                                                                                                                                 | nterrupt Flag b<br>lave controller                 | it.                            |                                 | condition on                                | the SCL                                             |  |  |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XBI            | Transmit Bu<br>This bit is se                                                                                                                                                                                                                                       | uffer Interrupt<br>et when the s                                                                                                                                                                                                                                 | Flag.<br>lave controller                           | -                              | ccept a new by                  | yte for transmi                             | ssion. This                                         |  |  |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | СВІ            | Receiver Bu<br>This bit is se                                                                                                                                                                                                                                       | uffer Interrupt<br>et when the s                                                                                                                                                                                                                                 | Flag bit.<br>lave controller                       |                                | a in the I2CSI                  | DAT and ready<br>DAT.                       | / for                                               |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TART           | Start Condi<br>This bit is se<br>lines. This b                                                                                                                                                                                                                      | tion.<br>et when the s<br>bit is not very                                                                                                                                                                                                                        | lave controller<br>useful as the s                 | detects a ST                   | ART condition can be ir         | on the SCL a                                |                                                     |  |  |
| <ul> <li>match interrupt. This read-only bit is cleared when STOP condition is detected.</li> <li>NACK</li> <li>NACK Condition.</li> <li>This bit is set when the host responds with NACK in the byte transaction. This bit is only meaningful for slave-transmit operation. Please note if the master returns with NACK on byte transaction, the slave does not upload new data into the shift register. And the slave transmits the old data again as the next transfer, and this re-transmission continues if N/ is repeated until the transmission is successful and returned with ACK. This bit is cleared when a new ACK is detected or it can be cleared by software.</li> </ul> |                |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                  |                                                    |                                |                                 |                                             | ACK on the<br>the slave<br>ues if NACK<br>s cleared |  |  |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OLDT[3-0]      | specification                                                                                                                                                                                                                                                       | n requires for<br>IOLDT[3:0]+3                                                                                                                                                                                                                                   | minimum of 3<br>() $\geq$ 300nsec h                | 00nsec hold ti                 | ime, so the co<br>ation must be | DA to SCL. Th<br>ndition of<br>met. For exa |                                                     |  |  |

#### I2CSADR2 (0xDD) I2CS2 Slave Address Register R/W (0x00)

|    | 7                | 6                                        | 5                                      | 4              | 3             | 2              | 1                   | 0        |
|----|------------------|------------------------------------------|----------------------------------------|----------------|---------------|----------------|---------------------|----------|
| RD | I2CSEN           |                                          |                                        |                | ADDR[6-0]     |                |                     |          |
| WR | I2CSEN           |                                          |                                        |                | ADDR[6-0]     |                |                     |          |
|    | CSEN<br>DDR[6-0] | 7-bit Slave<br>When writte<br>When read, | Address<br>en, ADDR[6-0<br>ADDR[6-0] h | olds the slave | ave address o | he received sl | lave address.<br>d. | Software |



| I2CSDAT2 (0xDE) I2CS2 Data Register R/W (0x00) |  |
|------------------------------------------------|--|
|                                                |  |

|    | 7 | 6                                            | 5                | 4            | 3              | 2    | 1 | 0 |  |  |  |
|----|---|----------------------------------------------|------------------|--------------|----------------|------|---|---|--|--|--|
| RD |   | I <sup>2</sup> C Slave Receive Data Register |                  |              |                |      |   |   |  |  |  |
| WR |   |                                              | l <sup>2</sup> C | Slave Transr | nit Data Regis | ster |   |   |  |  |  |



### 4. EUART1 Enhanced Function UART1

LIN-capable 16550-like EUART1 is an enhanced UART controller (EUART) with separate transmit and receive FIFO. Both transmit and receive FIFO are 15-bytes deep and can be parameterized for interrupt triggering. The addition of FIFO significantly reduces the CPU load to handle high-speed serial interface. Transmit FIFO and receive FIFO have respective interrupt trigger levels that can be set based on optimal CPU performance adjustment. The EUART1 also has dedicated 16-bit Baud Rate generator and thus provides accurate baud rate under wide range of system clock frequency.

|    | 7        | 6           | 5                             | 4               | 3                | 2              | 1               | 0              |
|----|----------|-------------|-------------------------------|-----------------|------------------|----------------|-----------------|----------------|
| RD | EUARTEN  | SB          | WLS[1]                        | WLS[0]          | BREAK            | OP             | PERR            | SP             |
| WR | EUARTEN  | SB          | WLS[1]                        | WLS[0]          | BREAK            | OP             | PE              | SP             |
| E  | UARTEN   | Transmit a  | nd Receive E                  | nable bit       |                  |                |                 |                |
|    |          |             |                               |                 |                  |                | nit messages i  | n the TX       |
| ~  |          |             |                               | ed messages     | in the RX FIF    | -0.            |                 |                |
| 5  | SB       | Stop Bit Co |                               | and clear to    | enable 1 Sto     | n hit          |                 |                |
| V  | VLS[1-0] |             | •                             |                 |                  | •              | ty bit when pa  | ritv ie        |
| v  |          | enabled.    |                               |                 | 3 0063 1101 1110 | lude the part  | ly bit when pa  | Inty 13        |
|    |          | 00 - 5 bits |                               |                 |                  |                |                 |                |
|    |          | 01 - 6 bits |                               |                 |                  |                |                 |                |
|    |          | 10 - 7 bits |                               |                 |                  |                |                 |                |
|    |          | 11 - 8 bits |                               |                 |                  |                |                 |                |
| B  | BREAK    |             | dition Control                |                 |                  |                |                 |                |
|    |          |             | ite a break co<br>is cleared. | ndition on the  | UARI interfa     | ice by holding | UART output     | t at low until |
| C  | )P       |             | Parity Control                | l Rit           |                  |                |                 |                |
|    | PE/PERR  |             | ble / Parity Er               |                 |                  |                |                 |                |
|    |          | •           |                               |                 | le parity chec   | king functions | s. If read, PEF | RR=1           |
|    |          |             |                               |                 | lata of RX FIF   |                |                 |                |
| S  | SP       | Parity Set  |                               |                 |                  |                |                 |                |
|    |          | When SP i   | s set, the pari               | ty bit is alway | s transmitted    | as 1.          |                 |                |

### SCON1 (0xB1) EUART1 Configuration Register, R/W (0x00)

### SCON1X (0xB2) EUART1 Configuration Register, R/W (0x00)

|    |        |                         | ation regist   |                 | 7               |                |                 |               |
|----|--------|-------------------------|----------------|-----------------|-----------------|----------------|-----------------|---------------|
|    | 7      | 6                       | 5              | 4               | 3               | 2              | 1               | 0             |
| RD | RXST   | BITERR                  | BECLRX         | BECLRR          | LBKEN           | BERIE          | -               | TXPOL         |
| WR | -      | BITERR                  | BECLRX         | BECLRR          | LBKEN           | BERIE          | CLRFIFO         | TXPOL         |
| R  | XST    | Receive St              |                |                 |                 |                |                 |               |
|    |        |                         | •              |                 | •               | lware when a   | START bit is    | detected. It  |
|    |        | is cleared v            | when STOP of   | ondition is de  | tected.         |                |                 |               |
| B  | BITERR | Bit Error Fl            | ag             |                 |                 |                |                 |               |
|    |        | BITERR is               | set by hardw   | are when rece   | eived bit does  | not match wi   | th transmit bit | , if BERIE=1, |
|    |        | then this e             | rror generates | an interrupt.   | BITERR mus      | st be cleared  | by software.    |               |
| В  | BECLRX | Bit Error Fo            | orce Clear Tra | ansmit Enable   | )               |                |                 |               |
|    |        | If BECLRX               | =1, when BIT   | ERR is set by   | / hardware, ha  | ardware also i | immediately d   | isables       |
|    |        | current trar            | nsmission and  | d clears TX st  | ate machines    | and FIFO.      |                 |               |
| B  | BECLRR | Bit Error Fo            | orce Clear RE  | CEIVE Enab      | le              |                |                 |               |
|    |        |                         |                |                 |                 |                | immediately d   | isables       |
|    |        |                         | •              |                 | machines and    | d FIFO.        |                 |               |
| L  | BKEN   |                         | ART Loopbac    | -               |                 |                |                 |               |
|    |        |                         |                |                 |                 |                | X output conn   |               |
|    |        |                         |                | k mode, to pr   | event the TX    | to pin output, | corresponding   | g MFCFG bit   |
| _  |        | must be cle             |                | <i></i>         |                 |                |                 |               |
| -  | BERIE  |                         | •              | e (1:Enable / ) | ,               |                |                 |               |
| C  | LRFIFO | Set to clea<br>hardware | r transmit/rec | eived FIFO po   | ointer and stat | e machine. C   | LRFIFO bit is   | auto clear by |
| т  | XPOL   |                         | tput polarity  |                 |                 |                |                 |               |
|    |        |                         | iput polarity  |                 |                 |                |                 |               |



# IS31CS8975 SFIF01 (0y P2) FILTE

| FO1 (( | 0xB3) EUAR | T1 FIFO Status/   | Control R    | egister R/W (                      | )x00)            |                |                |             |
|--------|------------|-------------------|--------------|------------------------------------|------------------|----------------|----------------|-------------|
|        | 7          | 6                 | 5            | 4                                  | 3                | 2              | 1              | 0           |
| RD     |            | RFL[3             | -0]          |                                    |                  | TFL            | [3-0]          |             |
| WR     |            | RFLT[3            | 8-0]         |                                    |                  | TFL            | Г[3-0]         |             |
| R      | FL[3-0]    | Current Rece      | ive FIFO le  | evel. This is re                   | ead only and i   | ndicate the c  | urrent receive | FIFO byte   |
|        |            | count.            |              |                                    |                  |                |                |             |
| R      | FLT[3-0]   |                   |              | reshold. This                      | is write-only. I | RDA interrupt  | will be gene   | rated when  |
|        |            | RFL[3-0] is g     | reater than  | RFL1[3-0].                         | Description      |                |                |             |
|        |            | RFLT[3-0]         |              |                                    | Descriptio       | n              |                |             |
|        |            | 0000              |              | trigger level =                    |                  |                |                |             |
|        |            | 0001              |              | trigger level =                    |                  |                |                |             |
|        |            | 0010              |              | trigger level =                    |                  |                |                |             |
|        |            | 0011              |              | trigger level =                    |                  |                |                |             |
|        |            | 0100              |              | trigger level =                    |                  |                |                |             |
|        |            | 0101              |              | trigger level =                    |                  |                |                |             |
|        |            | 0110              |              | trigger level =                    |                  |                |                |             |
|        |            | 0111              |              | trigger level =                    |                  |                |                |             |
|        |            | 1000              |              | trigger level =                    |                  |                |                |             |
|        |            | 1001              |              | trigger level =                    |                  |                |                |             |
|        |            | 1010              |              | trigger level =                    |                  |                |                |             |
|        |            | 1011              |              | trigger level =                    |                  |                |                |             |
|        |            | 1100              |              | trigger level =                    |                  |                |                |             |
|        |            | 1101              |              | trigger level =                    |                  |                |                |             |
|        |            | 1110              | RX FIFO      | trigger level =                    | 14               |                |                |             |
|        |            | 1111              | Reset Re     | eceive State M                     | achine and Cl    | ear RX FIFO    |                |             |
| Т      | FL[3-0]    |                   | smit FIFO    | level. This is r                   | ead only and     | indicate the c | urrent transn  | nit FIFO by |
| т      | FLT[3-0]   | count.            | O trigger th | reshold. This                      | io write only    | TDA interrup   | t will be gone | rated when  |
| I      | 1 [3-0]    | TFL[3-0] is le    |              |                                    | is write-only.   | ITA interrup   | t will be gene | Taleu when  |
|        |            | TFLT[3-0]         |              | []                                 | Descriptio       | n              |                |             |
|        |            | 0000              | Reset Tra    | ansmit State M                     | •                |                | )              |             |
|        |            | 0001              |              | trigger level =                    |                  |                |                |             |
|        |            | 0010              |              | trigger level =                    |                  |                |                |             |
|        |            | 0011              |              | trigger level =                    |                  |                |                |             |
|        |            | 0100              |              | trigger level =                    |                  |                |                |             |
|        |            | 0101              |              | trigger level =                    |                  |                |                |             |
|        |            | 0110              |              | trigger level =                    |                  |                |                |             |
|        |            | 0111              |              | trigger level =                    |                  |                |                |             |
|        |            | 1000              |              | trigger level =                    |                  |                |                |             |
|        |            | 1000              |              | trigger level =                    |                  |                |                |             |
|        |            | 1010              |              | trigger level =                    |                  |                |                |             |
|        |            | 1010              |              | trigger level =                    |                  |                |                |             |
|        |            | 1100              |              | trigger level =                    |                  |                |                |             |
|        |            | 1100              |              | trigger level =                    |                  |                |                |             |
|        |            | 1101              |              |                                    |                  |                |                |             |
|        |            | 1110              |              | trigger level =<br>trigger level = |                  |                |                |             |
|        |            |                   |              |                                    |                  |                |                |             |
| T1 (0) | (B5) EUART | 1 Interrupt Statu | us/Enable    | Register R/W                       | (0x00)           | -              |                |             |
| T      | 7          | 6                 | 5            | 4                                  | 3                | 2              | 1              | 0           |

#### (\*\*\*\*/ --

|    | 7     | 6     | 5     | 4     | 3     | 2     | 1      | 0    |
|----|-------|-------|-------|-------|-------|-------|--------|------|
| RD | INTEN | TRA   | RDA   | RFO   | RFU   | TFO   | FERR   | TI   |
| WR | INTEN | TRAEN | RDAEN | RFOEN | RFUEN | TFOEN | FERREN | TIEN |

### LUMISSIL MICROSYSTEMS

### IS31CS8975

| 000010      |                                                                                                                                    |
|-------------|------------------------------------------------------------------------------------------------------------------------------------|
| INTEN       | Interrupt Enable bit. Write only                                                                                                   |
|             | Set to enable EUART1 interrupt. Clear to disable interrupt. Default is 0.                                                          |
| TRA/TRAEN   | Transmit FIFO is ready to be filled.                                                                                               |
|             | This bit is set when transmit FIFO has been emptied below FIFO threshold. Write "1" to                                             |
|             | enable interrupt. The flag is automatically cleared when the condition is absent.                                                  |
| RDA/RDAEN   | Receive FIFO is ready to be read.                                                                                                  |
|             | This bit is set by hardware when receive FIFO exceeds the FIFO threshold. Write "1" to                                             |
|             | enable interrupt. RDA will also be set when RFL < RFLT for bus idle duration longer than                                           |
|             | RFLT * 16 * Baud Rate. This is to inform software that there are still remaining unread                                            |
|             | received bytes in the FIFO.                                                                                                        |
|             | The flag is cleared when RFL < RFLT and writing "0" on the bit (the interrupts is disabled                                         |
|             | simultaneously)                                                                                                                    |
| RFO/RFOEN   | Receive FIFO Overflow Enable bit                                                                                                   |
|             | This bit is set when overflow condition of receive FIFO occurs. Write "1" to enable interrupt.                                     |
|             | The flag can be cleared by software by writing "0" on the bit (the interrupt is disabled simultaneously), or by FIFO reset action. |
| RFU/RFUEN   | Receive FIFO Underflow Enable bit                                                                                                  |
|             | This bit is set when underflow condition of receive FIFO occurs. Write "1" to enable interrupt.                                    |
|             | The flag can be cleared by software by writing "0" on the bit (the interrupt is disabled                                           |
|             | simultaneously), or by FIFO reset action.                                                                                          |
| TFO/TFOEN   | Transmit FIFO Overflow Interrupt Enable bit                                                                                        |
|             | This bit is set when overflow condition of transmit FIFO occurs. Write "1" to enable interrupt.                                    |
|             | The flag can be cleared by software by writing "0" on the bit (the interrupt is disabled                                           |
|             | simultaneously), or by FIFO reset action.                                                                                          |
| FERR/FERREN | Framing Error Enable bit                                                                                                           |
|             | This bit is set when framing error occurs as the byte is received. Write "1" to enable                                             |
|             | interrupt. The flag must be cleared by software, writing "0" on the bit (the interrupt is                                          |
|             | disabled simultaneously).                                                                                                          |
| TI/TIEN     | Transmit Message Completion Interrupt Enable bit                                                                                   |
|             | This bit is set when all messages in the TX FIFO are transmitted and thus the TX FIFO                                              |
|             | becomes empty. Write "1" to enable interrupt. The flag must be cleared by software, writing                                        |
|             | "0" on the bit (the interrupt is disabled simultaneously).                                                                         |
|             |                                                                                                                                    |

### SBUF1 (0xB4) EUART1 Data Buffer Register R/W (0x00)

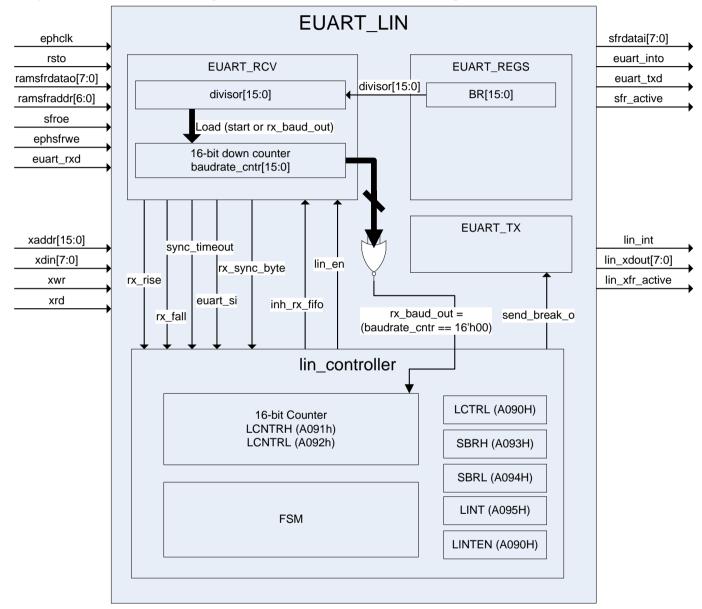
|    | 7 | 6 | 5  | 4            | 3               | 2   | 1 | 0 |
|----|---|---|----|--------------|-----------------|-----|---|---|
| RD |   |   | E  | UART1 Receiv | ve Data Regist  | er  |   |   |
| WR |   |   | El | JART1 Transm | nit Data Regist | ter |   |   |

This register is the virtual data buffer register for both receive and transmit FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.

### SBR1L (0xB6) EUART1 Baud Rate Register Low byte RO (0x00)

|    | 7 | 6 | 5 | 4   | 3      | 2 | 1 | 0 |
|----|---|---|---|-----|--------|---|---|---|
| RD |   |   |   | SBR | 1[7:0] |   |   |   |
| WR |   |   |   | SBR | 1[7-0] |   |   |   |

### SBR1H (0xB7) EUART1 Baud Rate Register High byte RO (0x00)


|    |            |                                                                   |   |   | - |   |   |   |  |  |  |  |
|----|------------|-------------------------------------------------------------------|---|---|---|---|---|---|--|--|--|--|
|    | 7          | 6                                                                 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |
| RD |            | SBR1[15-8]                                                        |   |   |   |   |   |   |  |  |  |  |
| WR |            | SBR1[15-8]                                                        |   |   |   |   |   |   |  |  |  |  |
|    | SBR1[15-0] | BR1[15-0] The Baud Rate Setting of EUART. SBR`[15-0] cannot be 0. |   |   |   |   |   |   |  |  |  |  |

BUAD RATE = SYSCLK/SBR1[15-0].



### 5. EUART2 with LIN Controller

LIN-capable 16550-like EUART2 is an enhanced UART controller (EUART) with separate transmit and receive FIFO. Both transmit and receive FIFO are 15-bytes deep and can be parameterized for interrupt triggering. The addition of FIFO significantly reduces the CPU load to handle high-speed serial interface. Transmit FIFO and receive FIFO have respective interrupt trigger levels that can be set based on optimal CPU performance adjustment. The EUART2 also has dedicated 16-bit Baud Rate generator and thus provides accurate baud rate under wide range of system clock frequency. The EUART2 also provides LIN extensions that incorporate message handling and baud-rate synchronization. The block diagram of EUART2 is shown in the following.



The following registers are used for configurations of and interface with EUART2.

### SCON2 (0xC2) UART2 Configuration Register R/W (0x00)

|    | 7             | 6                                        | 5              | 4                             | 3                                               | 2               | 1              | 0        |
|----|---------------|------------------------------------------|----------------|-------------------------------|-------------------------------------------------|-----------------|----------------|----------|
| RD | EUARTEN       | SB                                       | WLS[1]         | WLS[0]                        | BREAK                                           | OP              | PERR           | SP       |
| WR | EUARTEN       | SB                                       | WLS[1]         | WLS[0]                        | BREAK                                           | OP              | PE             | SP       |
|    | EUARTEN<br>SB | Set to enal<br>FIFO and t<br>Stop Bit Co | o store receiv | ransmit and revealed messages | eceive functio<br>in the RX FIF<br>enable 1 Sto | <del>-</del> 0. | nit messages i | n the TX |



| WLS[1-0] | The number of bits of a data byte. This does not include the parity bit when parity is<br>enabled. |
|----------|----------------------------------------------------------------------------------------------------|
|          | 00 - 5 bits                                                                                        |
|          | 01 - 6 bits                                                                                        |
|          | 10 - 7 bits                                                                                        |
|          | 11 - 8 bits                                                                                        |
| BREAK    | Break Condition Control Bit.                                                                       |
|          | Set to initiate a break condition on the UART interface by holding UART output at low until        |
|          | BREAK bit is cleared.                                                                              |
| OP       | Odd/Even Parity Control Bit                                                                        |
| PE/PERR  | Parity Enable / Parity Error status                                                                |
|          | Set to enable parity and clear to disable parity checking functions. If read, PERR=1               |
|          | indicates a parity error in the current data of RX FIFO.                                           |
| SP       | Parity Set Control Bit                                                                             |
|          | When SP is set, the parity bit is always transmitted as 1.                                         |
|          |                                                                                                    |

### SFIFO2 (0xA5) UART2 FIFO Status/Control Register R/W (0x00)

|    | 7            | 6           | 5                                      | 4                            | 3                                     | 2              | 1                  | 0            |
|----|--------------|-------------|----------------------------------------|------------------------------|---------------------------------------|----------------|--------------------|--------------|
| RD |              | RFL[        | 3-0]                                   |                              |                                       | TFL            | [3-0]              |              |
| WR |              | RFLT        | [3-0]                                  |                              |                                       | TFL            | Г[3-0]             |              |
| R  | FL[3-0]      | Current Re  | ceive FIFO le                          | vel. This is re              | ad only and i                         | ndicate the cu | urrent receive     | FIFO byte    |
|    |              | count.      |                                        |                              |                                       |                |                    |              |
| R  | FLT[3-0]     |             | greater than                           | eshold. This i<br>RFLT[3-0]. | s write-only.                         | RDA interrupt  | will be generation | ated when    |
|    |              | RFLT[3-0    |                                        |                              | Descriptio                            | n              |                    |              |
|    |              | 0000        | RX FIFO                                | trigger level =              | 0                                     |                |                    |              |
|    |              | 0001        |                                        | trigger level =              |                                       |                |                    |              |
|    |              | 0010        | RX FIFO                                | trigger level =              | 2                                     |                |                    |              |
|    |              | 0011        | RX FIFO                                | trigger level =              | 3                                     |                |                    |              |
|    |              | 0100        | RX FIFO                                | trigger level =              | 4                                     |                |                    |              |
|    |              | 0101        | RX FIFO                                | trigger level =              | 5                                     |                |                    |              |
|    |              | 0110        | RX FIFO                                | trigger level =              | 6                                     |                |                    |              |
|    |              | 0111        | RX FIFO                                | trigger level =              | 7                                     |                |                    |              |
|    |              | 1000        | RX FIFO                                | trigger level =              | 8                                     |                |                    |              |
|    |              | 1001        | RX FIFO                                | trigger level =              | 9                                     |                |                    |              |
|    |              | 1010        | RX FIFO                                | trigger level =              | 10                                    |                |                    |              |
|    |              | 1011        | RX FIFO                                | trigger level =              | 11                                    |                |                    |              |
|    |              | 1100        | RX FIFO                                | trigger level =              | 12                                    |                |                    |              |
|    |              | 1101        |                                        | trigger level =              |                                       |                |                    |              |
|    |              | 1110        | RX FIFO                                | trigger level =              | 14                                    |                |                    |              |
|    |              | 1111        | Reset Re                               | ceive State Ma               | achine and C                          | lear RX FIFO   |                    |              |
| Т  | FL[3-0]      | Current Tra | insmit FIFO le                         | evel. This is r              | ead only and                          | indicate the c | urrent transm      | it FIFO byte |
| -  |              | count.      | <b>FO</b> ( <b>C C C C C C C C C C</b> |                              | · · · · · · · · · · · · · · · · · · · |                |                    |              |
| I  | FLT[3-0]     |             | less than TFI                          | reshold. This                | is write-only.                        | I RA Interrup  | t will be gener    | ated when    |
|    |              | TFLT[3-0    |                                        | [0 0].                       | Descriptio                            | n              |                    |              |
|    |              | 0000        | -                                      | Insmit State M               |                                       |                | )                  |              |
|    |              | 0001        | TX FIFO 1                              | trigger level =              | 1                                     |                |                    |              |
|    |              | 0010        |                                        | trigger level =              |                                       |                |                    |              |
|    |              | 0011        |                                        | trigger level =              |                                       |                |                    |              |
|    |              | 0100        | TX FIFO 1                              | trigger level =              | 4                                     |                |                    |              |
|    |              | 0101        |                                        | trigger level =              |                                       |                |                    |              |
|    |              | 0110        | TX FIFO 1                              | trigger level =              | 6                                     |                |                    |              |
|    | licrosvetome | www.lumicci | 1                                      |                              |                                       |                |                    | <br>55       |

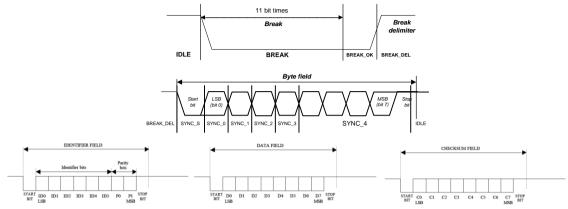


| 0111 | TX FIFO trigger level = 7  |
|------|----------------------------|
| 1000 | TX FIFO trigger level = 8  |
| 1001 | TX FIFO trigger level = 9  |
| 1010 | TX FIFO trigger level = 10 |
| 1011 | TX FIFO trigger level = 11 |
| 1100 | TX FIFO trigger level = 12 |
| 1101 | TX FIFO trigger level = 13 |
| 1110 | TX FIFO trigger level = 14 |
| 1111 | TX FIFO trigger level = 15 |

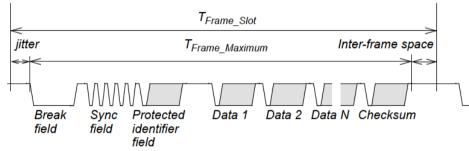
Receive and transmit FIFO can be reset by clear FIFO operation. This is done by setting BR[15-0]=0 and EUARTEN=0. This also clears RFO, RFU and TFO interrupt flags without writing the interrupt register. The LIN counter LCNTR is also cleared.

