

3.3V CMOS **18-BIT UNIVERSAL BUS** TRANSCEIVER WITH 3 STATE OUTPUTS. **5 VOLT TOLERANT I/O**

IDT74LVC16601A OBSOLETE PART

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4

 W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- Available in SSOP package

DRIVE FEATURES:

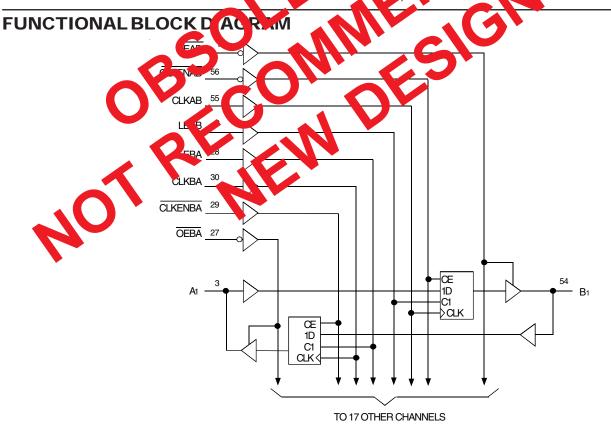
- · High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication system

DESCRIPTION:

The LVC16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. This 18-bit universal bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

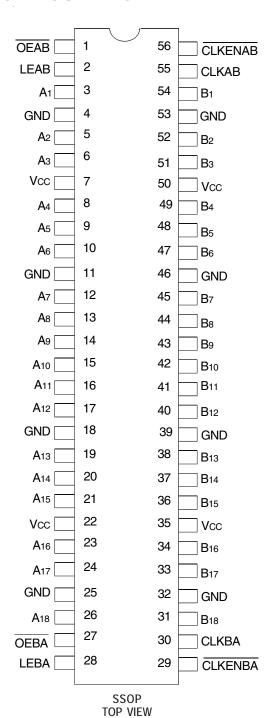

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs.

For A-to-B data flow, the device operates in the tracepal nt mode when LEAB is high. When Lead is low, the A data is ed CLINAB is held at a high or low logic A. I. If A B is low, the A-best data is stored in the latch/flip-flop on the A-best data is stored in the A-best data in the A-best data is stored in the A-best data in the A-best data is stored in the A-best data active low, the output are active. When OEAB is high, couputs are in the high-in peda, ce state. Data flow for B to A is similar the of A to B but use DEB LEB A, CLKBA and CLKENBA.

All purs can be driven from either 3.3V or 5V devices. This feature allows

evice as translator in a mixed 3.3V/5V supply system.

A bas been designed with a ±24mA output driver. This e or driving a resource heavy load while maintaining



IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2015

PIN CONFIGURATION

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	рF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
ŌĒĀB	A-to-B Output Enable Input (Active LOW)
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs
Bx	B-to-A Data Inputs or A-to-B 3-State Outputs
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA	B-to-A Clock Enable Input (Active LOW)

FUNCTION TABLE(1,2)

Inputs					Outputs
CLKENAB	OEAB	LEAB	CLKAB	Ax	Вх
Х	Н	Х	Х	Χ	Z
Х	L	Н	Х	L	L
Х	L	Н	Х	Н	Н
Н	L	L	Х	Χ	B ⁽³⁾
L	L	L	1	L	L
L	L	L	1	Н	Н
L	L	L	L	Χ	B ⁽³⁾
L	L	L	Н	Х	B ⁽⁴⁾

NOTES:

- 1. H = HIGH Voltage Level
 - X = Don't Care
 - L = LOW Voltage Level
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH transition
- 2. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}}$, LEBA, CLKBA, and $\overline{\text{CLKENBA}}$
- 3. Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Te	st Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit				
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		Vcc = 2.3V to 2.7V		/el Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_					
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V				
		Vcc = 2.7V to 3.6V		_	_	0.8					
lıH lıL	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μΑ				
lozh lozl	High Impedance Output Current (3-State Output pins)	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ				
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo ≤ 5	.5V	_	_	±50	μA				
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V				
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV				
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μΑ				
Iccz		$3.6 \le VIN \le 5.5V^{(2)}$		_	_	10					
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	μΑ				

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Voн	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = -6mA	2		
		Vcc = 2.3V	Iон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

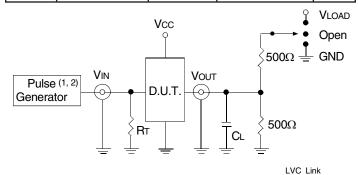
^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $T_A = -40$ °C to +85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled			

