

ASNT5012-PQC is available on two evaluation boards: one with negative supply and one with positive supply. Application notes for these two evaluation boards are presented in order of:

- Negative supply on ASNT05_12
- Positive supply on ASNT05_11

By default, ADSANTEC will ship the positive supply evaluation board. Please send us a message through the DigiKey marketplace website if you would like to receive the negative supply version.

The datasheet for ASNT5012-PQC can be accessed through the following LINK.

Rev. 1.0.1 1 September 2020

ASNT5012-PQC on ASNT05_12 Evaluation Board DC-17Gbps High Sensitivity D-Type Flip-Flop Application Note

Part Description

The ASNT5012-PQC high sensitivity D-type flip-flop accepts a broadband data signal at its differential input port dp/dn and delivers a retimed version of it to its differential output port outp/outn. Retiming of the input data is accomplished by applying a full rate input clock signal to the differential input port cp/cn.

The part is mounted on an ASNT05_12 evaluation board with 50*Ohm* transmission lines to transfer signals to/from the chip to 6 high-speed edge-mount female connectors (Southwest or similar) as shown in Fig. 1. The board has a MOLEX connector for the power supply, as well as signal filters, supply filters, and decoupling networks. The board measures approximately 2.0x2.0 inches, without connectors.

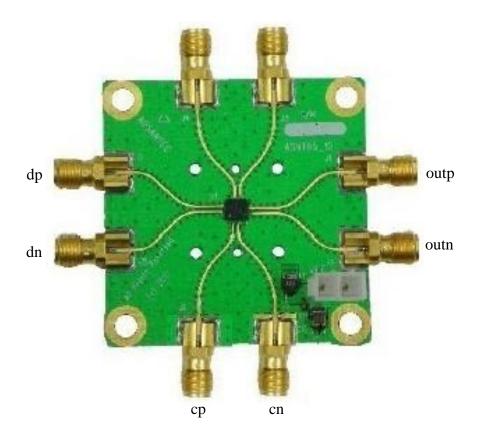


Fig. 1. Layout of ASNT05_12 PCB

The signal and power connectors are described in Table 1 and Table 2 below.

Table 1. Signal Connectors

Name	Name	Signal description	Signal	I/O type
on PCB	on Chip		polarity	
J7	dp	Differential data inputs with internal SE 50 <i>Ohm</i>	Direct	CML
J8	dn	termination to VCC	Inverted	input
J1	outp	Differential outputs with internal SE 50 <i>Ohm</i> termination	Direct	CML
J2	outn	to VCC; require external SE 50 <i>Ohm</i> termination to VCC	Inverted	output
J6	ср	Differential clock inputs with internal SE 50 <i>Ohm</i>	Direct	CML
J5	cn	termination to VCC	Inverted	input

Table 2. Power Supply Connectors

Name on PCB	Name on Chip	Supply type	Supply voltage, V
GND	vcc	External ground	0
VEE	vee	Main negative power supply	-3.3

Initial Setup and Basic Functionality

- 1. The part is static sensitive. Please observe anti-static protection procedures!
- 2. Measure the resistance of all connector pins to VCC, including the power supply, while making sure the board is grounded. All I/O ports should measure 50*Ohms* while on the power supply connector, VEE should be high impedance and GND should be a short. Fig. 2 shows the resistance values of the described I/O connectors.

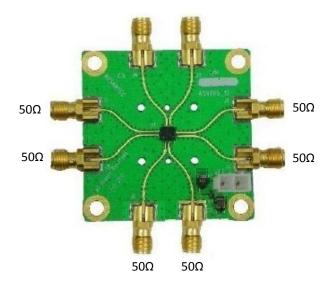


Fig. 2. Impedance of I/O Connectors

Rev. 1.0.1 3 September 2020

- 3. Switch on the first external power supply unit and set it to a negative supply voltage with a value of 0.0V (positive output pin of the unit must be shorted to ground).
- 4. Connect the supply unit's output pins to the PCB's Molex connector marked VEE GND so that the negative output pin is connected to VEE connector pin.
- 5. Gradually increase the negative supply voltage to -3.3V.
- 6. Monitor the supply current in accordance with the part's specifications. Current should be approximately 140mA.
- 7. Apply a differential or SE high-speed data signal to connectors J7/J8. DC blocks or the appropriate shift of voltage levels may be required!
- 8. Apply a differential or SE high-speed full rate clock signal to connectors J1/J2. DC blocks or the appropriate shift of voltage levels may be required!
- 9. Observe a high-speed sampled data signal at connectors J5/J6. Connect them to an oscilloscope or similar device with 50*Ohm* termination to ground either directly or through DC blocks. If a sampled version of the input data signal is not observed, adjust the phase of the input data or clock accordingly.

Board Dimension

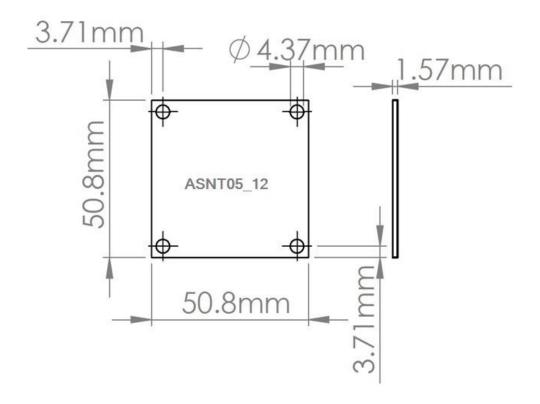


Fig. 3. ASNT05_12 Board Dimensions

Rev. 1.0.1 4 September 2020

ASNT5012-PQC on ASNT05_11 Evaluation Board DC-17Gbps High Sensitivity D-Type Flip-Flop Application Note

Part Description

The ASNT5012-PQC high sensitivity D-type flip-flop accepts a broadband data signal at its differential input port dp/dn and delivers a retimed version of it to its differential output port outp/outn. Retiming of the input data is accomplished by applying a full rate input clock signal to the differential input port cp/cn.