#### SINT2 (0xA7) UART2 Interrupt Status/Enable Register R/W (0x00)

|     | 7             | 6                                         | 5                                                                                                                                                                        | 4               | 3                | 2              | 1              | 0    |  |  |  |  |
|-----|---------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------|----------------|------|--|--|--|--|
| RD  | INTEN         | TRA                                       | RDA                                                                                                                                                                      | RFO             | RFU              | TFO            | FERR           | TI   |  |  |  |  |
| WR  | INTEN         | TRAEN                                     | RDAEN                                                                                                                                                                    | RFOEN           | RFUEN            | TFOEN          | FERREN         | TIEN |  |  |  |  |
|     | INTEN         | •                                         | Interrupt Enable bit. Write only                                                                                                                                         |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | Set to enable UART2 interrupt. Clear to disable interrupt. Default is 0.                                                                                                 |                 |                  |                |                |      |  |  |  |  |
|     | TRA/TRAEN     |                                           | Transmit FIFO is ready to be filled.                                                                                                                                     |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set when transmit FIFO has been emptied below FIFO threshold. Write "1" to enable interrupt. The flag is automatically cleared when the condition is absent. |                 |                  |                |                |      |  |  |  |  |
|     | RDA/RDAEN     |                                           | Receive FIFO is ready to be read.                                                                                                                                        |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set by hardware when receive FIFO exceeds the FIFO threshold. Write "1" to                                                                                   |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | enable interrupt. RDA will also be set when RFL < RFLT for bus idle duration longer than                                                                                 |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | RFLT * 16 * Baud Rate. This is to inform software that there are still remaining unread                                                                                  |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | received bytes in the FIFO.                                                                                                                                              |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | The flag is cleared when RFL < RFLT and writing "0" on the bit (the interrupts is disabled simultaneously)                                                               |                 |                  |                |                |      |  |  |  |  |
|     | RFO/RFOEN     |                                           | IFO Overflow                                                                                                                                                             | Enable hit      |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set when overflow condition of receive FIFO occurs. Write "1" to enable interrupt.                                                                           |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | The flag can be cleared by software by writing "0" on the bit (the interrupt is disabled                                                                                 |                 |                  |                |                |      |  |  |  |  |
|     |               | simultaneously), or by FIFO reset action. |                                                                                                                                                                          |                 |                  |                |                |      |  |  |  |  |
|     | RFU/RFUEN     | Receive FIFO Underflow Enable bit         |                                                                                                                                                                          |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set when underflow condition of receive FIFO occurs. Write "1" to enable interrupt.                                                                          |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | The flag can be cleared by software by writing "0" on the bit (the interrupt is disabled                                                                                 |                 |                  |                |                |      |  |  |  |  |
|     | TFO/TFOEN     |                                           | simultaneously), or by FIFO reset action.<br>Transmit FIFO Overflow Interrupt Enable bit                                                                                 |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set when overflow condition of transmit FIFO occurs. Write "1" to enable interrupt.                                                                          |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           |                                                                                                                                                                          |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | The flag can be cleared by software by writing "0" on the bit (the interrupt is disabled simultaneously), or by FIFO reset action.                                       |                 |                  |                |                |      |  |  |  |  |
|     | FERR/FERREN   | •                                         |                                                                                                                                                                          |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set when framing error occurs as the byte is received. Write "1" to enable                                                                                   |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | interrupt. The flag must be cleared by software, writing "0" on the bit (the interrupt is disabled simultaneously).                                                      |                 |                  |                |                |      |  |  |  |  |
|     | TI/TIEN       |                                           | Transmit Message Completion Interrupt Enable bit                                                                                                                         |                 |                  |                |                |      |  |  |  |  |
|     |               |                                           | This bit is set when all messages in the TX FIFO are transmitted and thus the TX FIFO                                                                                    |                 |                  |                |                |      |  |  |  |  |
|     |               | becomes                                   | empty. Write "                                                                                                                                                           | 1" to enable in | terrupt. The fla | ag must be cle | ared by softwa |      |  |  |  |  |
|     |               | "0" on the                                | bit (the interru                                                                                                                                                         | pt is disabled  | simultaneously   | y).            |                |      |  |  |  |  |
| 152 | (0xA6) 11APT2 | Data Buffor                               |                                                                                                                                                                          | N (0v00)        |                  |                |                |      |  |  |  |  |


#### SBUF2 (0xA6) UART2 Data Buffer Register R/W (0x00)

|    | 7 | 6 | 5  | 4            | 3               | 2   | 1 | 0 |
|----|---|---|----|--------------|-----------------|-----|---|---|
| RD |   |   | E  | UART2 Receiv | ve Data Regist  | er  |   |   |
| WR |   |   | El | JART2 Transn | nit Data Regist | ter |   |   |


This register is the virtual data buffer register for both receive and transmit FIFO. When being read, it reads out the top byte of the RX FIFO; when being written, it writes into the top byte of the TX FIFO.

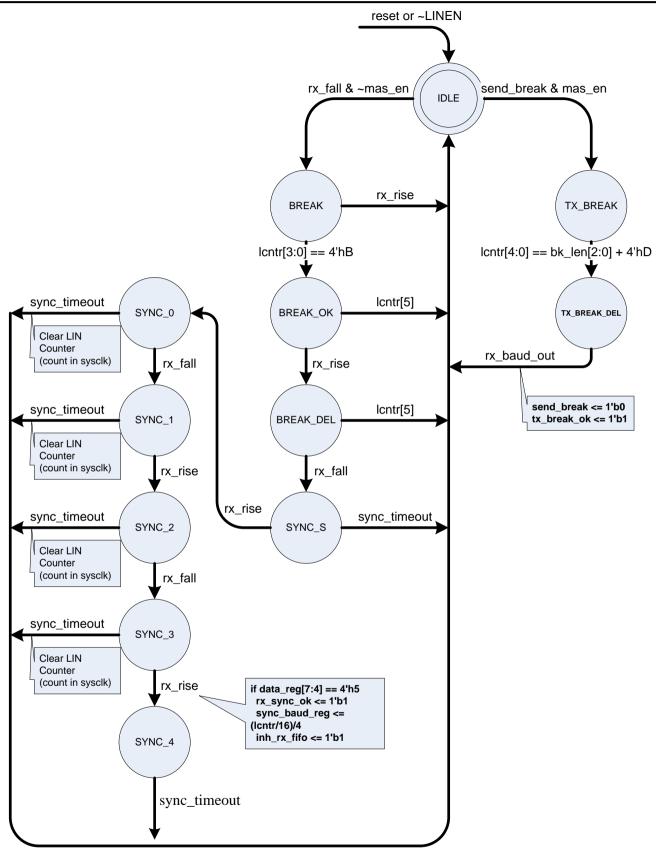


EUART2 can be configured to add LIN capability. The major enhancement of LIN includes master/slave configurations, auto baud-rate synchronization, and frame based protocol with header. Under LIN extension mode, all EUART2 registers and functions are still effective and operational. LIN is a single-wire bus and it requires external components to combine RX and TX signals externally. LIN is frame based and consists of message protocols with master/slave configurations. The following diagram shows the basic composition of a header message sent by the master. It starts with BREAK, the SYNC byte, ID bytes, DATA bytes, and CRC bytes.



A LIN frame structure is shown and the frame time matches the number of bits sent and has a fixed timing.




LIN bus protocol is based on frame. Each frame is partitioned into several parts as shown above. For master to initiate a frame, the software follows the following procedure.

Initiate a SBK command. (SW needs to check if the bus is in idle state, and there is no pending transmit data). Write "55" into TFIFO.

Write "PID" into TFIFO.

Wait for SBK to complete interrupts and then write the following transmit data if applicable. (This is optional). The following diagram shows Finite State Machine (FSM) of the LIN extension and is followed by registers within EUART2.







| T  | 7                            | 6                                                                                                                                                                            | 5                 | 4                | 3                | 2               | 1                | 0         |  |  |  |
|----|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------------------|-----------------|------------------|-----------|--|--|--|
| RD | LINEN                        | MASEN                                                                                                                                                                        | ASU               | MASU             | SBK              |                 | BL[2:0]          |           |  |  |  |
| WR | LINEN                        | MASEN                                                                                                                                                                        | ASU               | MASU             | SBK              |                 | BL[2:0]          |           |  |  |  |
|    | LINEN                        | LIN Enabl                                                                                                                                                                    | e (1: Enable /    | 0: Disable)      |                  |                 |                  |           |  |  |  |
|    |                              | LIN heade                                                                                                                                                                    | er detection / ti | ansmission is    | functional whe   | en LINEN = 1.   |                  |           |  |  |  |
|    |                              | ※ Before                                                                                                                                                                     | enabling LIN f    | unctions, the    | EUART2 regist    | ters must be s  | et correctly : 0 | xB0 is    |  |  |  |
|    |                              | recommended for SCON2.                                                                                                                                                       |                   |                  |                  |                 |                  |           |  |  |  |
|    | MASEN                        | Master Enable bit (1: Master / 0: Slave) LIN operating mode selection. This bit is                                                                                           |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | changeable only when LINEN = 0 (must clear LINEN before changing MASEN).<br>Auto Syna Lindata Enable (1: Enable (0: Disable) Write Only                                      |                   |                  |                  |                 |                  |           |  |  |  |
|    | ASU                          | Auto-Sync Update Enable (1: Enable / 0: Disable), Write Only<br>If ASU is 1, the LIN controller will automatically overwrite BR[15-0] with SBR[15-0] and issue               |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | an ASUI interrupt when received a valid SYNC field.                                                                                                                          |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | If ASU is 0, the LIN controller will only notice the synchronized baud rate in SBR[15-0] by                                                                                  |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | issuing an RSI interrupt.                                                                                                                                                    |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | Please no                                                                                                                                                                    | te, ASU shoul     | d not be set u   | nder UART mo     | de. ASU capa    | ability is based | on the    |  |  |  |
|    |                              | message containing BREAK and SYNC field in the beginning.<br>When ASU=1, the auto sync update is performed on every receiving frame, and is updated                          |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              |                                                                                                                                                                              |                   | sync update is   | performed on     | every receiving | ng frame, and i  | s updated |  |  |  |
|    |                              | frame by f                                                                                                                                                                   |                   |                  |                  |                 |                  |           |  |  |  |
|    | MASU                         | Please note when ASU is set to 1, LININTEN[SYNCMD] should also be set to 1.                                                                                                  |                   |                  |                  |                 |                  |           |  |  |  |
|    | MASU                         | Message Auto Sync Update Enable.                                                                                                                                             |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | MASU is meaningful only if ASU=0. MASU=1 will enable the auto sync update on the nex received frame only. It is self-cleared when the sync update is completed. The software |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              |                                                                                                                                                                              |                   |                  | sync operation   | •               |                  | onnaro    |  |  |  |
|    |                              |                                                                                                                                                                              |                   |                  |                  |                 | also be set to 1 | l.        |  |  |  |
|    | SBK                          |                                                                                                                                                                              | ak (1: Send / 0   |                  | ,                |                 |                  |           |  |  |  |
|    |                              |                                                                                                                                                                              |                   |                  |                  |                 | N and MASEN      |           |  |  |  |
|    |                              |                                                                                                                                                                              |                   |                  |                  |                 | nt bits and 1 re |           |  |  |  |
|    |                              | <b>`</b>                                                                                                                                                                     | ,                 | ,                |                  |                 | reak" status ar  |           |  |  |  |
|    |                              | CANNOT be cleared by writing to "0"; instead, clearing LINEN cancels the "Send Break" action. In normal cases, SBK is cleared automatically when the transmission of Break   |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | Delimiter is completed.                                                                                                                                                      |                   |                  |                  |                 |                  |           |  |  |  |
|    | BL[2:0] Break Length Setting |                                                                                                                                                                              |                   |                  |                  |                 |                  |           |  |  |  |
|    |                              | Break Ler                                                                                                                                                                    | ngth = 13 + BL    | [2:0]. Default E | 3L[2:0] is 3'b00 | 00.             |                  |           |  |  |  |
|    |                              |                                                                                                                                                                              |                   |                  |                  |                 |                  |           |  |  |  |

#### LINCTRL (0xA090) LIN Status/Control RegisterR/W (0x00)

#### LINCNTRH (0xA091) LIN Timer Register High R/W (0xFF)

|    | 7 | 6 | 5 | 4     | 3       | 2 | 1 | 0 |
|----|---|---|---|-------|---------|---|---|---|
| RD |   |   |   | LCNTI | R15-8]  |   |   |   |
| WR |   |   |   | LINTM | R[15-8] |   |   |   |

#### LINCNTRL (0xA092) LIN Time Register Low R/W (0xFF)

|    | 7 | 6          | 5 | 4     | 3       | 2 | 1 | 0 |  |  |
|----|---|------------|---|-------|---------|---|---|---|--|--|
| RD |   | LCNTR[7-0] |   |       |         |   |   |   |  |  |
| WR |   |            |   | LINTM | IR[7-0] |   |   |   |  |  |

LCNTR[15-0] is read only and is an internal 16-bit counter clocked by the baud rate clock. LINTMR[15-0] is write only and is the timer limit for LCNTR[15-0]. If MASEN=1 as LIN master mode, this timer is used to generate Frame time base. The internal counter LCNTR[15-0] is cleared whenever a "SEND BREAK" command is executed, and when the counter reaches LINTMR [15-0] (LCNTR[15-0] >= LINTMR[15-0]), a LCNTRO interrupt is generated. Thus the software can write a Frame Time value into LINTMR and use interrupts to initiate frames. If MASEN=0 as LIN slave mode, this timer is used for determining the accumulated bus idle time. The internal counter is cleared whenever a RX transition occurs. When the internal counter reaches LINTMR[15-0], an LCNTRO interrupt is generated. The software can use this interrupt to enter sleep mode by writing the required bus idling time into LINTMR[15-0].

### LINSBRH (0xA093) EUART/LIN Baud Rate Register High byte RO (0x00)

|    | 7 | 6         | 5 | 4    | 3    | 2 | 1 | 0 |  |  |
|----|---|-----------|---|------|------|---|---|---|--|--|
| RD |   | SBR[15-8] |   |      |      |   |   |   |  |  |
| WR |   |           |   | BR[1 | 5-8] |   |   |   |  |  |



### LINSBRL (0xA094) EUART/LIN Baud Rate Register Low byte (0x00) RO

|    | 7         | 6        | 5 | 4               | 3 | 2 | 1              | 0          |  |  |
|----|-----------|----------|---|-----------------|---|---|----------------|------------|--|--|
| RD |           | SBR[7:0] |   |                 |   |   |                |            |  |  |
| WR |           | BR[7-0]  |   |                 |   |   |                |            |  |  |
|    | SBR[15-0] | •        |   | e under LIN pro |   | • | oyte. SBR is n | neaningful |  |  |

BR[15-0] BUAD RATE = SYSCLK/BR[15-0].

When a slave receives a BREAK followed by a valid SYNC field, an RSI interrupt is generated and the acquired baud rate from SYNC field is stored in SBR[15-0]. The acquired baud rate is BAUD RATE = SYSCLK/SBR[15-0]. The software can just update this acquired value into BR[15-0] to achieve synchronization with the master. If Auto-Sync Update (ASU) register bit is enabled under LIN slave mode, LIN controller will automatically perform the update of BR[15-0] with SBR[15-0] and issue another ASUI interrupt when received a valid SYNC field.

### LININT (0xA095) LIN Interrupt Flag Register R/W (0x00)

|    | 7      | 6                                                                                                                                                         | 5                                                                                                                    | 4                                    | 3                | 2                 | 1                | 0            |  |  |  |  |
|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|-------------------|------------------|--------------|--|--|--|--|
| RD | RXST   | BITERR                                                                                                                                                    | LSTAT                                                                                                                | LIDLE                                | ASUI             | SBKI              | RSI              | LCNTRO       |  |  |  |  |
| WR | LBKEN  | BITERR                                                                                                                                                    | BECLRX                                                                                                               | BECLRR                               | ASUI             | SBKI              | RSI              | LCNTRO       |  |  |  |  |
|    | RXST   | Receive                                                                                                                                                   | Status                                                                                                               |                                      |                  |                   |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      | re when a STA                        | ART bit is dete  | cted. It is clea  | ared when STC    | OP condition |  |  |  |  |
|    |        | is detecte                                                                                                                                                |                                                                                                                      |                                      |                  |                   |                  |              |  |  |  |  |
|    | LBKEN  |                                                                                                                                                           | Enable EUART Loopback Test,<br>When LBKEN=1, EUART2 enters into loopback mode, with its TX output connected to RX    |                                      |                  |                   |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      |                  |                   | corresponding    |              |  |  |  |  |
|    |        | must be                                                                                                                                                   |                                                                                                                      |                                      |                  | output to pill, t | serreepending    |              |  |  |  |  |
|    | LBKEN  | Loopback Enable                                                                                                                                           |                                                                                                                      |                                      |                  |                   |                  |              |  |  |  |  |
|    | BITERR |                                                                                                                                                           | Bit Error Flag                                                                                                       |                                      |                  |                   |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           | BITERR is set by hardware when received bit does not match with transmit bit, if BERIE=1,                            |                                      |                  |                   |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           | then this error generates an interrupt. BITERR must be cleared by software.<br>Bit Error Force Clear Transmit Enable |                                      |                  |                   |                  |              |  |  |  |  |
|    | BECLRX |                                                                                                                                                           |                                                                                                                      |                                      |                  | ardwara also ir   | nmediately dis   | ables        |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      | tate machines    |                   |                  | ables        |  |  |  |  |
|    | BECLRR |                                                                                                                                                           |                                                                                                                      | ECEIVE Enab                          |                  |                   |                  |              |  |  |  |  |
|    |        | If BECLR                                                                                                                                                  | X=1, when Bl                                                                                                         | TERR is set b                        | y hardware, ha   | ardware also ir   | nmediately dis   | ables        |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      | machines and     |                   |                  |              |  |  |  |  |
|    | LSTAT  |                                                                                                                                                           | · ·                                                                                                                  |                                      | Dominant), Re    |                   |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      | (RX pin) is in   |                   |                  | -            |  |  |  |  |
|    | LIDLE  |                                                                                                                                                           |                                                                                                                      | ls is idle and r<br>ly. It is 1 when |                  | preceiving LIN    | I header or dat  | a            |  |  |  |  |
|    | ASUI   | •                                                                                                                                                         |                                                                                                                      | •                                    | upt (1: Set / 0: | Clear)            |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      | • •              | ,                 | mpleted and B    | R[15-0] has  |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      |                  | •                 | writing "1" on t | the bit.     |  |  |  |  |
|    | SBKI   |                                                                                                                                                           | •                                                                                                                    |                                      | 1: Set / 0: Cle  | ,                 |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      | •                |                   | y writing "1" in | the bit.     |  |  |  |  |
|    | RSI    | Receive Sync Completion Interrupt bit (1: Set / 0: Clear)<br>This flag is set when a valid Sync byte is received following a Break. It must be cleared by |                                                                                                                      |                                      |                  |                   |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           | " in the bit.                                                                                                        | valid Sync byt                       | e is received in | bilowing a Brea   | ak. It must be   | cleared by   |  |  |  |  |
|    | LCNTRO | -                                                                                                                                                         |                                                                                                                      | nterrupt bit (1:                     | Set / 0: Clear   | ).                |                  |              |  |  |  |  |
|    |        |                                                                                                                                                           |                                                                                                                      |                                      |                  |                   | cleared by wri   | ting "1" in  |  |  |  |  |
|    |        | the bit.                                                                                                                                                  |                                                                                                                      |                                      |                  |                   |                  |              |  |  |  |  |
|    |        | the bit.<br>(0x00) the Interrupt Enable Register R/W (0x00)                                                                                               |                                                                                                                      |                                      |                  |                   |                  |              |  |  |  |  |

#### LININTEN (0xA096) LIN Interrupt Enable Register R/W (0x00)

|   |    | 7      | 6     | 5      | 4        | 3     | 2     | 1    | 0       |
|---|----|--------|-------|--------|----------|-------|-------|------|---------|
|   | RD | LINTEN | BERIE | SYNCMD | SYNCVD   | ASUIE | SBKIE | RSIE | LCNTRIE |
| ١ | WR | LINTEN | BERIE | SYNCMD | EUARTOPL | ASUIE | SBKIE | RSIE | LCNTRIE |



| LINTEN   | LIN Interrupt Enable (1: Enable / 0: Disable)                                                                 |
|----------|---------------------------------------------------------------------------------------------------------------|
|          | Set to enable all LIN interrupts. LINT flags should be checked before setting or modifying.                   |
| BERIE    | Bit Error Interrupt Enable (1:Enable/ 0:Disable)                                                              |
| SYNCMD   | Synchronization Mode Selection                                                                                |
|          | SYNCMD=1 will automatic re-synchronize with newly received message frame and update                           |
|          | the baud rate register with newly acquired baud rate. SYNCMD should be set to 1 when either ASU or MASU is 1. |
| SYNCVD   | Synchronization Valid Status                                                                                  |
|          | SYNCVD is updated by the hardware when SYNCMD=1. SYNCVD is set to 1 if the auto                               |
|          | synchronization is successful.                                                                                |
| EUARTOPL | EUART/LIN output polarity                                                                                     |
|          | EUARTOPL=1 will reverse the transmit output polarity                                                          |
| ASUIE    | Auto-Sync Update Interrupt Enable (1: Enable / 0: Disable)                                                    |
| SBKIE    | Send Break Completion Interrupt Enable (1: Enable / 0: Disable)                                               |
| RSIE     | Receive Sync Completion Interrupt Enable (1: Enable / 0: Disable)                                             |
| LCNTRIE  | LIN Counter Overflow Interrupt Enable (1: Enable / 0: Disable)                                                |
|          | · · · · · · · · · · · · · · · · · · ·                                                                         |