SWITCHING CHARACTERISTICS(1)

			Vcc =	Vcc = 2.7V		V ± 0.3V	
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
tPLH .	Propagation Delay		_	5.4	_	4.6	ns
tPHL	Ax to Bx or Bx to Ax						
t PLH	Propagation Delay		_	6.2	_	5.2	ns
tPHL	LEBA to Ax, LEAB to Bx						
tPLH .	Propagation Delay		_	6.3	_	5.3	ns
tPHL	CLKBA to Ax, CLKAB to Bx						
tpzH	Output Enable Time		_	6.8	_	5.6	ns
tPZL	OEBA to Ax, OEAB to Bx						
tpHZ	Output Disable Time		_	6	_	5.2	ns
tPLZ	OEBA to Ax, OEAB to Bx	OEBA to Ax, OEAB to Bx					
tsu	Set-up Time HIGH or LOW, Ax to	CLKAB, Bx to CLKBA	1.5	_	1.5	_	ns
tH	Hold Time HIGH or LOW, Ax to (CLKAB, Bx to CLKBA	0.8	_	0.8	_	ns
tsu	Set-up Time HIGH or LOW	Clock LOW	1	_	1	_	ns
	Ax to LEAB, Bx to LEBA	Clock HIGH	1	_	1	_	
tsu	Set-up Time, CLKENAB to CLKAB	3	2.1	_	2.1	_	ns
tsu	Set-up Time, CLKENBA to CLKBA	A	2.1	_	2.1	_	ns
tΗ	Hold Time HIGH or LOW, Ax afte	r LEAB, Bx after LEBA	1.8	_	1.8	_	ns
tH .	Hold Time, CLKENAB after CLKA	В	0.5	_	0.5	_	ns
tΗ	Hold Time, CLKENBA after CLKB	Α	0.5	_	0.5	_	ns
tw	LEAB or LEBA Pulse Width HIGH	1	3	_	3	_	ns
tw	CLKAB or CLKBA Pulse Width H	IGH or LOW	3	_	3	_	ns
tsk(o)	Output Skew ⁽²⁾		T —	_	_	500	ps


NOTES:

^{1.} See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to + 85°C.

^{2.} Skew between any two outputs of the same package and switching in the same direction.

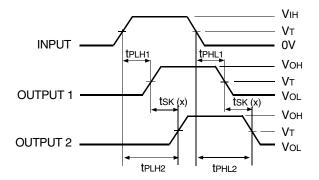
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

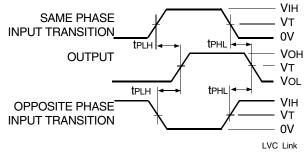

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

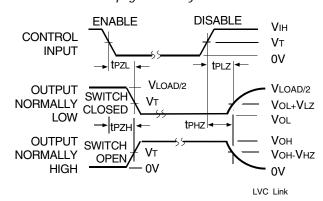
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

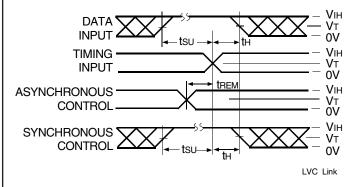


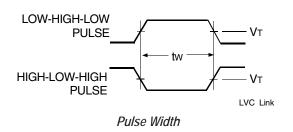
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


Output Skew - tsk(x)

NOTES:

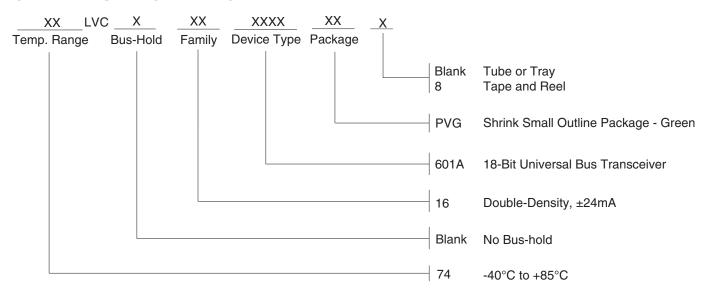
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

LVC Link

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

07/28/2015	Pg. 6	Updated the ordering information by removing non RoHS parts and adding Tape and Reel information.	
07/31/2015	Pg. 1-6	PDN#CQ-14-05 issued. See IDT.com for PDN specifics.	
09/09/2015	Pa. 1-6	Datasheet changed to Obsolete Status.	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/