The part is mounted on an ASNT05_11 evaluation board with 50*Ohm* transmission lines to transfer signals to/from the chip to 6 high-speed edge-mount female connectors (Emerson or similar) as shown in Fig. 4. The board has a MOLEX connector for the power supply, as well as signal filters, supply filters, and decoupling networks. The board measures approximately 2.0x2.0 inches, without connectors.

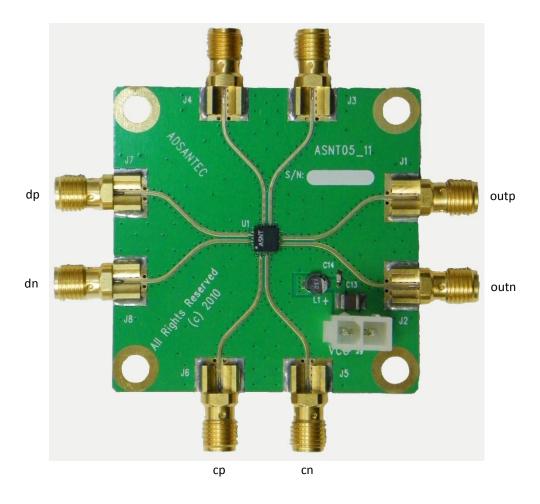


Fig. 4. Layout of ASNT05_11 PCB

The signal and power connectors are described in Table 1 and Table 2 below.

Table 3. Signal Connectors

Name	Name	Signal description	Signal	I/O type
on PCB	on Chip		polarity	
J7	dp	Differential data inputs with internal SE 50 <i>Ohm</i>	Direct	CML
Ј8	dn	termination to VCC	Inverted	input
J1	outp	Differential outputs with internal SE 50 <i>Ohm</i> termination	Direct	CML
J2	outn	to VCC; require external SE 50 <i>Ohm</i> termination to VCC	Inverted	output
J6	ср	Differential clock inputs with internal SE 50 <i>Ohm</i>	Direct	CML
J5	cn	termination to VCC	Inverted	input

Table 4. Power Supply Connectors

Name on PCB	Name on Chip	Supply type	Supply voltage, V
VCC	vcc	Main postive power supply	+3.3
GND	vee	External ground	0

Initial Setup and Basic Functionality

- 10. The part is static sensitive. Please observe anti-static protection procedures!
- 11. Measure the resistance of all connector pins to VCC, including the power supply, while making sure the board is grounded. All I/O ports should measure 50*Ohms* while on the power supply connector, VCC should be a short, and GND should be high impedance. Fig. 5 shows the resistance values of the described I/O connectors.

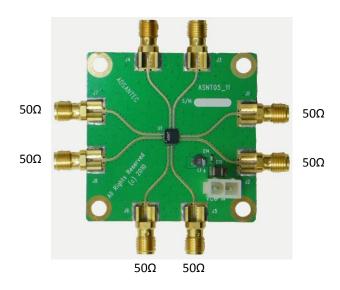


Fig. 5. Impedance of I/O Connectors

- 12. Switch on the first external power supply unit and set it to a positive supply voltage with a value of +0.0V (negative output pin of the unit must be shorted to ground).
- 13. Connect the supply unit's output pins to the PCB's Molex connector marked VCC GND so that the positive output pin is connected to the VCC connector pin.
- 14. Gradually increase the positive supply voltage to +3.3V.
- 15. Monitor the supply current in accordance with the part's specifications. Current should be approximately 140mA.
- 16. Apply a differential or SE high-speed data signal to connectors J7/J8. DC blocks or the appropriate shift of voltage levels may be required!
- 17. Apply a differential or SE high-speed full rate clock signal to connectors J6/J5. DC blocks or the appropriate shift of voltage levels may be required!
- 18. Observe a high-speed sampled data signal at connectors J1/J2. Connect them to an oscilloscope or similar device with 50*Ohm* termination to ground through DC blocks. If a sampled version of the input data signal is not observed, adjust the phase of the input data or clock accordingly.

Board Dimensions

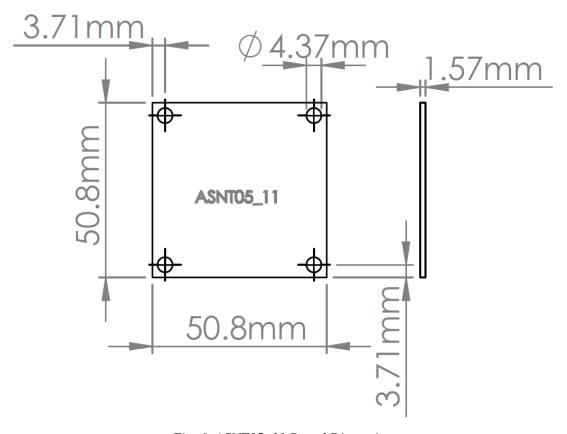


Fig. 6. ASNT05_11 Board Dimensions

Rev. 1.0.1 7 September 2020

Office: (310) 530-9400 Fax: (310) 530-9402

www.adsantec.com

Revision History

Revision	Date	Changes
1.0.1	09-2020	Initial Release

Rev. 1.0.1 8 September 2020