### LINTCON (0xA0B0h) LIN Time Out configuration R/W (0x00)

|        | 7                                                                             | 6                                                                                                                   | 5                | 4               | 3                | 2               | 1                | 0      |  |
|--------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|-----------------|------------------|--------|--|
| RD     | RXDTO[0]                                                                      | LINRXFEN                                                                                                            | RXTOWKE          | TXTOWKE         | RXDD_F           | TXDD_F          | RXDDEN           | TXDDEN |  |
| WR     | RXDTO[0]                                                                      | LINRXFEN                                                                                                            | RXTOWKE          | TXTOWKE         | RXDD_F           | TXDD_F          | RXDDEN           | TXDDEN |  |
|        | RXDTO[0]                                                                      |                                                                                                                     |                  |                 |                  |                 |                  |        |  |
| I      | LINRXFEN                                                                      | This is combined with RXDTOH and RXDTOL to form RXDTO[16-0]<br>LIN Break State Exit when RXD dominant fault occurs. |                  |                 |                  |                 |                  |        |  |
|        | LINRXFEN=1 configures the automatic BREAK state exit under RXD dominant fault |                                                                                                                     |                  |                 |                  |                 |                  | ult    |  |
|        | conditions.                                                                   |                                                                                                                     |                  |                 |                  |                 |                  |        |  |
|        |                                                                               |                                                                                                                     |                  |                 | kit (does not af | fect other brea | ak exit conditio | ns).   |  |
|        |                                                                               | Software n                                                                                                          | nust take care   | of the LIN stat | te machine.      |                 |                  |        |  |
| I      | RXDDEN                                                                        | RXD Domi                                                                                                            | inant Fault Inte | errupt Enable   |                  |                 |                  |        |  |
|        | RXDD_F                                                                        | RXD Domi                                                                                                            | inant Fault Inte | errupt Flag     |                  |                 |                  |        |  |
|        |                                                                               | RXDD F is                                                                                                           | s set to 1 by h  | ardware and m   | nust be cleared  | d by software   |                  |        |  |
| -      | TXDDEN                                                                        |                                                                                                                     | nant Fault Inte  |                 |                  | ,<br>,          |                  |        |  |
| -      | TXDD_F                                                                        | TXD Domi                                                                                                            | nant Fault Inte  | errupt Flag     |                  |                 |                  |        |  |
|        | TXDD_F is set to 1 by hardware and must be cleared by software                |                                                                                                                     |                  |                 |                  |                 |                  |        |  |
| -      | TXTOWKE                                                                       |                                                                                                                     | •                | Wakeup Enab     |                  | -               |                  |        |  |
|        | RXTOWKE RXD Dominant Timeout Wakeup Enable                                    |                                                                                                                     |                  |                 |                  |                 |                  |        |  |
| τχρτοι | (0xA0B1h) I                                                                   | IN TXD Domi                                                                                                         | nant Time Ou     | It I OW Regist  | ters R/W (0x0    | 0)              |                  |        |  |

### TXDTOL (0xA0B1h) LIN TXD Dominant Time Out LOW Registers R/W (0x00)

|   |    | 7 | 6 | 5 | 4   | 3       | 2 | 1 | 0 |
|---|----|---|---|---|-----|---------|---|---|---|
|   | RD |   |   |   | TXD | FO[7:0] |   |   |   |
| Γ | WR |   |   |   | TXD | FO[7:0] |   |   |   |

### TXDTOH (0xA0B2h) LIN TXD Dominant Time Out HIGH Registers R/W (0x00)

|    | 7 | 6           | 5 | 4    | 3       | 2 | 1 | 0 |  |  |
|----|---|-------------|---|------|---------|---|---|---|--|--|
| RD |   | TXDTO[15:8] |   |      |         |   |   |   |  |  |
| WR |   |             |   | TXDT | O[15:8] |   |   |   |  |  |

TXDTO TXD Dominant Time Out (TXDTO +1) \* IOSCCLK

### RXDTOL (0xA0B3h) LIN RXD Dominant Time Out LOW Registers R/W (0x00)

|    | 7 | 6 | 5 | 4   | 3       | 2 | 1 | 0 |
|----|---|---|---|-----|---------|---|---|---|
| RD |   |   |   | RXD | ГО[8-1] |   |   |   |
| WR |   |   |   | RXD | ГО[8:1] |   |   |   |



| DTO                                                                                                                                                    | 0H (0xA0B4h)         | LIN RXD Dor                                                        | ninant Time ( | Out HIGH Reg   | gisters R/W    | (0x00)       |         |   |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|---------------|----------------|----------------|--------------|---------|---|--|--|--|
|                                                                                                                                                        | 7                    | 6                                                                  | 5             | 4              | 3              | 2            | 1       | 0 |  |  |  |
| RD                                                                                                                                                     |                      |                                                                    |               | RXDT           | D[16-9]        |              |         |   |  |  |  |
| WR                                                                                                                                                     |                      |                                                                    |               | RXDT           | D[16-9]        |              |         |   |  |  |  |
|                                                                                                                                                        | RXDTO                | RXD Don                                                            | ninant Time O | ut (RXDTO[16   | 6-0] +1) * IOS | SCCLK        |         |   |  |  |  |
| SDCL                                                                                                                                                   | .RL (0xA0B5h         | ) Bus Stuck                                                        | Dominant Cle  | ar Width Lov   | v Registers    | R/W (0x00)   |         |   |  |  |  |
|                                                                                                                                                        | 7                    | 6                                                                  | 5             | 4              | 3              | 2            | 1       | 0 |  |  |  |
| RD                                                                                                                                                     |                      |                                                                    |               | BSDCI          | LR[7-0]        |              |         |   |  |  |  |
| WR                                                                                                                                                     |                      | BSDCLR[7-0]                                                        |               |                |                |              |         |   |  |  |  |
| SDCL                                                                                                                                                   | .RH (0xA0B6h         | (0xA0B6h) Bus Stuck Dominant Clear Width High Registers R/W (0x00) |               |                |                |              |         |   |  |  |  |
|                                                                                                                                                        | 7                    | 6                                                                  | 5             | 4              | 3              | 2            | 1       | 0 |  |  |  |
| RD                                                                                                                                                     |                      | BSDCLR[15-8]                                                       |               |                |                |              |         |   |  |  |  |
| WR                                                                                                                                                     | BSDCLR[15-8]         |                                                                    |               |                |                |              |         |   |  |  |  |
|                                                                                                                                                        | BSDCLR               | Bus Stuc                                                           | k Dominant Cl | ear Time (BS   | DCLR[15-0]     | +1) * SOSC/4 |         |   |  |  |  |
| SDAC                                                                                                                                                   | CT (0xA0B8h)         | Bus Stuck D                                                        | ominant Activ | ve Width Reg   | isters R/W     | (0x00)       |         |   |  |  |  |
|                                                                                                                                                        | 7                    | 6                                                                  | 5             | 4              | 3              | 2            | 1       | 0 |  |  |  |
| RD                                                                                                                                                     |                      |                                                                    |               | BSDA           | CT[7-0]        |              |         |   |  |  |  |
| WR                                                                                                                                                     |                      |                                                                    |               | BSDA           | CT[7:0]        |              |         |   |  |  |  |
|                                                                                                                                                        | BSDACT               | Bus Stuc                                                           | k Dominant Ad | ctive Time (BS | SDACT[7-0] -   | +1) * SOSC/4 |         |   |  |  |  |
| SDW                                                                                                                                                    | <b>KC (0xA0B7</b> h) | Bus Stuck D                                                        | Oominant Fau  | It Wakeup co   | onfiguration   | R/W (0x00)   |         |   |  |  |  |
|                                                                                                                                                        | 7                    | 7 6 5 4 3 2 1 0                                                    |               |                |                |              |         |   |  |  |  |
| RD                                                                                                                                                     | BSDWF                | BFWF                                                               | BSDWEN        | BFWEN          |                | WKF          | LT[3-0] |   |  |  |  |
| WR                                                                                                                                                     | BSDWF                | BFWF                                                               | BSDWEN        | BFWEN          |                | WKF          | LT[3-0] |   |  |  |  |
| WR     BSDWF     BFWF     BSDWEN     BFWEN     WKFLT[3-0]       WKFLT[3-0]     LIN Wakeup time (WKFLT[3-0]+1) * SOSC/4     LIN Wakeup/Interrupt Enable |                      |                                                                    |               |                |                |              |         |   |  |  |  |

- BFWF LIN Wakeup Interrupt Flag
  - BFWF is set to 1 by hardware and must be cleared by software
- BSDWENLIN Bus Stuck Wakeup Interrupt EnableBSDWFLIN Bus Stuck Wakeup Interrupt Flag



### 6. Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) is an enhanced synchronous serial hardware, which is compatible with Motorola's SPI specifications. The SPI Controller includes 4-bytes FIFO for both transmit and receive. SPI Interface uses Master-Out-Slave-In (MOSI), Master-In-Slave-Out (MISO), Serial Clock (SCK) and Slave Select (SSN) for interface. SSN is low active and only meaningful in slave mode.

|    | 7            | 6             | 5                                                                                                                                                             |               | 4         | 3              | 2         |      | 1               | 0      |  |  |  |
|----|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|----------------|-----------|------|-----------------|--------|--|--|--|
| RD | SPIE         | SPEN          | MST                                                                                                                                                           | R C           | POL       | CPHA           | SCK       | E    | SICKFLT         | SSNFLT |  |  |  |
| ٧R | SPIE         | SPEN          | MST                                                                                                                                                           | R C           | POL       | CPHA           | SCK       | E    | SICKFLT         | SSNFLT |  |  |  |
|    | SPIE         | SPI interf    | ace Inter                                                                                                                                                     | rupt Enabl    | e bit.    |                |           |      |                 |        |  |  |  |
|    | SPEN         | SPI interf    | ace Enal                                                                                                                                                      | ble bit.      |           |                |           |      |                 |        |  |  |  |
|    | MSTR         | SPI Mast      | er/Slave                                                                                                                                                      | Switch. Se    | et as a m | aster; clear a | s a slave |      |                 |        |  |  |  |
|    | CPOL         |               | SPI interface Polarity bit: Set to configure the SCK to stay HIGH while the SPI interface is                                                                  |               |           |                |           |      |                 |        |  |  |  |
|    |              | •             | idling and clear to keep it LOW.                                                                                                                              |               |           |                |           |      |                 |        |  |  |  |
|    | CPHA         |               | Clock Phase Control bit: If CPOL=0, set to shift output data at rising edge of SCK, and clear                                                                 |               |           |                |           |      |                 |        |  |  |  |
|    |              |               | to shift output data at falling edge of SCK. If CPOL=1, set to shift output data at falling edge of SCK and clear to shift output data at rising edge of SCK. |               |           |                |           |      |                 |        |  |  |  |
|    | 00//5        |               |                                                                                                                                                               |               |           |                | e of SCK. |      |                 |        |  |  |  |
|    | SCKE         |               |                                                                                                                                                               | tion bit for  |           |                |           |      |                 |        |  |  |  |
|    |              |               | SCKE = 0 SDI and SDO uses opposite SCK edges.                                                                                                                 |               |           |                |           |      |                 |        |  |  |  |
|    |              |               | SCKE = 1 SDI and SDO uses the same SCK edges.<br>CPOL, CPHA and SCKE together define the edge relationship between SCK edges used for                         |               |           |                |           |      |                 |        |  |  |  |
|    |              |               |                                                                                                                                                               |               |           |                |           |      | ns rising edge  |        |  |  |  |
|    |              | falling ed    |                                                                                                                                                               | 1 45 5110 101 |           | ollowing table |           | meai | is fishing edge |        |  |  |  |
|    |              |               |                                                                                                                                                               |               | M         | ASTER          | SLA       | ٩VE  |                 |        |  |  |  |
|    |              | SCKE          | CPOL                                                                                                                                                          | CPHA          | SDI       | SDO            | SDI       | SDO  | <b>D</b>        |        |  |  |  |
|    |              | 0             | 0                                                                                                                                                             | 0             | R         | F              | R         | F    |                 |        |  |  |  |
|    |              | 0             | 0                                                                                                                                                             | 1             | F         | R              | F         | R    |                 |        |  |  |  |
|    |              | 0             | 1                                                                                                                                                             | 0             | F         | R              | F         | R    |                 |        |  |  |  |
|    |              | 0             | 1                                                                                                                                                             | 1             | R         | F              | R         | F    |                 |        |  |  |  |
|    |              | 1             | 0                                                                                                                                                             | 0             | F         | F              | R         | F    |                 |        |  |  |  |
|    |              | 1             | 0                                                                                                                                                             | 1             | R         | R              | F         | R    |                 |        |  |  |  |
|    |              | 1             | 1                                                                                                                                                             | 0             | R         | R              | F         | R    |                 |        |  |  |  |
|    |              | 1             | 1                                                                                                                                                             | 1             | F         | F              | R         | F    |                 |        |  |  |  |
|    | SSNFLT       |               |                                                                                                                                                               | function o    |           |                |           |      |                 |        |  |  |  |
|    | SICKFLT      | Enable no     | oise filter                                                                                                                                                   | function o    | n signals | SDI and SC     | K         |      |                 |        |  |  |  |
| MR | (0xA2) SPI M | ode Control I | Register                                                                                                                                                      | R/W (0x0      | D)        |                |           |      |                 |        |  |  |  |
|    | 7            | 6             | 5                                                                                                                                                             |               | Δ         | 3              | 2         |      | 1               | 0      |  |  |  |

### SPICR (0xA1) SPI Configuration Register R/W (0b001000xx)

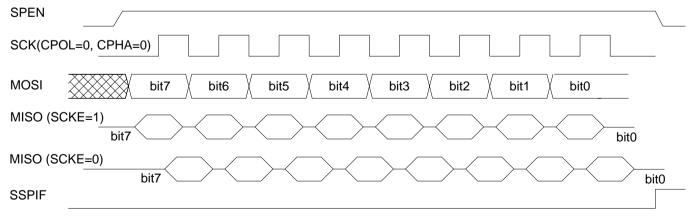
|                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                            | 6                                     | 5    | 4              | 3          | 2      | 1      | 0   |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|----------------|------------|--------|--------|-----|--|--|--|--|
| RD                                                                                                                                                                                                                                                    | ICNT1                                                                                                                                                                                                                                                                                                                                                                                        | ICNT0                                 | FCLR | -              | SPR[2]     | SPR[1] | SPR[0] | DIR |  |  |  |  |
| WR                                                                                                                                                                                                                                                    | ICNT1                                                                                                                                                                                                                                                                                                                                                                                        | ICNT0 FCLR - SPR[2] SPR[1] SPR[0] DIR |      |                |            |        |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                       | ICNT1, ICNT0 FIFO Byte Count Threshold.<br>This sets the FIFO threshold for generating SPI interrupts.<br>00 –the interrupt is generated after 1 byte is sent or received;<br>01 –the interrupt is generated after 2 bytes are sent or received;<br>10 –the interrupt is generated after 3 bytes are sent or received;<br>11 –the interrupt is generated after 4 bytes are sent or received. |                                       |      |                |            |        |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                       | FCLR                                                                                                                                                                                                                                                                                                                                                                                         | FIFO Cle<br>Set to cle                |      | ransmit and re | ceive FIFO |        |        |     |  |  |  |  |
| Set to clear and reset transmit and receive FIFO<br>SPR[2-0] SPI Clock Rate Setting. This is used to control the SCK clock rate of SPI interface.<br>000 –SCK = SYSCLK/4;<br>001 – SCK = SYSCLK/6;<br>010 – SCK = SYSCLK/8;<br>011 – SCK = SYSCLK/16; |                                                                                                                                                                                                                                                                                                                                                                                              |                                       |      |                |            |        |        |     |  |  |  |  |
|                                                                                                                                                                                                                                                       | Miereevetere                                                                                                                                                                                                                                                                                                                                                                                 | • • • • • • • • • • • • • • • • • • • |      |                |            |        |        | 60  |  |  |  |  |



|     | 100 – SCK = SYSCLK/32;       |
|-----|------------------------------|
|     | 101 – SCK = SYSCLK/64;       |
|     | 110 – SCK = SYSCLK/128;      |
|     | 111 – SCK = SYSCLK/256.      |
| DIR | Transfer Format              |
|     | DIR=1 uses MSB-first format. |
|     | DIR=0 uses LSB-first format. |
|     |                              |

### SPIST (0xA3) SPI Status Register R/W (0x00)

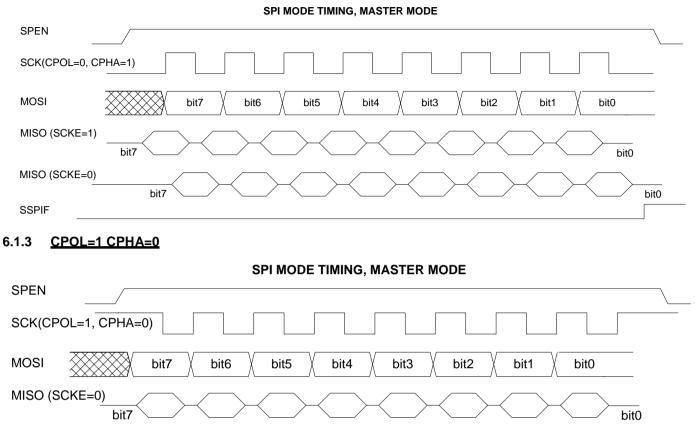
|    | 7                                                                                                                                                                                             | 6                                                                                                                                                                                                | 5              | 4              | 3                             | 2               | 1        | 0     |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------------------------|-----------------|----------|-------|--|--|
| RD | SSPIF                                                                                                                                                                                         | ROVR                                                                                                                                                                                             | TOVR           | TUDR           | RFULL                         | REMPT           | TFULL    | TEMPT |  |  |
| WR | SSPIF                                                                                                                                                                                         | ROVR                                                                                                                                                                                             | TOVR           | TUDR           | -                             | -               | -        | -     |  |  |
|    | SSPIF SPI Interrupt Flag bit. Set by hardware to indicate the completion of data transfer. Clear assigning this bit to 0 or disabling SPI.                                                    |                                                                                                                                                                                                  |                |                |                               |                 |          |       |  |  |
|    | ROVR Receive FIFO-overrun Error Flag bit. When Receiver FIFO Full Status occurs and SP receives new data, ROVR is set and generates an interrupt. Clear by assigning this b or disabling SPI. |                                                                                                                                                                                                  |                |                |                               |                 |          |       |  |  |
|    | TOVR                                                                                                                                                                                          | Transmit FIFO-overrun Error Flag bit. When Transfers FIFO Full Status occurs and new data is written, TOVR is set and generates an interrupt. Clear by assigning this bit to 0 or disabling SPI. |                |                |                               |                 |          |       |  |  |
|    | TUDR                                                                                                                                                                                          |                                                                                                                                                                                                  | sion occur, TC |                | hen Transfers<br>generates an |                 |          |       |  |  |
|    | RFULL                                                                                                                                                                                         | Receive I                                                                                                                                                                                        | FIFO Full Stat | us bit. Set wh | en receiver FII               | FO is full. Rea | id only. |       |  |  |
|    | REMPT                                                                                                                                                                                         | Receive FIFO Empty Status bit. Set when receiver FIFO is empty. Read only.                                                                                                                       |                |                |                               |                 |          |       |  |  |
|    | TFULL Transmitter FIFO Full Status bit. Set when transfer FIFO is full. Read only.                                                                                                            |                                                                                                                                                                                                  |                |                |                               |                 |          |       |  |  |
|    | TEMPT Transmitter FIF0 Empty Status bit. Set when transfer FIFO is empty. Read only.                                                                                                          |                                                                                                                                                                                                  |                |                |                               |                 |          |       |  |  |

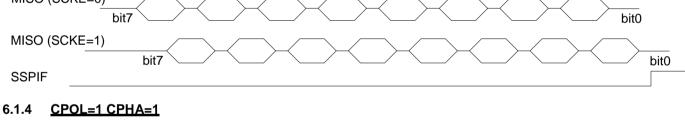

### SPIDATA (0xA4) SPI Data Register R/W (0xXX)

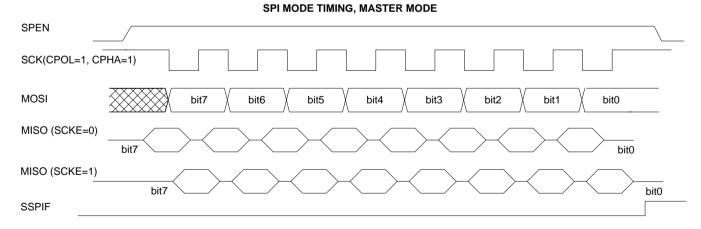
|    | 7 | 6                         | 5 | 4            | 3             | 2 | 1 | 0 |  |  |
|----|---|---------------------------|---|--------------|---------------|---|---|---|--|--|
| RD |   | SPI Receive Data Register |   |              |               |   |   |   |  |  |
| WR |   |                           |   | SPI Transmit | Data Register | , |   |   |  |  |

### 6.1 SPI Master Timing Illustration

#### 6.1.1 <u>CPOL=0 CPHA=0</u>


### SPI MODE TIMING, MASTER MODE

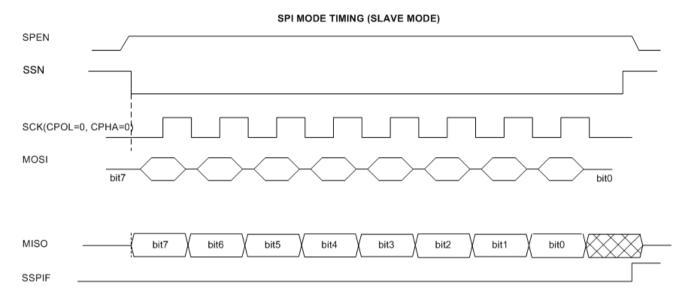




### LUMISSIL MICROSYSTEMS

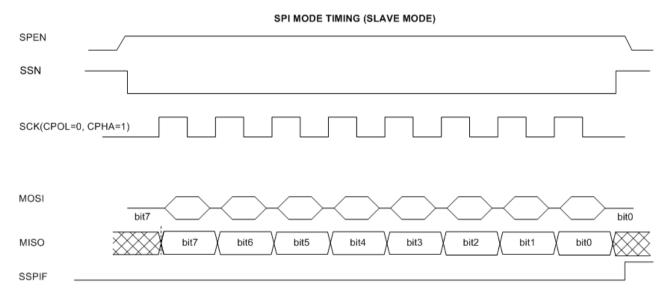
### IS31CS8975

### 6.1.2 <u>CPOL=0 CPHA=1</u>



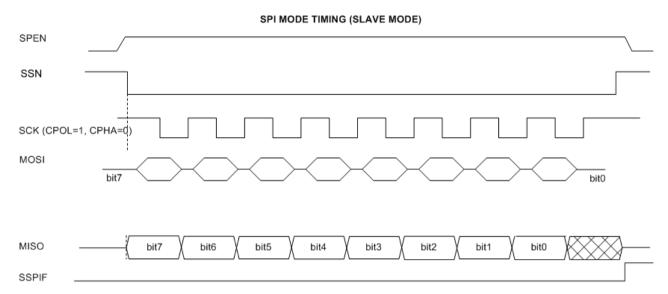




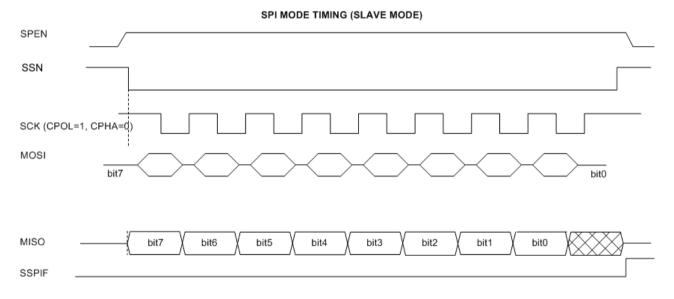




### 6.2 SPI Slave Timing Illustration

### 6.2.1 <u>CPOL=0 CPHA=0</u>



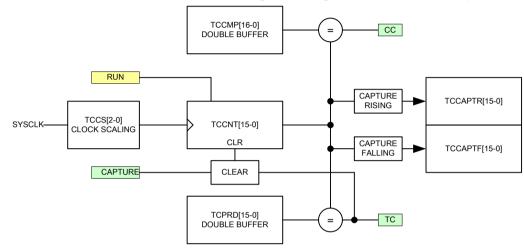

### 6.2.2 <u>CPOL=0 CPHA=1</u>






### 6.2.3 <u>CPOL=1 CPHA=0</u>

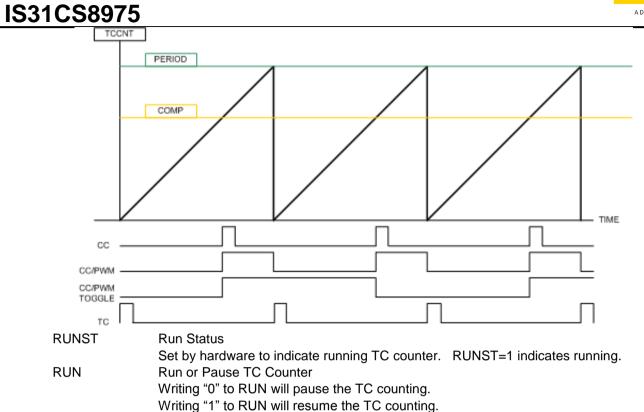



### 6.2.4 <u>CPOL=1 CPHA=1</u>





### 7. <u>Timer with Compare/Capture and Quadrature Encoder</u>


The Timer/Capture unit is based on a 16-bit counter with pre-scalable SYSCLK as counting clock. The count starts from 0 and reload when reach TC (terminal count). TC is met when the count equals period value. Along the counting, the count value is compared with COMP and when it matches, a CC condition is met. Note that both PERIOD and COMP register are double buffered, therefore any new value is updated after the current period ends. TC and CC can be used for triggering interrupt, and also routed to GPIO. The output pulse width of TC and CC is programmable. For CC, it can also be configured as a PWM output. There are two data registers for capture events. The capture event can be from external signals from GPIO (XCAPT) with edge selection option, or from QE block, or triggered by software. The software can also select if to reset the counter or not, this option give simpler calculation of consecutive capture evens without and offset. The following block diagram shows the TCC implementations.



### TCCFG1 (0xA050h) TCC Configuration Register 1 R/W (0x00)

|    | 7                 | 6                                                                                                        | 5                                                                     | 4               | 3    | 2      | 1     | 0          |
|----|-------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|------|--------|-------|------------|
| RD | TCEN              |                                                                                                          | TCCS[2-0]                                                             |                 | CCSE | L[1-0] | TCSEL | RUNST      |
| WR | TCEN              |                                                                                                          | TCCS[2-0]                                                             |                 | CCSE | L[1-0] | TCSEL | RUN        |
|    | TCEN<br>TCCS[2-0] | and CC a<br>TC = 1 e<br>then cou<br>TC Clock<br>000 SV<br>001 SV<br>010 SV<br>011 SV<br>100 SV<br>101 SV | isables TC. In<br>are also set to<br>nable TC. RU<br>nter is in pause | N bit also need |      |        |       |            |
| (  | CCSEL[1-0]        | 00 PV<br>01 PV<br>10 PV                                                                                  |                                                                       |                 |      |        |       | T >= CMP). |
| -  | TCSEL             | TC Outp<br>0 P∖                                                                                          | ut Pulse Selec<br>V = 16 TCCLK<br>V = 64 TCCLK                        | t               |      |        |       |            |





### TCCFG2 (0xA051h) TC Configuration Register 2 R/W (0x00)

|                     |                                                                                                          | -                                                                                                                     | -                                                                                                                                                                                    |                                                    |                |                               |                  |     |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|-------------------------------|------------------|-----|--|--|--|--|--|
|                     | 7                                                                                                        | 6                                                                                                                     | 5                                                                                                                                                                                    | 4                                                  | 3              | 2                             | 1                | 0   |  |  |  |  |  |
| RD                  | -                                                                                                        | IDXST                                                                                                                 | PHAST                                                                                                                                                                                | PHBST                                              | TCPOL          | CCPOL                         | TCF              | CCF |  |  |  |  |  |
| WR                  | RSTTC                                                                                                    | -                                                                                                                     | TCPOL CCPOL TCF CCF                                                                                                                                                                  |                                                    |                |                               |                  |     |  |  |  |  |  |
| <br> <br> <br> <br> | RSTTC<br>PHAST<br>PHBST<br>TCPOL<br>CCPOL<br>TCF                                                         | TC count<br>Index Inp<br>PHA inpu<br>PHB inpu<br>TC outpu<br>CC outpu<br>Terminal<br>TCF is se<br>software<br>Compare | STTC "1" will<br>er is put in ST<br>put real-time sta<br>at real-time sta<br>at real-time sta<br>at polarity<br>at polarity<br>Count Interrup<br>et to "1" by har<br>by writing "0". | tus<br>tus<br>ot Flag<br>dware when ter<br>pt Flag | resume countir | ng, RUN bit m<br>ccurs. TCF m | oust be set by s | by  |  |  |  |  |  |
| TOOLOG              | CCF is set to "1" by hardware when compare match occurs. CCF must be cleared by software by writing "0". |                                                                                                                       |                                                                                                                                                                                      |                                                    |                |                               |                  |     |  |  |  |  |  |

### TCCFG3 (0xA052h) TC Configuration Register 3 R/W (0x00)

|   | 7                                 | 6                                      | 5                                                                                          | 4                                                 | 3                | 2     | 1               | 0          |  |  |  |  |
|---|-----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-------|-----------------|------------|--|--|--|--|
| R | IENTC                             | IENCC                                  | QECEN                                                                                      | CPTCLR                                            | XCREN            | XCFEN | -               | -          |  |  |  |  |
| W | R IENTC                           | IENCC                                  | IENCC QECEN CPTCLR XCREN XCFEN SWCPTR SWCPTF                                               |                                                   |                  |       |                 |            |  |  |  |  |
|   | IENTC<br>IENCC<br>QECEN<br>CPTCLR | Enable Cle<br>If CPTCLR<br>capture val | ot Enable<br>e Enable<br>use QE outpu<br>ar Counter aft<br>=1, the TCCN<br>ue with identic | er Capture<br>T is cleared to<br>al initial value | 0 0 after each o |       | . This allows o | continuous |  |  |  |  |



| XCREN  | External Rising Edge Capture Enable                                                  |
|--------|--------------------------------------------------------------------------------------|
|        | XCREN=1 use external input rising edge as capture event.                             |
| XCFEN  | External Falling Edge Capture Enable                                                 |
|        | XCFEN=1 use external input falling edge as capture event.                            |
| SWCPTR | Software Capture R                                                                   |
|        | Writing "1" to SWCPTR will generate a capture event and capture the count value into |
|        | TCCPTR register. This bit is cleared by hardware.                                    |
| SWCPTF | Software Capture F                                                                   |
|        | Writing "1" to SWCPTF will generate a capture event and capture the count value into |
|        | TCCPTF register. This bit is cleared by hardware.                                    |

Please note all capture sources are not mutually exclusive, i.e. allow several capture sources can coexist.

### TCPRDL (0xA054h) TC Period Register Low Double Buffer R/W (0x00)

|   |    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|---|----|---|------------|---|---|---|---|---|---|--|--|
| ĺ | RD |   | TCCNT[7-0] |   |   |   |   |   |   |  |  |
|   | WR |   | TCPRD[7-0] |   |   |   |   |   |   |  |  |

### TCPRDH (0xA055h) TC Period Register High Double Buffer R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|
| RD |   | TCCNT15-8]  |   |   |   |   |   |   |  |  |
| WR |   | TCPRD[15-8] |   |   |   |   |   |   |  |  |

Note: Writing of PERIOD register must be done high byte first, then low byte. The writing takes effect at low byte writing. When reading the TCPRD register, it returns the current count value TCCNT[15-0].

### TCCMPL (0xA056h) TC Compare Register Low Double Buffer R/W (0x00)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|------------|---|---|---|---|---|---|--|
| RD |   | TCCMP[7-0] |   |   |   |   |   |   |  |
| WR |   | TCCMP[7-0] |   |   |   |   |   |   |  |

#### TCCMPH (0xA057h) TC Compare Register High Double Buffer R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-------------|---|---|---|---|---|---|--|
| RD |   | TCCMP15-8]  |   |   |   |   |   |   |  |
| WR |   | TCCMP[15-8] |   |   |   |   |   |   |  |

Note: Writing of COMPARE register must be done high byte first, then low byte. The writing takes effect at low byte writing.

#### TCCPTRL (0xA060h) TC Capture Register R Low R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---|-------------|---|---|---|---|---|---|
| RD |   | TCCPTR[7-0] |   |   |   |   |   |   |
| WR |   |             |   |   |   |   |   |   |

#### TCCPTRH (0xA061h) TC Capture Register R High R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-------------|---|---|---|---|---|---|--|
| RD |   | TCCPTR15-8] |   |   |   |   |   |   |  |
| WR |   |             |   | - | • |   |   |   |  |


#### TCCPTFL (0xA062h) TC Capture Register F Low R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-------------|---|---|---|---|---|---|--|
| RD |   | TCCPTF[7-0] |   |   |   |   |   |   |  |
| WR |   | -           |   |   |   |   |   |   |  |



| TCCPTFH (0xA063h) TC Capture Register F High R/W (0x00) |   |              |   |   |   |   |   |   |  |  |
|---------------------------------------------------------|---|--------------|---|---|---|---|---|---|--|--|
|                                                         | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
| RD                                                      |   | TCCPTF[15-8] |   |   |   |   |   |   |  |  |
| WR                                                      |   | -            |   |   |   |   |   |   |  |  |

The quadrature encoder is clocked by a scaled SYSCLK, and has three external inputs through GPIO multifunctions. The three inputs include two signals of 90 degrees phase difference, PHA and PHB, and an index indicating the terminal of the encoder. QE can function as an independent function block and also can be configured to couple with TCC and use TCC to calculate the speed information of the encoder. Using TCC to capture TCC count value using the Index input of QE or terminal count of QE, the speed of QE input can be calculated. The QE unit implementation is shown in the following block diagram.

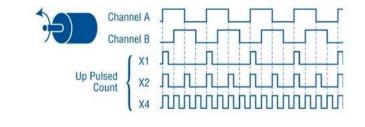


Please QE Counter is in signed integer format, the MSB (Bit 15) indicates the sign, and reload action cause the counter loads a default value of 0x8000. The corresponding maximum count register thus only have 15 valid bits, MSB bit 15 is not used. The reload action is triggered either by external INDEX event or terminal count condition when counter absolute value reaches (equal) to MAXCNT value.

### QECFG1 (0xA070h) TCC Configuration Register 1 R/W (0x00)

|    | 7    | 6       | 5    | 4      | 3    | 2                      | 1 | 0 |
|----|------|---------|------|--------|------|------------------------|---|---|
| RD | QEMO | DE[1-0] | QECS | S[1-0] | SWAP |                        |   |   |
| WR | QEMO | DE[1-0] | QECS | S[1-0] | SWAP | DBCS[2-0]<br>DBCS[2-0] |   |   |

MODE[1-0]


00 – Disable QE

01 – 1X mode

QE Mode

10 – 2X mode

11 – 4X mode



| QECS[1-0] | QE C | lock Scaling |
|-----------|------|--------------|
|           | 00   | SYSCLK/4     |
|           | 01   | SYSCLK/16    |
|           | 10   | SYSCLK/64    |
|           | 11   | SYSCLK/256   |
| SWAP      | Swap | PHA and PHB  |



| DBCS | $\Gamma \cap \cap I$ |
|------|----------------------|
|      |                      |
|      |                      |
|      |                      |

| De-Bo | ounce Clock Scaling             |
|-------|---------------------------------|
| 000   | Disable de-bounce               |
| 001   | SYSCLK/2                        |
| 010   | SYSCLK/4                        |
| 011   | SYSCLK/8                        |
| 100   | SYSCLK/16                       |
| 1/32  | SYSCLK/32                       |
| 1/64  | SYSCLK/64                       |
| 1/128 | SYSCLK/128                      |
| 1/256 | SYSCLK/256                      |
| De-bo | unce time is three DBCS period. |
|       |                                 |

### QECFG2 (0xA071h) QE Configuration Register 2 R/W (0x00)

|    |           | _                                                                                                                                  | _                       |               |                      |                |                 |            |  |  |
|----|-----------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|----------------------|----------------|-----------------|------------|--|--|
|    | 7         | 6                                                                                                                                  | 5                       | 4             | 3                    | 2              | 1               | 0          |  |  |
| RD | DIR       | ERRF                                                                                                                               | RLDN                    | 1[1-0]        | TCF                  | IDXF           | DIRF            | CNTF       |  |  |
| WR | -         | ERRF                                                                                                                               | RLDM[1-0] TCF IDXF DIRF |               |                      |                |                 | CNTF       |  |  |
|    | DIR       | Direction S                                                                                                                        | tatus                   |               |                      |                |                 | •          |  |  |
|    |           | Indicate UP/DOWN direction                                                                                                         |                         |               |                      |                |                 |            |  |  |
| E  | RRF       | Phase Erro                                                                                                                         | r Flab                  |               |                      |                |                 |            |  |  |
|    |           | ERRF is se                                                                                                                         | et to 1 by hard         | ware if PHA a | ind PHB chang        | e value at the | e same time. I  | ERRF must  |  |  |
|    |           |                                                                                                                                    | by software.            |               |                      |                |                 |            |  |  |
| F  | RLDM[1-0] |                                                                                                                                    | r Reload Mod            |               |                      |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         |               | vill count up/do     | wn cycling th  | rough 0x0000    | or 0xFFFF  |  |  |
|    |           |                                                                                                                                    | = 01 Reload u           | 0             |                      |                |                 |            |  |  |
|    |           |                                                                                                                                    | ad QECNT=0              | ,             |                      |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         |               | Index==1 &&          | DOWN           |                 |            |  |  |
|    |           |                                                                                                                                    | = 10 Reload u           | -             |                      |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         | ,             | IT==QEMAX &          |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         |               | QECNT==0 8           |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         | •             | lex and TC eve       |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         | d TC events a | and reload whi       | chever occurs  | s earlier       |            |  |  |
| Т  | ſCF       | TC Event Interrupt Flag                                                                                                            |                         |               |                      |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         |               | ent interrupt ha     | as occurred.   | TCF needs to    | be cleared |  |  |
|    |           | •                                                                                                                                  | e by writing "0"        |               |                      |                |                 |            |  |  |
| I  | DXF       | Index Event Interrupt Flag                                                                                                         |                         |               |                      |                |                 |            |  |  |
|    |           |                                                                                                                                    |                         |               | ex event interru     | pt has occurr  | ed. IDXF need   | ds to be   |  |  |
| -  |           | cleared by software by writing "0".                                                                                                |                         |               |                      |                |                 |            |  |  |
| L  | DIRF      | Direction Change Event Interrupt Flag                                                                                              |                         |               |                      |                |                 |            |  |  |
|    |           | DIRF is set by hardware when a Direction change event interrupt has occurred. DIRF needs to be cleared by software by writing "0". |                         |               |                      |                |                 |            |  |  |
| ~  |           |                                                                                                                                    |                         |               |                      |                |                 |            |  |  |
| C  | CNTF      |                                                                                                                                    | nge Event Inte          |               | a unt als a services |                |                 | ONTE       |  |  |
|    |           |                                                                                                                                    |                         |               | count change e       | vent interrup  | t has occurred. | . UNIF     |  |  |
|    |           | needs to be cleared by software by writing "0".                                                                                    |                         |               |                      |                |                 |            |  |  |

### QECFG3 (0xA072h) QE Configuration Register 3 R/W (0x00)

|                          | 7                                                                                                                                             | 6                                     | 5                                | 4           | 3      | 2     | 1         | 0 |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|-------------|--------|-------|-----------|---|--|--|
| RD                       | IENTC                                                                                                                                         | IENIDX                                | IENDIR                           | IENCNT      | IENERR | IDXEN | IDXM[1-0] |   |  |  |
| WR                       | IENTC                                                                                                                                         | IENIDX                                | IENDIR                           | IENCNT      | IENERR | IDXEN | IDXM[1-0] |   |  |  |
| I                        | IENTC Interrupt Enable for TC<br>TC condition for QE is defined as the following conditions<br>1. QECNT=QEMAX when UP<br>2. QECNT=0 when down |                                       |                                  |             |        |       |           |   |  |  |
| II                       | ENIDX                                                                                                                                         |                                       | Interrupt Enable for Index event |             |        |       |           |   |  |  |
| II                       | ENDIR                                                                                                                                         | Interrupt Enable for Direction Change |                                  |             |        |       |           |   |  |  |
| II                       | ENCNT                                                                                                                                         | Interrupt Er                          | hable for any C                  | QECNT chang | ge     |       |           |   |  |  |
| IDXEN Index Input Enable |                                                                                                                                               |                                       |                                  |             |        |       |           |   |  |  |



|    |             |              | ates out the e          | external INDE   | X input is gate    | ed to 0.    |     |
|----|-------------|--------------|-------------------------|-----------------|--------------------|-------------|-----|
|    |             |              |                         |                 |                    |             |     |
| ID | DXM[1-0]    | Index Matc   | h Selection, t          | his is applicab | ole only for X2    | and X4 mode | es. |
|    |             | 00 = up ph   | ase 00 → 10             | down phase 1    | $0 \rightarrow 00$ |             |     |
|    |             | 01 = up ph   | ase 10 → 11             | down phase 1    | $1 \rightarrow 10$ |             |     |
|    |             |              |                         | •               |                    |             |     |
|    |             | 10 = up pn   | ase 01 $\rightarrow$ 00 | down phase 0    | 10 → 01            |             |     |
|    |             | 11 = up ph   | ase 11 → 01             | down phase 0    | )1 → 11            |             |     |
| Q  | ECNTL (0xA0 | )74h) QE Cou | nter Low R/W            | (0x00)          |                    |             |     |
|    | 7           | 6            | F                       | Λ               | 2                  | 2           | 1   |

|    | 7 | 6 | 5 | 4     | 3        | 2 | 1 | 0 |
|----|---|---|---|-------|----------|---|---|---|
| RD |   |   |   | QECN  | IT[7-0]  |   |   |   |
| WR |   |   |   | QECNT | INI[7-0] |   |   |   |

### QECNTH (0xA075h) QE Counter High R/W (0x00)

|    | 7 | 6 | 5 | 4     | 3         | 2 | 1 | 0 |
|----|---|---|---|-------|-----------|---|---|---|
| RD |   |   |   | QECN  | T[15-8]   |   |   |   |
| WR |   |   |   | QECNT | INI[15-8] |   |   |   |

Reading QECNT will return the current QE counter value. Writing QECNT will set the current count value. Writing QECNT is allowed only when QE is in disabled state.

### QEMAXL (0xA076h) QE Counter Low R/W (0x00)

|    | 7 | 6 | 5 | 4    | 3      | 2 | 1 | 0 |
|----|---|---|---|------|--------|---|---|---|
| RD |   |   |   | QEMA | X[7-0] |   |   |   |
| WR |   |   |   | QEMA | X[7-0] |   |   |   |

### QEMAXH (0xA077h) QE Counter High R/W (0x00)

| -  |   |   |   | -    |         |   |   |   |
|----|---|---|---|------|---------|---|---|---|
|    | 7 | 6 | 5 | 4    | 3       | 2 | 1 | 0 |
| RD |   |   |   | QEMA | X[15-8] |   |   |   |
| WR |   |   |   | QEMA | X[15-8] |   |   |   |

QEMAX hold the maximum count of the QE counter. When QEMAX is reached a TC event is triggered and QE counter is reloaded.



### 8. <u>PWM Controller</u>

PWM controller provides programmable 6 channels 12/10/8 bit PWM center-aligned duty cycle outputs. The counting clock of PWM is programmable and the base frequency of the PWM is just the counting clock divided by 8192/2048/512 for 12/10/8 bit configurations due to center-alignment counting. PWM outputs are multiplexed with GPIO ports.

|    | 7                 | 6                                                                      | 5                                   | 4              | 3       | 2                              | 1               | 0              |  |  |  |
|----|-------------------|------------------------------------------------------------------------|-------------------------------------|----------------|---------|--------------------------------|-----------------|----------------|--|--|--|
| RD | PWMEN             | MODI                                                                   | E[1-0]                              |                | CS[4-0] |                                |                 |                |  |  |  |
| WR | PWMEN             | MODI                                                                   | E[1-0]                              |                |         | CS[4-0]                        |                 |                |  |  |  |
|    | WMEN<br>IODE[1-0] | PWMEN=0<br>PWMEN=1                                                     | allows norma<br>olution Select<br>t | al running ope |         | and all chanr<br>A controller. | nel outputs are | e forced to 0. |  |  |  |
| С  | S[4-0]            | PWM Counting Clock Scaling<br>The counting clock is SYSCLK/(CS[4-0]+1) |                                     |                |         |                                |                 |                |  |  |  |

### PWMCFG2 (0xA081h) PWM Interrupt Enable and Flag Register R/W (0x00)

|                                                                                                                                                                                                                | 7      | 6                                         | 5               | 4              | 3                | 2             | 1              | 0          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|-----------------|----------------|------------------|---------------|----------------|------------|
| RD                                                                                                                                                                                                             | ZTRGEN | CTRGEN                                    | ZINTEN          | CINTEN         | -                | -             | ZINTF          | CINTF      |
| WR                                                                                                                                                                                                             | ZTRGEN | CTRGEN                                    | ZINTEN          | CINTEN         | -                | -             | ZINTF          | CINTF      |
| ZTRGEN       Zero ADC Trigger Enable         CTRGEN       Center ADC Trigger Enable         ZINTEN       Zero Interrupt Enable         ZINTEN=1 allows PWM Controller to generate interrupt when counter is 0. |        |                                           |                 |                |                  |               |                |            |
| C                                                                                                                                                                                                              | CNTEN  | Center Inte                               | rrupt Enable    | J              | generate interro |               |                | nid value. |
| Z                                                                                                                                                                                                              | ZINTF  | Zero Interro<br>ZINTF is se<br>cleared by | et to 1 by hard | ware to indica | ate a Zero inter | rupt has occu | ırred. ZINTF r | nust be    |
| CINTF Center Interrupt Flag<br>CINTF is set to 1 by hardware to indicate a Center interrupt has occurred. CINTF must be<br>cleared by software.                                                                |        |                                           |                 |                |                  |               |                |            |

### PWMCFG3 (0xA082h) PWM Configuration 3 Register R/W (0x00)

|    | 7             | 6                                                                                               | 5                                                                                                            | 4                                                                                | 3                                                                     | 2                                                                    | 1                               | 0                          |  |  |  |  |
|----|---------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|----------------------------|--|--|--|--|
| RD | PRSEN         | SYNC                                                                                            |                                                                                                              | POL[5-0]                                                                         |                                                                       |                                                                      |                                 |                            |  |  |  |  |
| WR | PRSEN         | SYNC                                                                                            |                                                                                                              | POL[5-0]                                                                         |                                                                       |                                                                      |                                 |                            |  |  |  |  |
|    | YRSEN<br>SYNC | PRSEN=1<br>effective wa<br>be affected<br>Channel Sy<br>Writing SYI<br>purpose of<br>hardware a | will enable a<br>ay to reduce<br>cycle by cy<br>nchronize<br>NC=1 will ca<br>this is to syr<br>fter reloadin | EMI for outp<br>cle, but the a<br>use the load<br>ochronize the<br>g is complete | ut. When PRS<br>verage duty cy<br>ng of duty regi<br>timing of all th | SEN=1, the ins<br>cele remains th<br>ister on the ne<br>ne PWM chann | extcount=0 eve<br>nels. SYNC is | uty cycle will<br>ent. The |  |  |  |  |
| Р  | POL[5-0]      | Channel Po                                                                                      | larity Contro                                                                                                | ol                                                                               | OL[J]=1 for rev                                                       |                                                                      |                                 |                            |  |  |  |  |
| Т  | here are 6 PV | VMDTY registe                                                                                   | ers to define                                                                                                | the duty cyc                                                                     | e of each PW                                                          | M channel. If                                                        | PWMDTY = 0                      | , the output is            |  |  |  |  |

There are 6 PWMDTY registers to define the duty cycle of each PWM channel. If PWMDTY = 0, the output is 0. If PWMDTY = full, the output duty cycle is maximum to (period - 1)/period. PWMDTY is always double buffered



and is loaded to duty cycle comparator when the SYNC bit is set and current counting cycle is completed. For 8-bit, only the PWMDTY[7-0] is used, and for 10-bit, PWMDTY[9-0] is used, and for 12-bit PWMDTY[11-0] is used. Please note if PWMEN=0 (PWM is disabled), then writing to PWMDTY register is immediate.

### PWM0DTYL (0xA084h) PWM0 Duty Register L R/W (0x00)

|    | 7 | 6 | 5 | 4     | 3       | 2 | 1 | 0 |
|----|---|---|---|-------|---------|---|---|---|
| RD |   |   |   | PWM0D | TY[7-0] |   |   |   |
| WR |   |   |   | PWM0D | TY[7-0] |   |   |   |

### PWM0DTYH (0xA085h) PWM0 Duty Register H R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3 | 2     | 1        | 0 |
|----|---|---|---|---|---|-------|----------|---|
| RD | - | - | - | - |   | PWM0D | TY[11-8] |   |
| WR | - | - | - | - |   | PWM0D | TY[11-8] |   |

### PWM1DTYL (0xA086h) PWM1 Duty Register L R/W (0x00)

|    | 7 | 6 | 5 | 4     | 3        | 2 | 1 | 0 |
|----|---|---|---|-------|----------|---|---|---|
| RD |   |   |   | PWM1D | DTY[7-0] |   |   |   |
| WR |   |   |   | PWM1D | DTY[7-0] |   |   |   |

### PWM1DTYH (0xA087h) PWM1 Duty Register H R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3             | 2 | 1 | 0 |
|----|---|---|---|---|---------------|---|---|---|
| RD | - | - | - | - | PWM1DTY[11-8] |   |   |   |
| WR | - | - | - | - | PWM1DTY[11-8] |   |   |   |

### PWM2DTYL (0xA088h) PWM2 Duty Register L R/W (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|
| RD |   | PWM2DTY[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PWM2DTY[7-0] |   |   |   |   |   |   |  |  |

### PWM2DTYH (0xA089h) PWM2 Duty Register H R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3             | 2 | 1 | 0 |
|----|---|---|---|---|---------------|---|---|---|
| RD | - | - | - | - | PWM2DTY[11-8] |   |   |   |
| WR | - | - | - | - | PWM2DTY[11-8] |   |   |   |

### PWM3DTYL (0xA08Ah) PWM3 Duty Register L R/W (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|
| RD |   | PWM3DTY[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PWM3DTY[7-0] |   |   |   |   |   |   |  |  |

### PWM3DTYH (0xA08Bh) PWM3 Duty Register H R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3             | 2 | 1 | 0 |
|----|---|---|---|---|---------------|---|---|---|
| RD | - | - | - | - | PWM3DTY[11-8] |   |   |   |
| WR | - | - | - | - | PWM3DTY[11-8] |   |   |   |

### PWM4DTYL (0xA08Ch) PWM3 Duty Register L R/W (0x00)

|    | 7            | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|--------------|--------------|---|---|---|---|---|---|--|--|
| RD |              | PWM4DTY[7-0] |   |   |   |   |   |   |  |  |
| WR | PWM4DTY[7-0] |              |   |   |   |   |   |   |  |  |

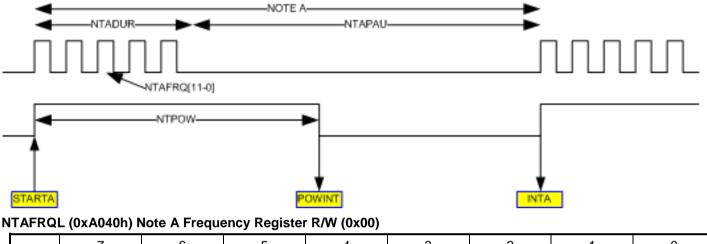


IS31CS8975 PWM4DTYH (0xA08Dh) PWM3 Duty Register H R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3             | 2 | 1 | 0 |
|----|---|---|---|---|---------------|---|---|---|
| RD | - | - | - | - | PWM4DTY[11-8] |   |   |   |
| WR | - | - | - | - | PWM4DTY[11-8] |   |   |   |

### PWM5DTYL (0xA08Eh) PWM5 Duty Register LR/W (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|--------------|---|---|---|---|---|---|--|--|
| RD |   | PWM5DTY[7-0] |   |   |   |   |   |   |  |  |
| WR |   | PWM5DTY[7-0] |   |   |   |   |   |   |  |  |


### PWM5DTYH (0xA08Fh) PWM5 Duty Register H R/W (0x00)

|    | 7 | 6 | 5 | 4 | 3             | 2 | 1 | 0 |
|----|---|---|---|---|---------------|---|---|---|
| RD | - | - | - | - | PWM5DTY[11-8] |   |   |   |
| WR | - | - | - | - | PWM5DTY[11-8] |   |   |   |



### 9. Buzzer and Melody Controller

The buzzer and melody controller can be used to generate simple buzzer sound or single tone melody. It contains a two note Ping-Pong buffers, each with programmable tone frequency, and duration/pause timer. The tone frequency is derived from SYSCLK divided by either 32 or 64, and the tone frequency is generated with resolution of 12-bit to support precision tone generation with wide octave span. The duration/pause timers can be programmed in 1ms/2ms/4ms/8ms steps. The two notes can be played sequentially once, or can be played as Ping-Pong styles for melody. A POW (Power On Width) timer is also included with same time steps, POW timer can be used to generate external power control of the buzzer element. POW timer is started when either note A or B is started.



|    | 7 | 6           | 5 | 4     | 3       | 2 | 1 | 0 |  |  |
|----|---|-------------|---|-------|---------|---|---|---|--|--|
| RD |   | NTAFRQ[7-0] |   |       |         |   |   |   |  |  |
| WR |   |             |   | NTAFF | RQ[7-0] |   |   |   |  |  |

### NTAFRQH (0xA041h) Note A Frequency Register R/W (0x00)

|    | 7 | 6 | 5 | 4            | 3 | 2 | 1 | 0 |
|----|---|---|---|--------------|---|---|---|---|
| RD |   |   |   | NTAFRQ[11-8] |   |   |   |   |
| WR |   |   |   | NTAFRQ[11-8] |   |   |   |   |

Tone frequency is SYSCLK/(32 or 64)/(NTAFRQ[11-0]+1).

### NTADUR (0xA042h) Note A Duration Register R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|-------------|---|---|---|---|---|---|--|--|
| RD |   | NTADUR[7-0] |   |   |   |   |   |   |  |  |
| WR |   | NTADUR[7-0] |   |   |   |   |   |   |  |  |

Tone duration is TU \* NTADUR[7-0]

### NTAPAU (0xA043h) Note A Pause Register R/W (0x00)

|    | 7 | 6           | 5 | 4    | 3       | 2 | 1 | 0 |  |
|----|---|-------------|---|------|---------|---|---|---|--|
| RD |   | NTAPAU[7-0] |   |      |         |   |   |   |  |
| WR |   |             |   | NTAP | \U[7-0] |   |   |   |  |

Tone pause is TU \* NTAPAU[7-0]

### NTBFRQL (0xA044h) Note B Frequency Register R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-------------|---|---|---|---|---|---|--|
| RD |   | NTBFRQ[7-0] |   |   |   |   |   |   |  |
| WR |   | NTBFRQ[7-0] |   |   |   |   |   |   |  |



| NTBFRQ | H (0xA045h) N | Note B Frequ  | ency Registe  | r R/W (0x00) |              |   |   |   |  |  |
|--------|---------------|---------------|---------------|--------------|--------------|---|---|---|--|--|
|        | 7             | 6             | 5             | 4            | 3            | 2 | 1 | 0 |  |  |
| RD     |               |               | -             |              | NTBFRQ[11-8] |   |   |   |  |  |
| WR     | -             | -             | -             |              | NTBFRQ[11-8] |   |   |   |  |  |
| NTBDUR | (0xA046h) No  | ote B Duratio | n Register R/ | W (0x00)     |              |   |   |   |  |  |
|        | 7             | 6             | 5             | 4            | 3            | 2 | 1 | 0 |  |  |
| RD     |               |               |               | NTBD         | UR[7-0]      |   |   |   |  |  |
| WR     |               |               |               | NTBD         | UR[7-0]      |   |   |   |  |  |
| NTBPAU | (0xA047h) No  | ote B Pause F | Register R/W  | (0x00)       |              |   |   |   |  |  |
|        | 7             | 6             | 5             | 4            | 3            | 2 | 1 | 0 |  |  |
| RD     |               |               |               | NTBP         | AU[7-0]      |   |   |   |  |  |
| WR     | NTBPAU[7-0]   |               |               |              |              |   |   |   |  |  |

### NTPOW (0xA049h) Note Power On Window Register R/W (0x00)

|    | 7 | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|-------------|---|---|---|---|---|---|--|
| RD |   | NTPOW [7-0] |   |   |   |   |   |   |  |
| WR |   | NTPOW [7-0] |   |   |   |   |   |   |  |

NTPOW defines a timer after either STARTA or STARTB. It uses the same time unit as duration and pause. When the timer expires, it generates an interrupt by setting INTFP bit.

### NTTU (0xA04Ah) Note Time Unit Register R/W (0x00)

|    | 7   | 6    | 5 | 4     | 3 | 2 | 1       | 0     |
|----|-----|------|---|-------|---|---|---------|-------|
| RD | TU[ | 1-0] | - | TBASE | - | - | INTEPOW | INTFP |
| WR |     |      | - | TBASE | - | - | INTEPOW | INTFP |

| τu | [1-0] | 1 |
|----|-------|---|
| 10 |       |   |

Time Unit

TU[1-0] defines the time unit for duration and pause, and POW timer. This is derived from SOSC 128KHz and not dependent on tone frequency setting. 00 = 1msec 01 = 2msec

| 10 = 4msec |  |
|------------|--|
|------------|--|

11 = 8msec

TBASE Tone Base Frequency Select

TBASE=0 uses SYSCLK/32 as base

TBASE=1 uses SYSCLK/64 as base

INTEPOW POW Timer Interrupt Enable

INTFP POW Interrupt Flag

INTFP is set by hardware when POW timer expires. It must be cleared by software.

### BZCFG (0xA048h) Buzzer Configure Register R/W (0x00)

|      | 7    | 6          | 5           | 4      | 3     | 2     | 1      | 0      |
|------|------|------------|-------------|--------|-------|-------|--------|--------|
| RD   | BZEN | BZPOL      | INTENB      | INTENA | INTFB | INTFA | BUSYB  | BUSYA  |
| WR   | BZEN | BZPOL      | INTENB      | INTENA | INTFB | INTFA | STARTB | STARTA |
| BZEN |      | Buzzer Cor | trol Enable |        |       |       |        |        |

BZEN=1 enables the buzzer controller

BZEN=0 disables the buzzer controller

BZPOL BZOUT Polarity Setting

- BZPOL=1, BZOUT is inverted
- BZPOL=0, normal polarity

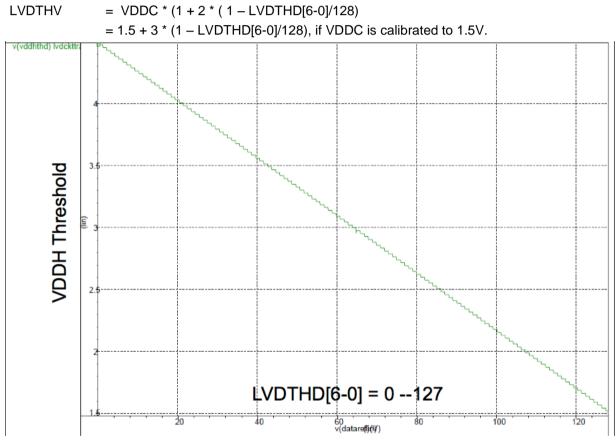
| INTENB Note B End Interrupt Enabl |
|-----------------------------------|
|-----------------------------------|



|                  | INTENB=1 enables the note B end interrupt. The interrupt is triggered when note B playing completed. |
|------------------|------------------------------------------------------------------------------------------------------|
| INTENA           | Note A End Interrupt Enable                                                                          |
|                  | INTENA =1 enables the note A end interrupt. The interrupt is triggered when note A playing           |
|                  | completed.                                                                                           |
| INTFB            | Note B End Interrupt Flag                                                                            |
|                  | INTFB is set to 1 by hardware if INTENB=1 and Note B playing end. INTFB needs to be                  |
|                  | cleared by software writing 0.                                                                       |
| INTFA            | Note A End Interrupt Flag                                                                            |
|                  | INTFA is set to 1 by hardware if INTENA=1 and Note A playing end. INTFA needs to be                  |
|                  | cleared by software writing 0.                                                                       |
| STARTB           | Note B Start Command                                                                                 |
|                  | Writing STARTB=1 initiate a session output on the buzzer. Writing 0 to STARTB has no                 |
|                  | effect.                                                                                              |
|                  | STARTB is self-cleared when the note is completed.                                                   |
| STARTA           | Note A Start Command                                                                                 |
|                  | Writing STARTA=1 initiate a session output on the buzzer. Writing 0 to STARTA has no effect.         |
|                  | STARTA is self-cleared when the note is completed.                                                   |
| *** Noto if STAP | TA and STARTA is self-cleared when the note is completed.                                            |
|                  | Software can do this for simple two notes melody.                                                    |
| BUSYB            | Note B is playing busy Status                                                                        |
| DOOTD            | BUSYB is set to 1 by hardware when the output is active playing note B.                              |
| BUSYA            | Note A is playing busy Status                                                                        |
|                  | BUSYA is set to 1 by hardware when the output is active playing note A.                              |
|                  |                                                                                                      |



### 10. Core Regulator and Low Voltage Detection


An on-chip serial regulator converts VDD into VDDC for internal circuit supply voltage. Typical value for VDDC is 1.5V at normal mode. In sleep mode, a backup regulator with typical value of 1.3V supplies VDDC. The VDDC can be trimmed and calibrated trim value for 1.5V is stored in IFB by the manufacture test.

### REGTRM (0xA000h) Regulator Trim Register R/W (0x80) TB protected

|    | 7           | 6 | 5 | 4    | 3       | 2 | 1 | 0 |
|----|-------------|---|---|------|---------|---|---|---|
| RD | REGTRM[7-0] |   |   |      |         |   |   |   |
| WR |             |   |   | REGT | RM[7-0] |   |   |   |

### 10.1 Supply Low Voltage Detection (LVD)

The supply Low Voltage Detection (LVD) circuit detects VDD < VTH condition and can be used to generates an interrupt or reset condition. LVD defaults to disabled state to save power. An enabled LVD circuit consumes about 100uA to 200uA. The LVDTHD[6-0] sets the compare threshold according to the following equation when LVDTHV is the detection voltage.



### LVDCFG (0xA010h) Supply Low Voltage Detection Configuration Register R/W (0x08) TB Protected

|    |                                              | 11.7                                                                              | 0                                                                                    |                                                                                                                            |                                                      | . ,                                                  |                                                                                                                 |                     |
|----|----------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|
|    | 7                                            | 6                                                                                 | 5                                                                                    | 4                                                                                                                          | 3                                                    | 2                                                    | 1                                                                                                               | 0                   |
| RD | LVDEN                                        | LVREN                                                                             | LVTEN                                                                                | LVDFLTEN                                                                                                                   | -                                                    | -                                                    | -                                                                                                               | LVTIF               |
| WR | LVDEN                                        | LVREN                                                                             | LVTEN                                                                                | LVDFLTEN                                                                                                                   | -                                                    | -                                                    | -                                                                                                               | LVTIF               |
| L  | .VDEN<br>.VREN<br>.VTEN<br>.VDFLTEN<br>.VTIF | LVR Enable<br>LVT Enable<br>LVD Filter E<br>LVDFLTEN<br>around 30u<br>Low Voltage | e bit. LVREN =<br>bit. LVTEN =<br>Enable<br>= 1 enables a<br>sec.<br>e Detect Intern | rn on supply vo<br>= 1 allows low<br>= 1 allows low v<br>a noise filter or<br>a noise filter or<br>upt Flag<br>when LVD de | voltage detect<br>voltage detect<br>in the supply de | condition to c<br>condition to g<br>etection circuit | enerate an intension of the second | errupt.<br>s set at |



LVDTHD (0xA011h) Supply Low Voltage Detection Threshold Register R/W (0bx1111111) TB Protected

|    | 7 | 6       | 5       | 4       | 3       | 2       | 1       | 0       |
|----|---|---------|---------|---------|---------|---------|---------|---------|
| RD | - | LVDTHD6 | LVDTHD5 | LVDTHD4 | LVDTHD3 | LVDTHD2 | LVDTHD1 | LVDTHD0 |
| WR | - | LVDTHD6 | LVDTHD5 | LVDTHD4 | LVDTHD3 | LVDTHD2 | LVDTHD1 | LVDTHD0 |

LVDTHD = 0x00 will set the detection threshold at its maximum, and LVDTHD = 0x7F will set the detection threshold at its minimum.

### LVDHYS (0xA012h) Supply Low Voltage Detection Threshold Hysteresis Register R/W (0x00) TB Protected

|    | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |
|----|---------|---------|---------|---------|---------|---------|---------|---------|
| RD | LVDHYEN | LVDHYS6 | LVDHYS5 | LVDHYS4 | LVDHYS3 | LVDHYS2 | LVDHYS1 | LVDHYS0 |
| WR | LVDHYEN | LVDHYS6 | LVDHYS5 | LVDHYS4 | LVDHYS3 | LVDHYS2 | LVDHYS1 | LVDHYS0 |

To ensure a solid Low Voltage detection, a digital controlled hysteresis is used. If LVDHYEN=1, when LVD is asserted a new threshold defined by LVDHYS[6-0] replaces LVDTHD[6-0]. In typical applications, LVDHYS[6-0] should be set to be smaller than LVDTHD[6-0] such that recovery voltage is higher than detection voltage.



### 11. IOSC and SIOC

### 11.1 IOSC 16MHz/32MHz

An on-chip 16MHz/32MHz Oscillator with low temperature coefficient provides the system clock to the CPU and other logic. IOSC uses VDD15 as supply and can be calibrated and trimmed. The accuracy of the frequency is +/- 2% within the operating conditions. This oscillator is stopped and enters into stand-by mode when CPU is in STOP/SLEEP mode and resumes oscillation when CPU wakes up.

### IOSCITRM (0xA001h) IOSC Coarse Trim Register R/W (0x01) TB Protected

|                                                                                                                                                                                                           | 7                                                                                                                   | 6                           | 5 | 4 | 3 | 2     | 1    | 0         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|---|---|---|-------|------|-----------|--|
| RD                                                                                                                                                                                                        |                                                                                                                     | SSC[3-0]                    |   |   |   | [1-0] | ITRM | ITRM[1-0] |  |
| WR                                                                                                                                                                                                        |                                                                                                                     | SSC[3-0] SSA[1-0] ITRM[1-0] |   |   |   |       |      |           |  |
| S                                                                                                                                                                                                         | SSC[3-0] SSC[3-0] defines the spread spectrum sweep rate. If SSC[3-0] = 0000, then the spread spectrum is disabled. |                             |   |   |   |       |      |           |  |
| SSA[1-0] SSA[1-0] defines the amplitude of spread spectrum frequency change. The frequency is changed by adding SSA[1-0] range to actual IOSCVTRM[7-0].<br>SSA[1-0] = 11, +/- 32<br>SSA[1-0] = 10, +/- 16 |                                                                                                                     |                             |   |   |   |       |      |           |  |

### SSA[1-0] = 01, +/- 8 SSA[1-0] = 00, +/- 4

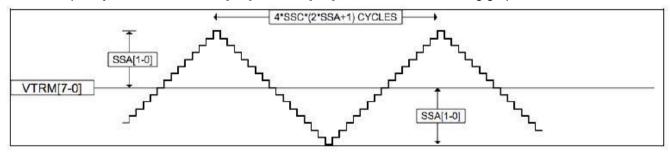
ITRM[1-0] ITRM[1-0] is the coarse trimming of the IOSC.

### IOSCVTRM (0xA002h) IOSC Fine Trim Register R/W (0x80) TB Protected

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | IOSCVTRM[7-0] |   |   |   |   |   |   |  |  |
| WR |   | IOSCVTRM[7-0] |   |   |   |   |   |   |  |  |

This register provides fine trimming of the IOSC frequency. The higher the value of IOSCVTRM, the lower the frequency is.

The manufacturer trim value is stored in IFB and is trimmed to 16MHz. The user program provides the freedom to set the IOSC at a preferred frequency as long as the program is able to calibrate the frequency. Once set, the IOSC frequency has accuracy deviation within +/- 2% over the operation conditions. The following lists the range of the typical IOSC frequency for each trimming setting.


ITRM[1:0]=2'b11, IOSC=27.4-36.8MHz

ITRM[1:0]=2'b10, IOSC=25.5-34.3MHz

ITRM[1:0]=2'b01, IOSC=14.1-19.2MHz

ITRM[1:0]=2'b00, IOSC=12.2-16.5MHz

A hardware Spread Spectrum can be enabled for the IOSC. This is controlled by SSC[3-0]. When SSC[3-0] = 0, the spread spectrum is disabled, and IOSC functions normally as a fixed frequency oscillator. If SSC[3-0] is not 0, then Spread Spectrum is enabled and IOSC frequency is swept according to the setting of SSC[3-0] and SSA[1-0]. The spread is achieved by varying the actual VTRM output to the oscillator circuit thus effectively changes the oscillation frequency. The effect of SSC[3-0] and SSA[1-0] is shown in the following graph.



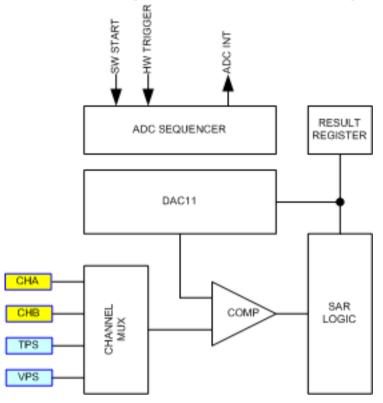
When Spread Spectrum is enabled, the actual controlling output to IOSC is VTRM[7-0] +/- SSA. This is shown in the graph above as the bold curve. The above example shows SSA[1:0] = 01, and the deviation is +/- 8. SSC[3-0] defines the update time in IOSC cycles. Then we can calculate the period of a complete sweep is 4\*SSC\*(2SSA+1) IOSC cycles, and we can obtain the sweep frequency from this period. When SS is enabled, the frequency of IOSC varies according to time and setting, therefore, the accuracy of IOSC frequency cannot be



guaranteed. Please also note that VTRMOUT is VTRM[7-0] +/- SSA but is bounded by 0 and 255. Therefore for a linear non-clipped sweep, VTRM[7-0] needs to be within the range of SSA – 256-SSA, for example, SSA[10] = 01, then SSA is 8. VTRM[7-0] should be in the range from 8 to 248 to prevent the sweep from being clipped. As Spread Spectrum suggests, the total EMI energy is not reduced, but the energy is spread over wider frequency. It is recommended that SS usage should be carefully evaluated and the setting of spread amplitude and the sweep frequency should be chosen carefully for reducing EMI effect.

### 11.2 SOSC 128KHz

An ultralow power slow oscillator of 128KHz is also included. SOSC consume less than 0.5uA from VDDC and is always enabled. The system uses SOSC/4 = 32KHz for system clock, and for wake-up timer T5, and WDT2/WDT3. SOSC is not very accurate and varies chip to chip, but it is relatively supply and temperature stable. Therefore software can use IOSC to calibrate SOSC through SOCTRM[4-0]. Default design characteristics shows when SOICTRM=5b'1\_1111/SOSC = 158KHz, 5b'1\_0000/SOSC=126KHz, 5b'0\_0000/SOSC=105KHz.


### SOSCTRM (0xA007h) SOSC Trim Register R/W (0x10) TB Protected

|    | 7 | 6 | 5 | 4            | 3 | 2 | 1 | 0 |  |  |
|----|---|---|---|--------------|---|---|---|---|--|--|
| RD | - |   |   | SOSCTRM[4-0] |   |   |   |   |  |  |
| WR | - | - |   | SOSCTRM[4-0] |   |   |   |   |  |  |



### 12. <u>11-Bit SAR ADC (ADC)</u>

The on-chip ADC is an 11-bit SAR based ADC with maximum ADC clock rate of 4MHz (2.5V – 5V) or 500KHz (1.8V – 2.4V). The ADC uses VDDC (1.5V typical) as full-scale reference. Typical ADC accuracy is about 9.5 bit to 10 Bit to at 1.5V reference with input range between 0.2V to 1.5. The ADC has four intrinsic channels. CHA and CHB are further connected to GPIO's analog I/O switches to expand multiplexed inputs. TPS is connected to internal temperature sensor (a diode-connected NPN) with negative temperature coefficient. VPS is 1/5<sup>th</sup> of VDDH. When enabled, the ADC consumes about 1mA of current. The ADC also includes hardware to perform result average. Average can be set to 1 to 8 times. The block diagram of ADC is shown in the following.



### ADCCFG (0xA9h) ADC Configuration Register R/W (0x00)

|                                                                                                    |          | _          | _              |                 |                |                  |                 |            |  |  |  |
|----------------------------------------------------------------------------------------------------|----------|------------|----------------|-----------------|----------------|------------------|-----------------|------------|--|--|--|
|                                                                                                    | 7        | 6          | 5              | 4               | 3              | 2                | 1               | 0          |  |  |  |
| RD                                                                                                 | ADCEN    | ADCINTE    | ADCFM          | -               | -              |                  | PRE[2-0]        |            |  |  |  |
| WR                                                                                                 | ADCEN    | ADCINTE    | ADCFM          | -               | -              |                  | PRE[2-0]        |            |  |  |  |
|                                                                                                    | ADCEN    | ADC Enab   | ole bit        |                 |                |                  |                 |            |  |  |  |
|                                                                                                    |          | ADCEN=1    | enables ADC    | ).              |                |                  |                 |            |  |  |  |
|                                                                                                    |          |            | •              | o power down    |                |                  |                 |            |  |  |  |
|                                                                                                    |          |            |                | m 0 to 1, the p |                |                  | st 20us to allo | W          |  |  |  |
| analog bias to stabilize to ensure ADC's proper functionality.<br>ADCINTE ADC Interrupt Enable bit |          |            |                |                 |                |                  |                 |            |  |  |  |
| ADCINTE ADC Interrupt Enable bit<br>ADCINTE=1 enables the ADC interrupt when conversion completes. |          |            |                |                 |                |                  |                 |            |  |  |  |
|                                                                                                    |          |            |                | e ADC interru   |                | rsion complet    | es.             |            |  |  |  |
|                                                                                                    | ADCFM    |            | It Format Cor  |                 | pi             |                  |                 |            |  |  |  |
|                                                                                                    |          |            |                | esult as MSB j  | iustified ADC  | AH contains th   | e MSB bits of   | the result |  |  |  |
|                                                                                                    |          |            |                | SB results and  |                |                  |                 |            |  |  |  |
|                                                                                                    |          | ADCFM =    | 0 sets ADC re  | esult as LSB ju | ustified. ADCA | H[7-3] is filled | with 0000. Al   | DCAH[2-0]  |  |  |  |
|                                                                                                    |          | contains M | ISB result. AD | OCAL contains   | the LSB resu   | lts.             |                 |            |  |  |  |
|                                                                                                    | PRE[2-0] | ADC Clock  | < Divider      |                 |                |                  |                 |            |  |  |  |
| PRE[2-0] ADC CLOCK                                                                                 |          |            |                |                 |                |                  |                 |            |  |  |  |
| 0 SYSCLK/2                                                                                         |          |            |                |                 |                |                  |                 |            |  |  |  |
|                                                                                                    |          | 1          |                | SYSCI           | _K/4           |                  |                 |            |  |  |  |
|                                                                                                    |          |            |                |                 |                |                  |                 |            |  |  |  |



| 2 | SYSCLK/8   |  |  |  |
|---|------------|--|--|--|
| 3 | SYSCLK/16  |  |  |  |
| 4 | SYSCLK/32  |  |  |  |
| 5 | SYSCLK/64  |  |  |  |
| 6 | SYSCLK/128 |  |  |  |
| 7 | SYSCLK/256 |  |  |  |

### ADCCTL (0xCEh) ADC Control Register R/W (0x00)

|   |    | 7   | 6     | 5          | 4 | 3 | 2 | 1     | 0      |
|---|----|-----|-------|------------|---|---|---|-------|--------|
| R | D  | AVG | [1-0] | CHSEL[1-0] |   | - |   | ADCIF | CSTART |
| W | /R | AVG | [1-0] | CHSEL[1-0] |   | - |   | -     | CSTART |

AVG[1-0] AVG[2-0] controls the hardware averaging logic of ADC readout. It is recommended the setting is changed only when ADC is stopped. If multiple channels are enabled, then each channel is averaged in sequence. The default is 00.

| AVG1 | AVG0 | ADC Result      |
|------|------|-----------------|
| 0    | 0    | 1 Times Average |
| 0    | 1    | 2 Times Average |
| 1    | 0    | 4 Times Average |
| 1    | 1    | 8 Times Average |

CHSEL[1-0]

| ADC Channe | l Select |             |
|------------|----------|-------------|
| CHSEL[1]   | CHSEL[0] | ADC Channel |
| 0          | 0        | СНА         |
| 0          | 1        | СНВ         |
| 1          | 0        | Temperature |
| 1          | 1        | 1/5 VDD     |
|            |          |             |

ADCIF

ADC Conversion Completion Interrupt Flag bit

ADCIF is set by hardware when the conversion is completed and new result is written to ADCL and ADCH result registers. If ADC interrupt is enabled, this also generates an interrupt. This bit is cleared when ADCL is read. When this flag is set, no new conversion result is updated.

### CSTART Software Start Conversion bit

Set this CSTART=1 to trigger an ADC conversion on selected channels. This bit is selfcleared when the conversion is done.

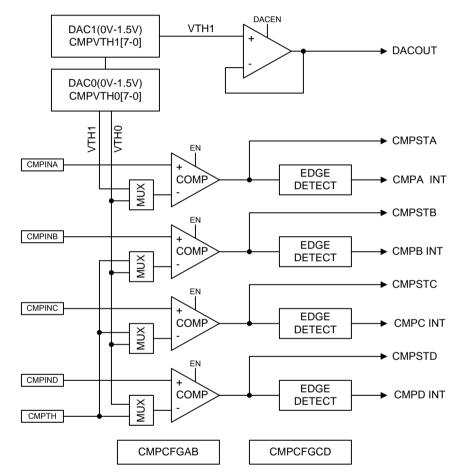
ADCH and ADCL are the high and low byte result registers respectively, and are read-only. Reading low byte result also clears its corresponding interrupt flag. If the flag is not cleared, no new result is updated. The software should always read the low byte last. The format of the high byte and low byte depends on ADCFM setting.

If ADCFM = 1, the valid ADC Result is located on ADCH[7-0] and ADCL[3-0]. If ADCFM = 0, the valid ADC Result is located on ADCH[3-0] and ADCL[7-0].

### ADCL (0xBAh) ADC Result Register Low Byte RO (0xXX)

|    | 7         | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|-----------|---|---|---|---|---|---|---|
| RD | ADCL[7-0] |   |   |   |   |   |   |   |
| WR |           |   |   |   | - |   |   |   |

### ADCH (0xBBh) ADC Result Register High Byte RO (0xXX)


|    | 7         | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|-----------|---|---|---|---|---|---|---|
| RD | ADCH[7-0] |   |   |   |   |   |   |   |
| WR | -         |   |   |   |   |   |   |   |



### 13. Analog Comparators (ACMP) and 8-bit DAC

There are four analog comparators as its on-chip external peripherals. When enabled, each comparator consumes about 250uA. The input signal range is from 0 to VDD. There are two 8-bit R-2R DAC associated with the comparators to generate the compare threshold. The R-2R DAC uses the internal 1.5V supply as the full-scale range thus limiting the comparator threshold from 0V to 1.5V in 256 steps. Comparator A can select either VTH0 or VTH1 as the threshold. Comparator B/C/D can also select between VTH0 and external threshold. VTH1 is also sent to a unity gain buffer for use an DAC output. The buffer can supply or sink up to 150uA. Individual comparator when enabled consumes about 80uA/each, and the unity gain buffer consumes about 400uA/800uA under 3V/5V supply conditions.

The CPU can read the real-time outputs of the comparator directly through register access. The output is also sent to an edge-detector and any edge transition can be used to trigger an interrupt. The stabilization time from off state to enabled state of the comparator block is about 20usec. The block diagram of the analog comparator is shown in the following diagram.



### CMPCFGAB (0xA038h) Analog Comparator A/B Configuration Register R/W (0x00)

|    | 7                                                                                                                                                                                                                            | 6         | 5             | 4              | 3        | 2      | 1      | 0    |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|----------------|----------|--------|--------|------|--|--|
| RD | CMPENA                                                                                                                                                                                                                       | THSELA    | INTENA        | POLA           | CMPENB   | THSELB | INTENB | POLB |  |  |
| WR | CMPENA                                                                                                                                                                                                                       | THSELA    | INTENA        | POLA           | CMPENB   | THSELB | INTENB | POLB |  |  |
|    | CMPENA Comparator A Enable bit. Set to enable the comparator.<br>When CMPENA is set from 0 to 1, the program needs to wait at least 20us allowing<br>analog bias to stabilize to ensure comparator A's proper functionality. |           |               |                |          |        |        |      |  |  |
|    | THSELA Comparator A Threshold Select bit. THSELA = 0, the comparator A uses VTH0 as the threshold. THSELA = 1, the comparator A uses VTH1 as the threshold.                                                                  |           |               |                |          |        |        |      |  |  |
|    | INTENA                                                                                                                                                                                                                       | Set to er | hable the com | parator A's in | terrupt. |        |        |      |  |  |
|    | POLA Channel A Output polarity control bit<br>POLA=0 set default polarity<br>POLA=1 reverse the output polarity of the comparator                                                                                            |           |               |                |          |        |        |      |  |  |
|    | CMPENB Comparator B Enable bit. Set to enable the comparator.                                                                                                                                                                |           |               |                |          |        |        |      |  |  |



|        | When CMPENB is set from 0 to 1, the program needs to wait at least 20us allowing analog bias to stabilize to ensure comparator B's proper functionality. |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| THSELB | Comparator B Threshold Select Bit. THSELB = 0, the comparator B uses VTH0 as the threshold. THSELB = 1, the comparator B uses external threshold.        |
| INTENB | Set to enable the comparator B's interrupt.                                                                                                              |
| POLB   | Channel B Output polarity control bit                                                                                                                    |
|        | POLB=0 set default polarity                                                                                                                              |
|        | POLB=1 reverse the output polarity of the comparator                                                                                                     |

### CMPCFGCD (0xA039h) Analog Comparator C/D Configuration Register R/W (0X00)

| -                                                                                                                                                        |                                                                                                                                                                         |                                                                                                                                                          |             |                |                                                  |                 |        |             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------------------------------------------------|-----------------|--------|-------------|--|--|--|
|                                                                                                                                                          | 7                                                                                                                                                                       | 6                                                                                                                                                        | 5           | 4              | 3                                                | 2               | 1      | 0           |  |  |  |
| RD                                                                                                                                                       | CMPENC                                                                                                                                                                  | THSELC                                                                                                                                                   | INTENC      | POLC           | CMPEND                                           | THSELD          | INTEND | POLD        |  |  |  |
| WR                                                                                                                                                       | CMPENC                                                                                                                                                                  | THSELC                                                                                                                                                   | INTENC      | POLC           | CMPEND                                           | THSELD          | INTEND | POLD        |  |  |  |
|                                                                                                                                                          | CMPENC                                                                                                                                                                  | When CMPENC is set from 0 to 1, the program needs to wait at least 20us to allow analog bias to stabilize to ensure comparator C's proper functionality. |             |                |                                                  |                 |        |             |  |  |  |
| THSELC Comparator C Threshold Select Bit. THSELC = 0, the comparator C uses VTH0 as the threshold. THSELC = 1, the comparator C uses external threshold. |                                                                                                                                                                         |                                                                                                                                                          |             |                |                                                  |                 |        |             |  |  |  |
|                                                                                                                                                          | INTENC Set to enable the comparator C interrupt.                                                                                                                        |                                                                                                                                                          |             |                |                                                  |                 |        |             |  |  |  |
|                                                                                                                                                          | POLC                                                                                                                                                                    | POLC Channel C Output polarity control bit<br>POLC=0 set default polarity<br>POLC=1 reverse the output polarity of the comparator                        |             |                |                                                  |                 |        |             |  |  |  |
|                                                                                                                                                          | CMPEND                                                                                                                                                                  | When C                                                                                                                                                   | MPEND is se | t from 0 to 1, | nable the corr<br>the program r<br>omparator D's | leeds to wait a |        | to allow    |  |  |  |
|                                                                                                                                                          | THSELD                                                                                                                                                                  |                                                                                                                                                          |             |                | THSELD =                                         | · ·             |        | /TH0 as the |  |  |  |
|                                                                                                                                                          | INTENDSet to enable the comparator D interrupt.POLDChannel D Output polarity control bitPOLD=0 set default polarityPOLD=1 reverse the output polarity of the comparator |                                                                                                                                                          |             |                |                                                  |                 |        |             |  |  |  |

### CMPVTH0 (0xA03Ah) Analog Comparator Threshold Control Register R/W (0x00)

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | VTH0 Register |   |   |   |   |   |   |  |  |
| WR |   | VTH0 Register |   |   |   |   |   |   |  |  |

CMPVTH0 register controls the comparator threshold VTH0 through an 8-bit DAC. When set to 0x00h, the threshold is 0V. When set to 0xFFh, the threshold is at 1.5V. When not used, it should be set to 0x00 to save power consumption.



### CMPVTH1 (0xA03Bh) Analog Comparator Threshold Control Register R/W (0x00)

|    | 7 | 6             | 5 | 4 | 3 | 2 | 1 | 0 |  |  |
|----|---|---------------|---|---|---|---|---|---|--|--|
| RD |   | VTH1 Register |   |   |   |   |   |   |  |  |
| WR |   | VTH1 Register |   |   |   |   |   |   |  |  |

CMPVTH1 register controls the comparator threshold VTH1 through 8-bit DAC. When set to 0x00h, the threshold is 0V. When set to 0xFFh, the threshold is at 1.5V. When not used, it should be set to 0x00 to save power consumption. VTH1's DAC level is also used for DAC voltage output.

### CMPST (0xA03Dh) Analog Comparator Status Register R/W (0x00)

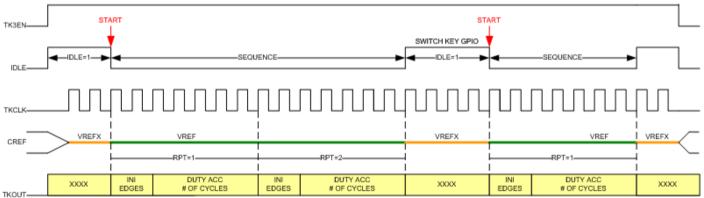
|    | 7                                                                                      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |  |
|----|----------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--|
| RD | CMPIFD                                                                                 | CMPIFC | CMPIFB | CMPIFA | CMPSTD | CMPSTC | CMPSTB | CMPSTA |  |
| WR | CMPIFD                                                                                 | CMPIFC | CMPIFB | CMPIFA | FILEND | FILENC | FILENB | FILENA |  |
| (  | CMPIFD Comparator D Interrupt Flag bit. This bit is set when CMPSTD is toggled and the |        |        |        |        |        |        |        |  |

| CMPIED | Comparator D Interrupt Flag bit. This bit is set when CMPSTD is toggled and the            |
|--------|--------------------------------------------------------------------------------------------|
|        | comparator D setting is enabled. This bit must be cleared by software.                     |
| CMPIFC | Comparator C Interrupt Flag bit. This bit is set when CMPSTC is toggled and the            |
|        | comparator C setting is enabled. This bit must be cleared by software.                     |
| CMPIFB | Comparator B Interrupt Flag bit. This bit is set when CMPSTB is toggled and the comparator |
|        | B setting is enabled. This bit must be cleared by software.                                |
| CMPIFA | Comparator A Interrupt Flag bit. This bit is set when CMPSTA is toggled and the comparator |
|        | A setting is enabled. This bit must be cleared by software.                                |
| CMPSTD | Comparator D Real-time Output. If the comparator is disabled, this bit is forced low.      |
| CMPSTC | Comparator C Real-time Output. If the comparator is disabled, this bit is forced low.      |
| CMPSTB | Comparator B Real-time Output. If the comparator is disabled, this bit is forced low.      |
| CMPSTA | Comparator A Real-time Output. If the comparator is disabled, this bit is forced low.      |
| FILEND | Comparator D Digital Filter Enable. Filter is 16 SYSCLK.                                   |
| FILENC | Comparator C Digital Filter Enable. Filter is 16 SYSCLK.                                   |
| FILENB | Comparator B Digital Filter Enable. Filter is 16 SYSCLK.                                   |
| FILENA | Comparator A Digital Filter Enable. Filter is 16 SYSCLK.                                   |
|        |                                                                                            |

### DACCFG (0xA03Ch) Analog Comparator Status Register R/W (0x00)

|                                     | 7                                                                      | 6                                       | 5             | 4              | 3                | 2              | 1             | 0          |  |  |
|-------------------------------------|------------------------------------------------------------------------|-----------------------------------------|---------------|----------------|------------------|----------------|---------------|------------|--|--|
| RD                                  | DACEN                                                                  | VDDCCMPA                                | DACTEST       | -              | CMPHYSD          | CMPHYSC        | CMPHYSB       | CMPHYSA    |  |  |
| WR                                  | DACEN                                                                  | VDDCCMPA                                | DACTEST       | -              | CMPHYSD          | CMPHYSC        | CMPHYSB       | CMPHYSA    |  |  |
|                                     | DACEN                                                                  | DAC Enal                                | ble           |                |                  |                |               |            |  |  |
|                                     |                                                                        | DACEN=1 turns on the DAC output buffer. |               |                |                  |                |               |            |  |  |
| DACEN=0 turns off the output buffer |                                                                        |                                         |               |                |                  |                |               |            |  |  |
| VDDCCMPA Force CMPINA as VDDC.      |                                                                        |                                         |               |                |                  |                |               |            |  |  |
|                                     |                                                                        |                                         |               |                | o VDDC. This     |                |               |            |  |  |
|                                     |                                                                        |                                         | •             |                | PIO ANIO swi     | tch, VDDC is   | exposed on G  | PIO pin so |  |  |
|                                     | testing and trimming of VDDC can be done.<br>DACTEST DAC/ADC Test Mode |                                         |               |                |                  |                |               |            |  |  |
|                                     | DACTEST                                                                |                                         |               |                |                  |                |               | <i>f</i> 1 |  |  |
|                                     |                                                                        |                                         |               | d ADC conve    | DC's CHB inp     | ut internally. | This needs so | itware to  |  |  |
|                                     | CMPHYSD                                                                | •                                       | or D Hysteres |                | 151011.          |                |               |            |  |  |
|                                     |                                                                        | •                                       | •             |                | sis of Compara   | ator D         |               |            |  |  |
|                                     |                                                                        |                                         |               | •              | is (typical 10m  |                | rator D       |            |  |  |
|                                     | CMPHYSC                                                                |                                         | or C Hysteres | •              | ie (typical roll |                |               |            |  |  |
|                                     |                                                                        | •                                       | •             |                | sis of Compara   | ator C         |               |            |  |  |
|                                     |                                                                        |                                         |               | •              | is (typical 10m  |                | rator C.      |            |  |  |
|                                     | CMPHYSB                                                                |                                         | or B Hysteres | •              |                  | , 1            |               |            |  |  |
|                                     |                                                                        | •                                       | •             |                | is of Compara    | ator B         |               |            |  |  |
|                                     |                                                                        | CMPHYS                                  | B = 0 enables | the hysteres   | is (typical 10m  | N) of Compar   | rator B.      |            |  |  |
|                                     | CMPHYSA                                                                | Comparat                                | or A Hysteres | sis Disable    |                  |                |               |            |  |  |
|                                     |                                                                        | CMPHYS                                  | A = 1 disable | s the hysteres | is of Compara    | ator A         |               |            |  |  |
|                                     |                                                                        | CMPHYS                                  | A = 0 enables | the hysteres   | is (typical 10m  | vV) of Compar  | rator A.      |            |  |  |
|                                     |                                                                        |                                         |               |                |                  |                |               |            |  |  |




### 14. Touch Key Control III

TK3 is an enhanced TK2 implementation with differential dual slope operations. The capacitance to time conversion goes through two phase of charge transfer, one is charging up and one is discharging down using two thresholds equally spaced from ½ VDDC. Each charge transfer is obtained by subtraction of charge on internal reference capacitance and key capacitance. The difference of charge/discharge counting behavior is used to determine the key capacitance change in ratio of internal capacitance. Better noise immunity from power and ground noise and common-mode noise is achieved by dual slope operation. Better S/N can also be achieved because only differential charge is used for transfer, and the internal capacitance exhibits better temperature and environmental stability making the conversion result less sensitive to these changes.

CREF, the integration capacitor of the charge transfer, is connected to P00 through ANIO multiplexer and CKEY is connected to other GPIO through multiplexer. A replica signal of CKEY is provided through a buffer and routed out as SHIELD through GPIO. The shield signal can be used to cancel mutual capacitance effect from neighboring signal trace of the detected key and provides better noise immunity against moisture or water.

To detect a key press, the duty count value TKLDT[15-0] or TKHDT[15-0] can be processed by software and compare with an average non-press duty count. The hardware can also be configured to auto repeat accumulations of the duty cycle count to filter the sporadic noise effect. Since the comparator output should be a random duty with average equals to the capacitance ratio, for low frequency noise rejection, the hardware can be set to reject a continuous high or low comparator output that exceed long durations. For high frequency noise rejection, the hardware includes a pseudo-random sequence that randomizes the charge and discharge timing sequences. A slow moving average of the duty count value is stored in TKBASE[15-0] and software can use this for baseline calculation to auto compensate environment change.

Issuing a START command in the TK3CFGD register starts a conversion sequence that accumulates the comparator output into count value. The count value and the total number of the cycle of the sequence can then be calculated to obtain the capacitance of the key. The timing diagram of the TK3 in normal operation is shown in the following diagram. CREF is first equalized to VREFX that is in close range of VREF. When a START command is issued, first few edges of the comparator output is ignored to avoid any noise caused by the VREFX switching. And then the compactor output is accumulated into DTYL and DTYH registers. A sequence can consist of several conversion cycles depending on the RPT setting, and DTYL and DTYH maintains accumulation to obtain higher resolutions. After the sequence completed, CREF is also connected to VREFX to stay ready for next sequence to start.



TK3 can be set into low power auto detect mode by setting AUTO bit in TK3CFGA. In this mode, an ultra-low power comparator is used and the clock for TK3 should be set to SOSC/2 (64KHz). This mode can be used specifically for touch key wakeup during the MCU sleep mode. The total power consumption of TK3 in this mode is less than 5uA. A threshold register can be set to determine the auto detect threshold either in absolute value or relative value versus the slow-moving baseline value. When the duty count value exceeds the threshold value, a wakeup and interrupt is generated to CPU. The timing diagram for auto mode detection and entering into SLEEP mode is shown in the following diagram. Note the actual start of the sequence is delayed by AUTO START DELAY setting. This allows the internal VDDC to stabilize from switching normal mode to sleep mode supply regulators.

### LUMISSIL MICROSYSTEMS IS31CS8975 A Division of AUTO=1 START ACTUAL START TK3EN -IDLE=1-SEQUENCE 1-SEQUENCE 2-VREFX VREF1X SLEEP MODE VREF SLEEP MODE RPT=1 RPT=2 RPT=1 DUTY ACC # OF CYCLES DUTY ACC # OF CYCLES DUTY ACC # OF CYCLES INI EDGES INI EDGES INI EDGES XXXXX JUTO START DELAY SLEEP MODE

### TK3CFGA (0xA018h) TK3 Configuration Register A R/W (0x00)

|           | 7       | 6                                                                                                                                                                                   | 5                    | 4               | 3                | 2             | 1     | 0    |  |  |  |
|-----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|------------------|---------------|-------|------|--|--|--|
| RD        | TK3EN   |                                                                                                                                                                                     | TKCS[2-0]            |                 | SHIELDEN         | TKIEN         | TKLPM | AUTO |  |  |  |
| WR        | TK3EN   |                                                                                                                                                                                     | TKCS[2-0]            |                 | SHIELDEN         | TKIEN         | TKLPM | AUTO |  |  |  |
| T         | K3EN    | TK3 Enable                                                                                                                                                                          |                      |                 |                  |               |       |      |  |  |  |
|           |         | TK3EN=0 Disables the TK3 circuits and clear all states                                                                                                                              |                      |                 |                  |               |       |      |  |  |  |
|           |         | TK3EN=1 for TK3 normal operations.                                                                                                                                                  |                      |                 |                  |               |       |      |  |  |  |
| TKCS[2-0] |         | TK3 Clock Select                                                                                                                                                                    |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=000 SYSCLK/2                                                                                                                                                              |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=001 SYSCLK/4                                                                                                                                                              |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=                                                                                                                                                                          |                      | YSCLK/6         |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=                                                                                                                                                                          |                      | YSCLK/8         |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=                                                                                                                                                                          |                      | YSCLK/10        |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=101 SYSCLK/16                                                                                                                                                             |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKCS[2-0]=110 SYSCLK/32                                                                                                                                                             |                      |                 |                  |               |       |      |  |  |  |
|           |         |                                                                                                                                                                                     | TKCS[2-0]=111 SOSC/2 |                 |                  |               |       |      |  |  |  |
|           |         | SOSC/2 should be used for sleep mode auto wakeup. Typical SOSC/2 is 64KHz.                                                                                                          |                      |                 |                  |               |       |      |  |  |  |
| S         | HIELDEN | Shield Output Buffer Enable                                                                                                                                                         |                      |                 |                  |               |       |      |  |  |  |
|           |         | SHIELDEN=1 enables the shield signal buffer. The buffer consumes about 200uA when                                                                                                   |                      |                 |                  |               |       |      |  |  |  |
|           |         | enabled.                                                                                                                                                                            |                      |                 |                  |               |       |      |  |  |  |
| T         | KIEN    | TK3 Interrupt Enable                                                                                                                                                                |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKIEN=1 enables the TK3 interrupt. TK3 interrupt is generated when a counting sequence                                                                                              |                      |                 |                  |               |       |      |  |  |  |
|           |         | is completed (including the repeat count if RPT[1-0] is not 00). Interrupt and wakeup is also generated when TKIEN=1 and AUTO=1 after auto detection threshold is met.              |                      |                 |                  |               |       |      |  |  |  |
|           |         | -                                                                                                                                                                                   |                      |                 |                  |               |       |      |  |  |  |
| -         |         |                                                                                                                                                                                     |                      | enerated, I KII | F is also set to | 1 by nardware | Э.    |      |  |  |  |
| 1         | KLPM    | TK3 Low Power Mode                                                                                                                                                                  |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKLPM=0 for normal mode operations.                                                                                                                                                 |                      |                 |                  |               |       |      |  |  |  |
|           |         | TKLPM=1 put the comparator into ultra low power mode and should be used in auto                                                                                                     |                      |                 |                  |               |       |      |  |  |  |
| Δ         | UTO     | wakeup power saving mode. In this mode, TKCLK should use SOSC/2 (64KHz) slow clock.                                                                                                 |                      |                 |                  |               |       |      |  |  |  |
| A         | 010     | Auto Wake Up Mode                                                                                                                                                                   |                      |                 |                  |               |       |      |  |  |  |
|           |         | AUTO=1 enables auto detect mode. In auto mode, the current duty count register value is compared with baseline plus threshold (either absolute or relative). If duty count value is |                      |                 |                  |               |       |      |  |  |  |
|           |         | higher then an interrupt and wakeup is generated.                                                                                                                                   |                      |                 |                  |               |       |      |  |  |  |
|           |         | AUTO=0 enable normal detect mode. In normal mode, writing START with "1" initiates a                                                                                                |                      |                 |                  |               |       |      |  |  |  |
|           |         | conversion sequence, and when the duty count is obtained, an interrupt is generated.                                                                                                |                      |                 |                  |               |       |      |  |  |  |
|           |         |                                                                                                                                                                                     |                      | or B R/W (0y)   | -                | ,             | 1 5   |      |  |  |  |

### TK3CFGB (0xA019h) TK3 Configuration Register B R/W (0x00)

|    | 7        | 6 | 5    | 4        | 3 | 2           | 1 | 0         |  |
|----|----------|---|------|----------|---|-------------|---|-----------|--|
| RD | RPT[1-0] |   | INI[ | INI[1-0] |   | ASTDLY[1-0] |   | LFNF[1-0] |  |
| WR | RPT[1-0] |   | INI[ | INI[1-0] |   | ASTDLY[1-0] |   | =[1-0]    |  |
|    |          |   |      |          |   |             |   |           |  |

RPT[1-0]

Repeat Sequence Count

00 = No Repeat



|             | (INI[1-0] + 1) *4*TKCLK.<br>Auto Mode Start Delay                                                                                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ASTDLY[1-0] | Auto Mode Start Delay<br>STDLY[1-0] inserts an inter-sequence idle time of (ASTDLY[1-0]+1) * 256 TKCLK at each<br>sequence start. Tis delay allows the stabilization time of VREFX from normal mode to sleep<br>mode. |
| LFNF[1-0]   | Low Frequency Noise Filter Setting                                                                                                                                                                                    |
|             | 00 = disables LFNF                                                                                                                                                                                                    |
|             | Noise injection longer than LFNF[1-0]*8 time is ignored.                                                                                                                                                              |
|             | Please note in the presence of such noise, the cycle count still continues. The end result is that the sum of DUTYL and DUTYH will not be equal to cycle count.                                                       |

|    | 7         | 6                                                                                                                                | 5                                                                                   | 4                 | 3             | 2             | 1      | 0        |  |  |  |
|----|-----------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------|---------------|---------------|--------|----------|--|--|--|
| RD | SLOV      | W[1-0]                                                                                                                           |                                                                                     | CYCLE[2-0]        | I             | BASEINI       | THDSEL | AUTOLFEN |  |  |  |
| WR | SLOV      | W[1-0]                                                                                                                           |                                                                                     | CYCLE[2-0]        |               | BASEINI       | THDSEL | AUTOLFEN |  |  |  |
| S  | LOW[1-0]  | Baseline SI                                                                                                                      | ow Moving                                                                           | Average setting   |               | •             |        |          |  |  |  |
|    |           | 00 = 32 ave                                                                                                                      | 00 = 32 average                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 01 = 64 ave                                                                                                                      | 01 = 64 average                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 10 = 128 average                                                                                                                 |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 11 = 256 average                                                                                                                 |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           |                                                                                                                                  | The duty value is averaged by SLOW[1-0] conversion and updated to BASELINE register |                   |               |               |        |          |  |  |  |
|    |           | through moving average.                                                                                                          |                                                                                     |                   |               |               |        |          |  |  |  |
| С  | YCLE[2-0] | Cycle Count of each conversion sequence                                                                                          |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 000 = 1024                                                                                                                       |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 001 = 2048                                                                                                                       |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 010 = 4096                                                                                                                       |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 011 = 8192                                                                                                                       |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 100 = 12288                                                                                                                      |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 101 = 16384                                                                                                                      |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 110 = 32768                                                                                                                      |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | 111 = 65536                                                                                                                      |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | The cycle count is each sequence cycle count. And it is repeated if RPT is not 0.                                                |                                                                                     |                   |               |               |        |          |  |  |  |
| _  |           | Please note the conversion always ends with the defined cycle count.                                                             |                                                                                     |                   |               |               |        |          |  |  |  |
| В  | ASEINI    |                                                                                                                                  | Baseline Initial Value                                                              |                   |               |               |        |          |  |  |  |
|    |           | If BASEINI=1, then the first DTYL count after entering auto mode is loaded to BASELINE                                           |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | register as its initial value to start moving average.                                                                           |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | If BASEINI=0, then the value written in BASELINE before entering auto mode is used as the initial value to start moving average. |                                                                                     |                   |               |               |        |          |  |  |  |
| т  | HDSEL     | initial value to start moving average.<br>Threshold Value Setting                                                                |                                                                                     |                   |               |               |        |          |  |  |  |
| I  | HDSEL     | •                                                                                                                                |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           | THDSEL=0 uses TKTHD[15-0] as the threshold to compare with DTYL to generate the<br>interrupt and wakeup                          |                                                                                     |                   |               |               |        |          |  |  |  |
|    |           |                                                                                                                                  |                                                                                     | ID[15-0] + TKBA   | SE[15-0] as t | the threshold |        |          |  |  |  |
| Δ  | UTOLFEN   |                                                                                                                                  |                                                                                     | Filtering in Auto |               |               |        |          |  |  |  |
| ~  |           |                                                                                                                                  |                                                                                     |                   |               |               |        |          |  |  |  |



|                                                                                     | 7                                                                                 | 6           | 5                                                                                                   | 4                | 3                 | 2              | 1                 | 0         |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------|------------------|-------------------|----------------|-------------------|-----------|--|--|
| RD                                                                                  |                                                                                   | CCHG[2-0]   |                                                                                                     | ASTDLYEN         | PSRDEN            | LFNF           | TKIF              | BUSY      |  |  |
| WR                                                                                  |                                                                                   | CCHG[2-0]   |                                                                                                     | ASTDLYEN         | PSRDEN            | LFNF           | TKIF              | START     |  |  |
| С                                                                                   | CCHG[2-0] Charge Capacitance Se                                                   |             |                                                                                                     | ect              |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | 000 = 10pF  |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | 001 = 20pF  |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | 010 = 30pF  |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | 011 = 40pF  |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | 100 = 50 pF |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | 101 = 60 pF |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     | 110 = 70pF<br>111 = 80pF                                                          |             |                                                                                                     |                  |                   |                |                   |           |  |  |
| Δ                                                                                   | STDLYEN                                                                           |             | Delay Enable                                                                                        |                  |                   |                |                   |           |  |  |
| ,,                                                                                  | OIDEIEN                                                                           |             |                                                                                                     | STDI Y[1-0] d    | lelav start for a | auto mode      |                   |           |  |  |
|                                                                                     |                                                                                   |             | ASTDLYEN=1 enables ASTDLY[1-0] delay start for auto mode.<br>ASTDLYEN=0 disables ASTDLY[1-0] delay. |                  |                   |                |                   |           |  |  |
| Р                                                                                   | SRDEN                                                                             |             | ndom Sequer                                                                                         |                  | ,                 |                |                   |           |  |  |
|                                                                                     |                                                                                   | PSRDEN=1    | SRDEN=1 enables the random sequence in conversion                                                   |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | PSRDEN=(    | ) disables                                                                                          |                  |                   |                |                   |           |  |  |
| L                                                                                   | FNF                                                                               |             | ency Noise De                                                                                       | •                |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | LFNF is set | by hardware                                                                                         | if in the prese  | nt conversion     | a Low Freque   | ency Noise is o   | detected. |  |  |
| -                                                                                   |                                                                                   |             |                                                                                                     | d to "0" by sof  | tware             |                |                   |           |  |  |
| I                                                                                   | KIF                                                                               | TK3 Interru |                                                                                                     | when a TK3 in    | torrupt occurr    | ad by aither a |                   |           |  |  |
|                                                                                     |                                                                                   |             |                                                                                                     | ection in auto r |                   |                |                   |           |  |  |
| S                                                                                   | TART                                                                              | Start Conve |                                                                                                     |                  |                   |                |                   | Soltware. |  |  |
| -                                                                                   | Writing "1" into START initiates the conversion sequence. It is cleared by hardwa |             |                                                                                                     |                  |                   |                | are when          |           |  |  |
| conversion is complete. Please not writing AUTO "1" also starts the conversion in a |                                                                                   |             |                                                                                                     |                  |                   | in auto        |                   |           |  |  |
|                                                                                     |                                                                                   | mode.       | _                                                                                                   |                  |                   |                |                   |           |  |  |
| В                                                                                   | USY                                                                               | Conversion  |                                                                                                     |                  |                   |                |                   |           |  |  |
|                                                                                     |                                                                                   | BUSY is se  | t to 1 by hard                                                                                      | ware indicating  | g the conversi    | on sequences   | s are still runni | ng.       |  |  |

### TK3CFGD (0xA01Bh) TK3 Configuration Registers D R/W (0x00)

### TK3HDTYL (0xA01Ch) TK3 High Duty Count Register L RO (0x00)

|    | 7            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|--------------|---|---|---|---|---|---|---|
| RD | TK3HDTY[7-0] |   |   |   |   |   |   |   |
| WR | -            |   |   |   |   |   |   |   |

### TK3HDTYH(0xA01Dh) TK3 High Duty Count Register H RO (0x00)

|    | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---------------|---|---|---|---|---|---|---|
| RD | TK3HDTY[15-8] |   |   |   |   |   |   |   |
| WR | -             |   |   |   |   |   |   |   |

### TK3LDTYL (0xA01Eh) TK3 Low Duty Count Register L RO (0x00)

|    | 7 | 6            | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|--------------|---|---|---|---|---|---|--|
| RD |   | TK3LDTY[7-0] |   |   |   |   |   |   |  |
| WR |   |              |   |   | _ |   |   |   |  |

### TK3LDTYH(0xA01Fh) TK3 Low Duty Count Register H RO (0x00)

|    | 7             | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|---------------|---|---|---|---|---|---|---|
| RD | TK3LDTY[15-8] |   |   |   |   |   |   |   |
| WR | -             |   |   |   |   |   |   |   |



WR

PUIDEN

| TK3BAS | SEL (0xA028h) TK3 Baseline Register L R/W (0x00)    |               |                |              |               |      |   |   |  |  |
|--------|-----------------------------------------------------|---------------|----------------|--------------|---------------|------|---|---|--|--|
|        | 7                                                   | 6             | 5              | 4            | 3             | 2    | 1 | 0 |  |  |
| RD     | TK3BASE[7-0]                                        |               |                |              |               |      |   |   |  |  |
| WR     | TK3BASE[7-0]                                        |               |                |              |               |      |   |   |  |  |
| ТКЗВА  | 3BASEH (0xA029h) TK3 Baseline Register H R/W (0x00) |               |                |              |               |      |   |   |  |  |
|        | 7                                                   | 6             | 5              | 4            | 3             | 2    | 1 | 0 |  |  |
| RD     | TK3BASE[15-8]                                       |               |                |              |               |      |   |   |  |  |
| WR     |                                                     |               |                | TK3BAS       | SE[15-8]      |      |   |   |  |  |
| ткзтне | HDL (0xA02Ah) TK3 Threshold Register L R/W (0x00)   |               |                |              |               |      |   |   |  |  |
|        | 7                                                   | 6             | 5              | 4            | 3             | 2    | 1 | 0 |  |  |
| RD     |                                                     |               |                | TK3TF        | HD[7-0]       |      |   |   |  |  |
| WR     |                                                     |               |                | TK3TF        | HD[7-0]       |      |   |   |  |  |
| ткзтне | OH (0xA02Bh)                                        | TK3 Thresho   | old Register H | I R/W (0x00) |               |      |   |   |  |  |
|        | 7                                                   | 6             | 5              | 4            | 3             | 2    | 1 | 0 |  |  |
| RD     |                                                     |               |                | ТКЗТН        | D[15-8]       |      |   |   |  |  |
| WR     |                                                     |               |                | ТКЗТН        | D[15-8]       |      |   |   |  |  |
| TK3PU  | D (0xA02Ch) 1                                       | FK3 DC Pull-U | Jp/Pull-Down   | Control Regi | ster H R/W (0 | x00) |   |   |  |  |
|        | 7                                                   | 6             | 5              | 4            | 3             | 2    | 1 | 0 |  |  |
| RD     | PUDIEN                                              | PUDREN        | -              | - PUD[3-0]   |               |      |   |   |  |  |

TK3PUD is to configure a constant DC pull-up/pull-down on CREF to allow high capacitance touch-key detection. A DC pull-up/pull-down can compensate the equivalent resistance caused a high capacitance key. Connecting a switching current source or resistor can thus maintaining touch key detection sensitivity.

-

PUD[3-0]

PUDIEN Pull-up/Pull-down DC Current Enable

PUDREN Pull-up/Pull-down DC Resistor Enable

-

PUD[3-0] Pull-up/Pull-down Selection

PUDREN

For DC current, PUD[3-0] enables 8uA/4uA/2uA/1uA current source. For Resistor, PUD[3-0] enables 5K/10K/20K/40K resistor.



### 15. <u>GPIO Multi-Function Select and Pin Interrupt</u>

Each IO pin has configurable IO buffer that can meet various interface requirement. The GPIO pins can be configured as external pin interrupt input or for wakeup purpose. Each port has edge detection logic and latch for rising and falling edge detections. During hardware reset and after, the IO buffer is put in high impedance state with all drive disabled.

### IOCFGOxx(0xA100h – 0xA10Fh) IO Buffer Output Configuration Registers R/W (0x00) (xx = 00~07, 10~17)

|    | 7      | 6                                                                                                                                                                          | 5      | 4                                   | 3                      | 2                | 1               | 0    |
|----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------|------------------------|------------------|-----------------|------|
| RD | -      | PDRVEN                                                                                                                                                                     | NDRVEN | OPOL                                | ANEN2                  | ANEN1            | PUEN            | PDEN |
| WR | -      | PDRVEN                                                                                                                                                                     | NDRVEN | OPOL                                | ANEN2                  | ANEN1            | PUEN            | PDEN |
| -  | DRVEN  | is the default value.                                                                                                                                                      |        |                                     |                        |                  |                 |      |
| N  | IDRVEN | Output NMOS driver enable. Set this bit to enable the NMOS of the output driver. DISABLE is the default value.                                                             |        |                                     |                        |                  |                 |      |
| 0  | POL    | Output Polarity Control<br>Output buffer data polarity control.                                                                                                            |        |                                     |                        |                  |                 |      |
| A  | NEN1   | •                                                                                                                                                                          |        | ontrol. Set this<br>ne default valu | s bit to connec<br>Je. | t the pin to the | e internal anal | og   |
| A  | NEN2   |                                                                                                                                                                            |        | ontrol. Set this<br>ne default valu | s bit to connec<br>Je. | t the pin to the | e internal anal | og   |
| Р  | UEN    | Pull up resistor control. Set this bit to enable pull-up resistor connection to the pin. The pull-<br>up resistor is approximately 6K Ohm. DISABLE is the default value.   |        |                                     |                        |                  |                 |      |
| Р  | DEN    | Pull down resistor control. Set this bit to enable pull-down resistor connection to the pin. The pull-down resistor is approximately 6K Ohm. DISABLE is the default value. |        |                                     |                        |                  |                 |      |

### IOCFGI xx(0xA110h – 0xA11Fh) IO Buffer Input Configuration Registers R/W (0x00) (xx = 00~07, 10~17)

| 1                                                             | <b>1</b> | - , -                                                                                                                                                                                |                                    | J      | - 5             |               | ,-                  | /            |  |  |  |
|---------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------|-----------------|---------------|---------------------|--------------|--|--|--|
|                                                               | 7        | 6                                                                                                                                                                                    | 5                                  | 4      | 3               | 2             | 1                   | 0            |  |  |  |
| RD                                                            | PI1EN    | PI0EN                                                                                                                                                                                | RIF                                | FIF    | INEN            | IPOL          | DSTAT               | INSTAT       |  |  |  |
| WR                                                            | PI1EN    | PI0EN                                                                                                                                                                                | PIOEN RIEN FIEN INEN IPOL DBN[1-0] |        |                 |               |                     |              |  |  |  |
| P                                                             | I1EN     | Pin Interrup                                                                                                                                                                         | t 1 Enable                         |        |                 |               |                     |              |  |  |  |
| Р                                                             | IOEN     | Pin Interrupt 0 Enable                                                                                                                                                               |                                    |        |                 |               |                     |              |  |  |  |
| R                                                             | IEN      | Rising Edge                                                                                                                                                                          | e Pin Interrup                     | Enable |                 |               |                     |              |  |  |  |
| R                                                             | IF       | Rising Edge                                                                                                                                                                          | e Pin Interrupt                    | Flag   |                 |               |                     |              |  |  |  |
|                                                               |          |                                                                                                                                                                                      |                                    |        | a PI1 or PI0 r  |               |                     |              |  |  |  |
|                                                               |          |                                                                                                                                                                                      |                                    | •      | EN with "0". F  | RIEN needs to | be enabled if       | next rising  |  |  |  |
|                                                               |          | -                                                                                                                                                                                    | upt is required                    |        |                 |               |                     |              |  |  |  |
|                                                               | IEN      | 0 0                                                                                                                                                                                  | e Pin Interrup                     |        |                 |               |                     |              |  |  |  |
| F                                                             | IF       | 0 0                                                                                                                                                                                  | e Pin Interrup                     | •      |                 |               |                     |              |  |  |  |
|                                                               |          | FIF is set to 1 by hardware after either a PI1 or PI0 falling edge interrupt has occurred. FIF                                                                                       |                                    |        |                 |               |                     |              |  |  |  |
|                                                               |          | must be cleared by software writing FIEN with "0". FIEN needs to be enabled if next falling                                                                                          |                                    |        |                 |               |                     |              |  |  |  |
|                                                               |          | edge interrupt is required.                                                                                                                                                          |                                    |        |                 |               |                     |              |  |  |  |
| IP                                                            | IEN      | Input Buffer Enable<br>INEN=1 enables the input buffer.                                                                                                                              |                                    |        |                 |               |                     |              |  |  |  |
|                                                               |          |                                                                                                                                                                                      | •                                  |        |                 |               | a filman at ha affa |              |  |  |  |
|                                                               |          |                                                                                                                                                                                      |                                    |        | e disabled sta  |               |                     | •            |  |  |  |
|                                                               |          |                                                                                                                                                                                      |                                    |        | oltage level, D |               |                     | iput buller. |  |  |  |
|                                                               | POL      | Disabling input buffer can remove DC leakage of input buffer due to this reason.<br>Input Polarity                                                                                   |                                    |        |                 |               |                     |              |  |  |  |
| IF                                                            | OL       |                                                                                                                                                                                      |                                    |        | 0 for normal lo | ogic polarity |                     |              |  |  |  |
| П                                                             | BNST     |                                                                                                                                                                                      | •                                  | •      | BNST is read of | • • •         |                     |              |  |  |  |
| D                                                             | DINGT    |                                                                                                                                                                                      |                                    |        |                 |               | as well as all      | other multi- |  |  |  |
|                                                               |          | Please note the de-bounced input is used for generating interrupt, as well as all other multi-<br>function inputs including PORT registers. The non-debounced input can only be read |                                    |        |                 |               |                     |              |  |  |  |
| through INSTAT bit.                                           |          |                                                                                                                                                                                      |                                    |        |                 |               |                     | loud         |  |  |  |
| INSTAT Real Time Status of Input Buffer. INSTAT is read only. |          |                                                                                                                                                                                      |                                    |        |                 |               |                     |              |  |  |  |
| DBN[1-0] De-Bounce Time Setting                               |          |                                                                                                                                                                                      |                                    |        |                 |               |                     |              |  |  |  |
|                                                               |          | 00 – OFF                                                                                                                                                                             | 0                                  |        |                 |               |                     |              |  |  |  |
|                                                               |          | 01 – 4 SOS                                                                                                                                                                           | C/4 (130used                       | :)     |                 |               |                     |              |  |  |  |
|                                                               |          |                                                                                                                                                                                      |                                    |        |                 |               |                     |              |  |  |  |



10 - 16 SOSC/4 (530usec)

11 - 64 SOSC/4 (2msec)

### MFCFGxx (0xA120 – 0x A12Fh) Port Multi-Function Configuration Registers R/W (0x00) (xx = 00~07, 10~17)

|    | 7 | 6          | 5 | 4 | 3 | 2 | 1 | 0 |  |
|----|---|------------|---|---|---|---|---|---|--|
| RD |   | MFCFG[7-0] |   |   |   |   |   |   |  |
| WR |   | MFCFG[7-0] |   |   |   |   |   |   |  |

Please see PIN OUT section for description of each port multi-function selection.



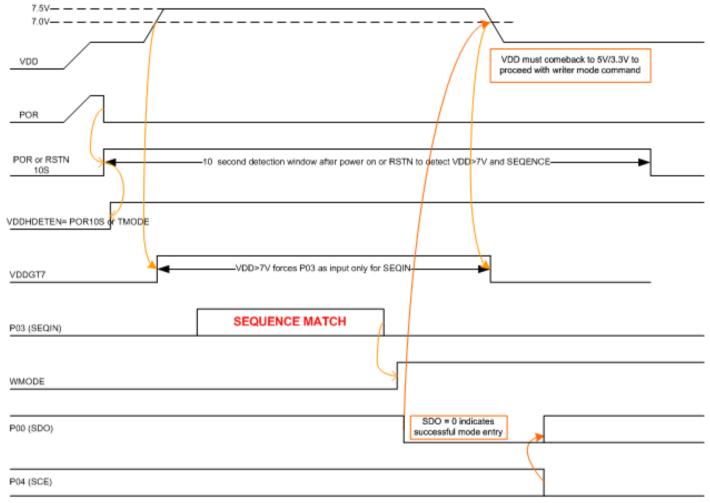
### 16. Information Block IFB

There are two IFB block each contains 512 x 16 bit information. The address 0x000h to 0x03Fh in first IFB is used to store manufacturer information. Address 0x040 is for boot code wait time, and 0x041 to 0x043 are used for boot code. The first IFB can be erased only in Writer Mode and can be written using Flash Controller for address beyond 0x40. This is to protect any alteration of the manufacturing and calibration data. The 2<sup>nd</sup> IFB is open for erase/write for user access. The following table shows the contents of the first IFB for the manufacturing data. Please note, these are in lower LSB bytes. The upper MSB byte contains its corresponding ECC code.

| TYPF | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | IFB Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Product Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Product Name Package and Product Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Product Version and Revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Flash Memory Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | SRAM Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | Customer Specific Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | CP1 Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | CP2 Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | CP3 Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | CP3 BIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | FT Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | FT BIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| М    | Last Test Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| М    | Boot Code Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| М    | Boot Code Segment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| М    | Checksum for 0x00 – 0x1E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| М    | REGTRM value for 1.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| М    | IOSC ITRM value for 16MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| М    | IOSC VTRM value for 16MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| М    | LVDTHD value for detection of 4.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| М    | LVDTHD value for detection of 3.0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| М    | IOSC ITRM value for 32MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| М    | IOSC VTRM value for 32MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| М    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| М    | Temperature Offset LSB/MSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| М    | Temperature Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| М    | Internal Reference LSB/MSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | SOSC 128KHz Trim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| М    | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| М    | Checksum for 0x20 – 0x39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| М    | Retention Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| M/U  | Boot Code Wait Time. Boot code uses this byte to determine the ISP wait-time. This wait-<br>time is necessary for stable ISP. After user program download, the wait time can be<br>reduced to minimize power-on time.<br>Each "1" in bit [1-0] constitutes 1 second and bits [3-2] constitutes 2 second and bits [7-<br>6] are I2CSCL2 and I2CSCL1 check. For example, 0b10000111 is 4 second wait time<br>and also checks I2CSCL2 pad status. If I2CSCL2 is low, then wait time of 6 second is<br>used regardless of bit [3-0] setting. The maximum wait time is 6 second, and minimum<br>wait time is 0 second. |
|      | M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



|    | 41    | M/U | Boot Code LVR                    |
|----|-------|-----|----------------------------------|
|    | 42    | M/U | User Code Protect L              |
|    | 43    | M/U | User Code Protect H              |
| 44 | - 1FF | U   | User One-Time Programmable Space |




### 17. <u>Writer Mode</u>

Writer Mode (WM) is used by the manufacturer or by users to program the flash (including IFB) through a dedicated hardware (Writer or Gang Writer). There are several pins involved for WM as shown in the following table. Please note these pins are also used for test mode such as scan test, MBIST, and trim test.

|     |   | •                                                           |          |
|-----|---|-------------------------------------------------------------|----------|
| PIN | Ю | Description                                                 | Function |
| P00 | 0 | Serial data out                                             | SDO      |
| P01 | I | Serial clock input                                          | SCK      |
| P02 | 0 | Flash TBIT signal output                                    | ТВІТ     |
| P03 | 1 | Serial data in and sequence in                              | SEQIN    |
| P04 | 1 | Serial port enable, low active                              | SCE      |
| VDD | I | Power supply for DUT and Disable P03 Output when VDD > 7.0V | VDD      |
| VSS | 1 | Ground supply for DUT                                       | VSS      |

To enter into WM, a predefined sequence must be present at SDI (SEQIN) pin within 10 second of power on or RSTN reset. The following timing diagram shows the waveform relationship.



WRITER MODE COMMAND

- After power-on reset or RSTN reset, a 10-second window is open for SEQIN buffer and detection comparator for VDD>7V.
- If VDD>7V is detected, it forces P03 to tri-state output and allows SEQIN buffer to detect entry sequence. If P03 is not configured by user program as output, then VDD>7V is not necessary (but always recommended).
- 3. If a correct sequence is detected, the WMODE internal signal is asserted and this also enables SDO pulldown to low to acknowledge Writer hardware for successful entry.



- Writer hardware upon receiving acknowledgement should bring down VDD to normal value (either 5V or 3.3V) to proceed with writer mode commands.
- 5. Writer hardware should have all writer mode related pins 10K pull-up resistor to its supply voltage (either 5V or 3.3V).

Once successful mode entry is completed, since there are code protection mechanism against code piracy, the protection must first unlocked to fully utilize the writer mode commands. Before unlocking, only full memory erase command is supported. Unlocking is accomplished by READ AND VERIFY Main Memory command with correct lock key (8-byte) of the key addresses. The following lists the writer mode commands. The red indicates the command available in locked state.

ERASEMM - ERASE Main Memory ERASEMMIFB - ERASE Main Memory and IFB READVERIFYMM - READ AND VERIFY Main Memory (8-Byte) WRTEBYTEMM - WRITE BYTE Main Memory READBYTEMM – READ BYTE Main Memory WRITEBYTEIFB – WRITE BYTE IFB READBYTEIFB - READ BYTE IFB FCWRITE - Fast Continuous WRITE FCREAD - Fast Continuous READ

The default state of the device is locked writer mode. Only ERASEMM and ERASEMMIFB, and READVERIFYMM commands can be executed. It can be unlocked by READVERIFYMM the range of 0x2FF8 to 0x2FFF. These locations contain an 8-byte security key that user can place to secure the e-Flash contents. The probability of guessing the key is 1 in 2^64 = 1.8E19. Since each trial of READVERIFY takes 10usec, it takes about 6E6 years to exhaust the combinations. If the key is unknown, a user can choose to issue the ERASEMM command then fully erase the entire contents (including the key). Once fully erased, all data in the flash is 0xFF, and it can be successfully unlocked by READVERIFYMM with 8-bytes of 0xFF. The users must not erase the information in IFB. And the user should not modify the manufacturer data. Any violation of this results in the void of manufacturer warranty.



### 18. Boot Code and In-System Programming

After production testing of the packaged devices, the manufacture writes the manufacturer information and calibration data in the IFB. At the last stage, it writes a fixed boot-code in the main memory residing from 0x3000 to 0x3FFF. The boot code is executed after any resets. The boot code first reads IFB's wait time setting and scan the I<sup>2</sup>C slave for any In-System-Programming request during the wait time duration. If any valid request occurs during the scan, the boot-code proceeds to follow the request and performs the programming from the host. Otherwise, the boot code jumps to 0x0000 at wait time expiration. The default ISP commands available are

UNLOCK DEVICE NAME BOOTC VERSION READ AND VERIFY Main Memory (8-Byte) ERASE Main Memory excluding Boot Code ERASE SECTOR Main Memory WRITE BYTE Main Memory SET ADDRESS CONTINUOUSE WRITE CONTINUOUSE WRITE CONTINUOUS READ READ BYTE IFB WRITE BYTE IFB

Similar to writer mode, ISP is in default locked state. No command is accepted under locked state. To unlock the ISP, an 8-byte READVERIFY of 0x2FF8 to 0x2FFF must be successfully executed. Thus default ISP boot program provides similar code security as the Writer mode.



### 19. <u>Electrical Specifications</u>

### 19.1 Absolute Maximum Ratings

| SYMBOL | PARAMETER                     | RATING    | UNIT | NOTE |
|--------|-------------------------------|-----------|------|------|
| VDD    | Supply Voltage                | 5.5       | V    |      |
| TA     | Ambient Operating Temperature | -40 –125  | °C   |      |
| TSTG   | Storage Temperature           | -65 – 150 | °C   |      |

### 19.2 <u>Recommended Operating Condition</u>

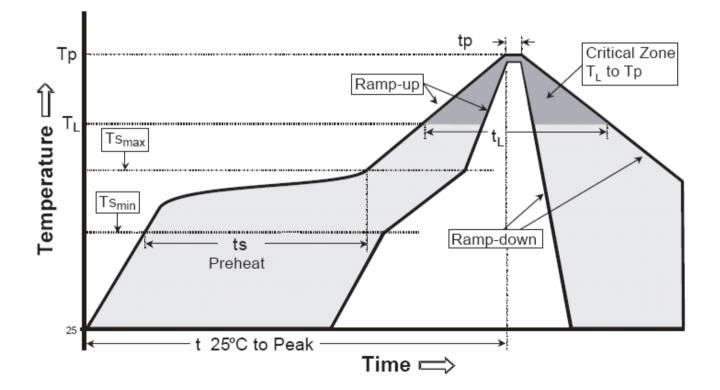
| SYMBOL | PARAMETER                                | RATING     | UNIT | NOTE |
|--------|------------------------------------------|------------|------|------|
| VDD    | Supply Voltage for IO and 1.5V regulator | 2.35 – 5.5 | V    |      |
| TA     | Ambient Operating Temperature            | -40 – 85   | °C   |      |

### 19.3 DC Electrical Characteristics (VDDH = 2.35V to 5.5V TA=-40°C to 85°C)

| SYMBOL                  | PARAMETER                                         | MIN      | TYP  | MAX                                | UNIT       | NOTE                                  |
|-------------------------|---------------------------------------------------|----------|------|------------------------------------|------------|---------------------------------------|
| Power Supp              | bly Current                                       |          |      |                                    | •          | •                                     |
| IDD<br>Normal           | Total IDD through VDD at 16MHz<br>Peripherals off | -        | 5    | -                                  | mA         |                                       |
| IDD<br>Normal           | Total IDD through VDD at 1MHz<br>Peripherals off  | -        | 1.0  | -                                  | mA         |                                       |
| IDD versus<br>Frequency | IDD Core Current versus Frequency                 | -        | 150  | -                                  | uA/<br>MHz |                                       |
| IDD, Stop               | IDD, stop mode                                    | -        | 150  | -                                  | μA         | Main regulator on                     |
|                         | IDD, sleep mode, 25°C                             | -        | 1.5  | 5                                  | μA         | Main regulator off                    |
| IDD, Sleep              | IDD, sleep mode, 85°C                             | -        | 4    | 10                                 | μA         | Main regulator off                    |
| •                       | IDD, sleep mode, 125°C                            | -        | 15   | 40                                 | μA         | Main regulator off                    |
| <b>RSTN Reset</b>       | t .                                               |          |      |                                    |            | · · · · · · · · · · · · · · · · · · · |
| VIHRS                   | Input High Voltage, reference to VDD              | -0.8     | -    | -                                  | V          |                                       |
| VILRS                   | Input Low Voltage                                 | -        | -    | 0.8                                | V          |                                       |
| VRSHYS                  | RSTN Hysteresis                                   | -        | 1.2  | -                                  | V          |                                       |
| GPIO DC Ch              | naracteristics                                    |          |      |                                    |            |                                       |
| VOH,4.5V                | Output High Voltage 1 mA                          | -        | -0.2 | -0.5                               | V          | Reference to VDD                      |
| VOH,4.5V                | Output High Voltage 2 mA                          | -        | -0.3 | -0.7                               | V          | Reference to VDD                      |
| VOL,4.5V                | Output Low Voltage 4 mA                           | -        | 0.2  | 0.4                                | V          | Reference to VSS                      |
| VOL,4.5V                | Output Low Voltage 8 mA                           | -        | 0.3  | 0.5                                | V          | Reference to VSS                      |
| VOH,3.0V                | Output High Voltage 1 mA                          | -        | -0.3 | -0.6                               | V          | Reference to VDD                      |
| VOH,3.0V                | Output High Voltage 2 mA                          | -        | -0.4 | -0.8                               | V          | Reference to VDD                      |
| VOL,3.0V                | Output Low Voltage 4 mA                           | -        | 0.2  | 0.4                                | V          | Reference to VSS                      |
| VOL,3.0V                | Output Low Voltage 8 mA                           | -        | 0.3  | 0.6                                | V          | Reference to VSS                      |
| IIOT                    | Total IO Sink and Source Current                  | -80      | -    | 80                                 | mA         |                                       |
| VIH                     | Input High Voltage                                | ¾VD<br>D | -    | -                                  | V          |                                       |
| VIL                     | Input Low Voltage                                 | -        | -    | <sup>1</sup> / <sub>4</sub><br>VDD | V          |                                       |
| VIHYS                   | Input Hysteresis                                  | 100      | 300  | 600                                | mV         |                                       |
| RPU                     | Equivalent Pull-Up resistance                     | -        | 25K  | -                                  | Ohm        |                                       |
| RPU,RSTN                | RSTN Pull-Up resistance                           | -        | 5K   | -                                  | Ohm        |                                       |
| RPD                     | Equivalent Pull-Down Resistance                   | -        | 25K  | -                                  | Ohm        |                                       |
| REQAN1                  | Equivalent ANIO Switch Resistance, 3.3V           | -        | 800  | -                                  | Ohm        | ANIO1 Switch                          |
|                         | Equivalent ANIO Switch Resistance, 5V             | -        | 500  | -                                  | Ohm        | ANIO1 Switch                          |
| REQAN2                  | Equivalent ANIO Switch Resistance, 3.3V           | -        | 4K   | -                                  | Ohm        | ANIO2 Switch                          |

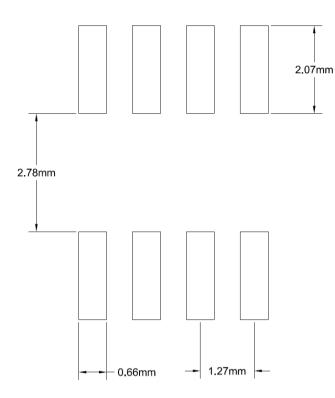


| SYMBOL           | PARAMETER                               | MIN       | TYP    | MAX     | UNIT    | NOTE               |
|------------------|-----------------------------------------|-----------|--------|---------|---------|--------------------|
|                  | Equivalent ANIO Switch Resistance, 5V   | -         | 2.5K   | -       | Ohm     | ANIO2 Switch       |
| VDDC Char        | acteristics                             |           |        |         |         |                    |
| VDDCN            | Normal Core Voltage 1.5V (Calibrated)   | 1.4       | 1.5    | 1.6     | V       | Normal Mode        |
| VDDCS            | Sleep Core Voltage 1.5V                 | -         | 1.42   | -       | V       | Sleep Mode         |
| Low Supply       | (VDD) Voltage Detection                 |           |        |         |         | 1                  |
| VDET             | Detection Range                         | 2.0       | -      | 4.8     | V       |                    |
| VDETHYS          | Detection Hysteresis                    | -         | 100    | -       | mV      |                    |
| ADC11 Cha        | racteristics                            | •         | •      |         |         |                    |
|                  | ADC Linearity, Center range             | -2        | 0      | +2      | LSB     |                    |
| ADCLIN           | ADC Linearity, 0.2V to FS-0.2V          | -4        | 0      | +4      | LSB     |                    |
| ADCFQ            | ADC Frequency                           | -         | 2      | 4       | MHz     |                    |
| 19.4 <u>AC E</u> | Electrical Characteristics (VDD =2.3V f | to 5.5V T | A=-40° | C to 85 | /125°C) |                    |
| SYMBOL           | PARAMETER                               | MIN       | TYP    | MAX     | UNIT    | NOTE               |
| System Clo       | ck and Reset                            |           | 4      | 1       |         |                    |
| FSYS             | System Clock Frequency                  | -         | 16     | 33      | MHz     |                    |
| FIOSC            | Crystal Oscillator Frequency            | 5         | 16     | 25      | MHz     |                    |
| TSIOSC           | Stable Time for IOSC after power up     | 2         | -      | -       | msec    | After VDD > 2.0V   |
| Supply Tim       | ing                                     |           |        |         | •       |                    |
| TSUPRU           | VDD Ramp Up time                        | 1         | -      | 50      | msec    | WST = 0 for 16MHz  |
| TSUPRD           | VDD Ramp Down Time                      | -         | -      | 50      | msec    |                    |
| TPOR             | Power On Reset Delay                    | -         | 5      | -       | msec    |                    |
| IOSC             |                                         |           | 1      | 1       |         |                    |
|                  | IOSC Calibrated 16MHz/32MHz             | -1        | 0      | +1      | %       |                    |
|                  | IOSC Startup Time                       | -         | -      | 1       | µsec    |                    |
| FIOSC            | Temperature and VDD variation 85°C      | -2        | 0      | +2      | %       |                    |
|                  | Temperature and VDD variation 125°C     | -3        | 0      | +3      | %       |                    |
| SOSC             |                                         |           |        |         |         |                    |
| FSOSC            | Slow Oscillator frequency               | -         | 128    | -       | KHz     |                    |
| IO Timing        |                                         |           | 120    |         | 1412    |                    |
|                  | Propagation Delay 3.3V No load          | -         | 6      | -       | nsec    |                    |
| TPD3 ++          | Propagation Delay 3.3V 25pF load        | -         | 15     | _       | nsec    |                    |
| TPD3 ++          | Propagation Delay 3.3V 50pF load        | _         | 20     | _       | nsec    |                    |
| TPD3             | Propagation Delay 3.3V No load          | -         | 5      | _       | nsec    |                    |
| TPD3             | Propagation Delay 3.3V 25pF load        | _         | 12     | _       | nsec    |                    |
| TPD3             | Propagation Delay 3.3V 50pF load        | _         | 15     | _       | nsec    |                    |
| TPD5 ++          | Propagation Delay 3.3V No load          | -         | 5      | _       | nsec    |                    |
| TPD5 ++          | Propagation Delay 3.3V 25pF load        | _         | 12     | _       | nsec    |                    |
| TPD5 ++          | Propagation Delay 3.3V 50pF load        | _         | 16     | -       | nsec    |                    |
| TPD5             | Propagation Delay 3.3V No load          | -         | 4      | _       | nsec    |                    |
| TPD5             | Propagation Delay 3.3V 25pF load        | -         | 9      | _       | nsec    |                    |
| TPD5             | Propagation Delay 3.3V 20pr load        | -         | 12     | _       | nsec    |                    |
| Flash Memo       |                                         | 1         | 12     | I       | 11360   | 1                  |
| TEMAC            | Embedded Flash Access Time              | -         | 40     | 45      | nsec    | TWAIT must > TEMAC |
| TEMWR            | Embedded Flash Write Time               | -         | 20     | 25      | µsec    |                    |
| TEMSER           | Embedded Flash Sector Erase Time        | -         | 20     | 2.5     | msec    |                    |
| TEMMER           | Embedded Flash Mass Erase Time          | -         | 10     | 12      |         |                    |
|                  |                                         | -         | 10     | 12      | msec    |                    |

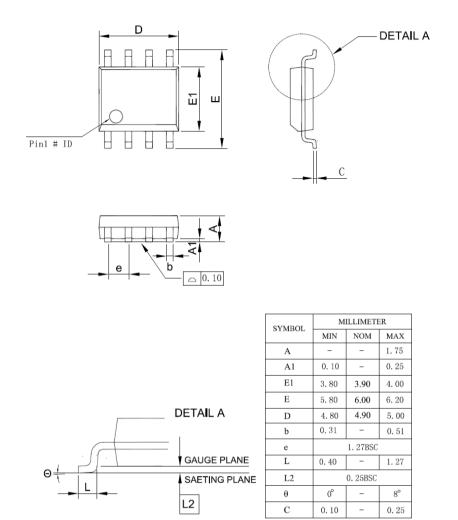



# IS31CS8975 CLASSIFICATION REFLOW PROFILES

Pb-Free Process-Package Classification Temperatures


| Package Thickness | Volume mm3<350 | Volume mm3: 350-2000 | Volume mm3>2000 |
|-------------------|----------------|----------------------|-----------------|
| <1.6 mm           | 260°C          | 260°C                | 260°C           |
| 1.6 mm-2.5 mm     | 260°C          | 250°C                | 245°C           |
| >=2.5 mm          | 250°C          | 245°C                | 245°C           |

| Profile Feature                                              | Pb-Free Assembly           |
|--------------------------------------------------------------|----------------------------|
| Ramp-Up Rate (TL to Tp)                                      | 3 °C / second max.         |
| Preheat – Temoperature Min (Tsmin) to Max (Tsmax)            | 150~200 °C                 |
| –To,e (tsmin to tsmax)                                       | 60-120 seconds             |
| Time maintained above – Temperature (TL)                     | 217 °C                     |
| – Time (tL)                                                  | 60-150 seconds             |
| Peak package body temperature (Tp)(Note 2)                   | See package classification |
| Time within 5°C of specified classification Temperature (tp) | 30 second min. (Note 3)    |
| Ramp-Down Rate (Tp to TL)                                    | 6 °C / second max.         |
| Time 25 °C to Peak Temperature 8 minutes max.                |                            |
| Number of applicable Temperature cycles                      | 3 cycles max.              |

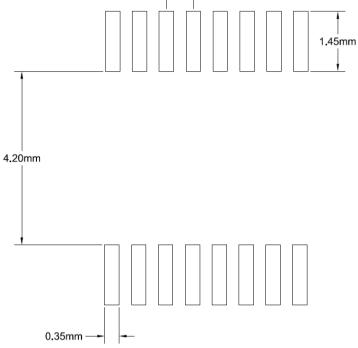


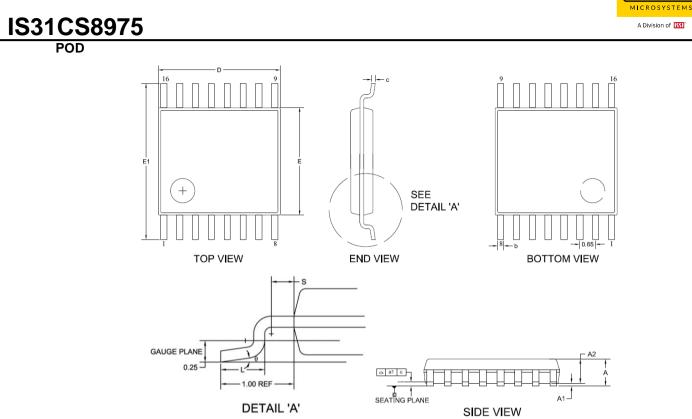



- 20. Packaging Outline
- 20.1 <u>8-pin SOP</u> RECOMMENDED LAND PATTERN



POD





NOTE :

- 1. CONTROLLING DIMENSION : MM
- 2. DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.
- 4. REFERENCE DOCUMENT : JEDEC MS-012
- 5. THE SHAPE OF BODY SHOWE DIFFERENT SHAPE AMONG DIFFERENT FACTORIES.



# 20.2 <u>16-pin TSSOP</u> RECOMMENDED LAND PATTERN





DETAIL 'A'

| SYMBOL | MILLIMETER |      |      |  |
|--------|------------|------|------|--|
| STMBOL | MIN        | NOM  | MAX  |  |
| А      | —          | —    | 1.20 |  |
| A1     | 0.05       | _    | 0.15 |  |
| A2     | 0.80       | 1.00 | 1.05 |  |
| D      | 4.90       | 5.00 | 5.10 |  |
| Е      | 4.30       | 4.40 | 4.50 |  |
| E1     | 6. 40BSC   |      |      |  |
| L      | 0.45       | 0.60 | 0.75 |  |
| b      | 0.19       | _    | 0.30 |  |
| S      | 0.20       |      |      |  |
| c      | 0.09       | _    | 0.20 |  |
| θ      | 0°         |      | 8°   |  |
| a1     | 0.10       |      |      |  |

### NOTES:

1. CONTROLLING DIMENSION: MM

2. REFERENCE DOCUMENT: JEDEC MO-153

LUMISSIL



### 21. Ordering Information

### Temperature Range: -40°C to 85°C

| Order Part No.      | Package             | QTY/Reel  | Remark |
|---------------------|---------------------|-----------|--------|
| IS31CS8975-GRLS2-TR | SOP-8, Lead-free    | 2500/Reel |        |
| IS31CS8975-ZNLS2-TR | TSSOP-16, Lead-free | 2500/Reel |        |

Copyright © 2021 Lumissil Microsystems. All rights reserved. Lumissil Microsystems reserves the right to make changes to this specification and its products at any time without notice. Lumissil Microsystems assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Lumissil Microsystems does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Lumissil Microsystems receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

c.) potential liability of Lumissil Microsystems is adequately protected under the circumstances.

b.) the user assume all such risks; and



### 22. <u>Revisions</u>

### 22.1 <u>V.020A</u>

Modify Flash Protection zones into 2K sizes Add Clock Monitoring and its reset, and ECC interrupt and ECC reset, in RSTCMD register Modify SYSCLK divider max to 256. CKSEL register.

### 22.2 <u>V.020B</u>

Update Flash Controller Read ECC flag in Fail Update TK3 CCHG[2-0]. REFSEL not used.

### 22.3 <u>V.020C</u>

Update register-map and register addresses Add IFB, Writer mode, ISP. Need further modifications if we change to 32Kx16.

### 22.4 <u>V.021</u>

Correct some XFR addresses and default value. TBIT on P23. Modify QE registers definition Add external clock input and clock selections for compatibility on pin 5 and pin 13.

### 22.5 <u>V.022</u>

SOSC Trim 5-bit default 5'b10000 TK2 should always use VDDC as VREF. TK3CFGD AUTODLY. Add Auto mode entry delay.

### 22.6 <u>V.025</u>

Refine TK3 operation description, timing diagram and register definition

### 22.7 <u>V.026</u>

Correct LVDTH formula and descriptions. Add de-bounce input for all function descriptions. Change WDT2/WDT3 default value Change LVDCFG default value. Change IOSCITRM IOSCVTRM default value.

Modify LIN controller's descriptions and add BER interrupt and automatically clear RX/TX state machine

### option.

### 22.8 <u>V.027</u>

Change PWM to 8/10/12 bit option. Add external clock in option. Add ADC.

### 22.9 <u>V.030</u>

SRAM ECC (1K) Writer Mode descriptions DAC/ADC Internal test Add Flash ECC address registers Modify DECC PECC register locations and description Modify buzzer to melody generation

### 22.10 <u>V.031</u>

Add PWM SYNC control. Remove RSTNFLTEN. Add MBISTCMD register.



### 22.11 <u>V.035</u>

Merge SDI and SEQIN into P03 for writer mode. Clarify DECCAD address is updated when DECCIF is set. MBIST will put CPU on hold and resume automatically. Add time unit in buzzer and POW timer/interrupt P04 change CC to MSDA function

### 22.12 <u>V.040</u>

Merge LBIST command into BISTCMD register using mode. Add FLSHVDD register to control e-Flash power during sleep mode. Modify REGRDY definition. I2CS add double address feature.

### 22.13 <u>V.045</u>

Remove duplicate CKSEL register paragraph. Add TK3PU register. Modify DECCFG/DECCADL/DECCADH address, PECCCFG address. TSTMON meaning?

### 22.14 <u>V.045</u>

TSTMON CCDATA2, CCDATA3

### 22.15 <u>V.046</u>

Update CRC/CC description RSTCMD default 0x00 TSSOP-8 → SOP-8

### 22.16 <u>V.047</u>

Modify some inconsistency in descriptions Add B0 option Add EUART1 and remove UART0. IOSC 32M/16M options

### 22.17 <u>V.048</u>

Add ECC control for Flash Controller Read in PECCCFG bit 7. Add sleep mode current spec

### 22.18 <u>V.049</u>

Modify SPI Modify TK3 Modify PIN multifunction

### 22.19 <u>V.050</u>

Corrected miscellaneous errors. Add package outline and ordering information

### 22.20 <u>0A</u>

Prepare for release. WDT2/WDT3 pre-scale and WDT3 default SLEEP/STOP setting for B1 Wait State switch and 16M/32M for B1.

### 22.21 <u>A</u>

The first version datasheet for formal product release