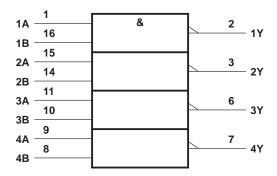
54ACT11000, 74ACT11000 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SCAS002A - D2957, JUNE 1987 - REVISED APRIL 1993

- Inputs Are TTL-Voltage Compatible
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- *EPIC*[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

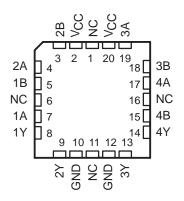

These devices contain four independent 2-input NAND gates. They perform the Boolean functions $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The 54ACT11000 is characterized for operation over the full military temperature range of -55° C to 125°C. The 74ACT11000 is characterized for operation from -40° C to 85°C.

FUNCTION TABLE (each gate)									
INP	UTS	OUTPUT							
Α	В	Y							
Н	Н	L							
L	Х	н							
Х	L	Н							

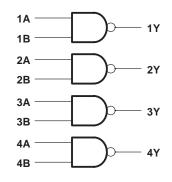
.....

logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the D, J, and N packages.

54ACT11000 . . . J PACKAGE 74ACT11000 . . . D OR N PACKAGE (TOP VIEW)


1A 1Y 2Y GND GND	0	1 2 3 4 5	υ	14] 1B] 2A] 2B] V _{CC}] V _{CC}] 3A
3Y 4Y 4B		6 7 8		11 10 9] 3A] 3B] 4A

54ACT11000 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)

EPIC is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

54ACT11000, 74ACT11000 QUADRUPLE 2-INPUT POSITIVE-NAND GATES

SCAS002A - D2957, JUNE 1987 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	−0.5 V to 6 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	
Continuous current through V _{CC} or GND	±100 mA
Storage temperature range	– 65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		54ACT11000		74ACT	UNIT	
		MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	VCC	0	VCC	V
Vo	Output voltage	0	VCC	0	VCC	V
IOH	High-level output current		-24		-24	mA
IOL	Low-level output current		24		24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0	10	0	10	ns/V
T _A	Operating free-air temperature	-55	125	- 40	85	°C

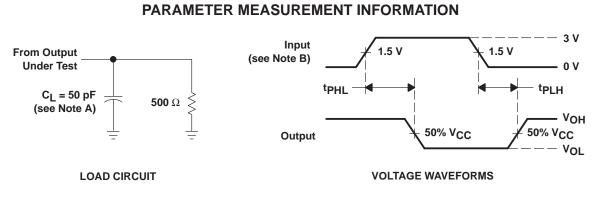
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS	N.	Τį	ן = 25°C	;	54AC	Г 11000	74AC1	UNIT	
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	1au 50 m	4.5 V	4.4			4.4		4.4		
	I _{OH} = - 50 μA	5.5 V	5.4			5.4		5.4		
Vou	1011 - 24 mA	4.5 V	3.94			3.7		3.8		V
VOH	I _{OH} = – 24 mA	5.5 V	4.94			4.7		4.8		v
	$I_{OH} = -50 \text{ mA}^{\ddagger}$	5.5 V				3.85				
	I _{OH} = – 75 mA‡	5.5 V						3.85		
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1		0.1		0.1	
Voi	I _{OL} = 24 mA	4.5 V			0.36		0.5		0.44	V
VOL		5.5 V			0.36		0.5		0.44	v
	I _{OL} = 50 mA [‡]	5.5 V					1.65			
	I _{OL} = 75 mA [‡]	5.5 V							1.65	
Ц	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μΑ
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		80		40	μA
∆I _{CC} §	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1		1	mA
Ci	$V_I = V_{CC}$ or GND	5 V		3.5						pF

[‡]Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

54ACT11000, 74ACT11000 QUADRUPLE 2-INPUT POSITIVE-NAND GATES


SCAS002A - D2957, JUNE 1987 - REVISED APRIL 1993

switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM TO		Т	_ = 25°C	;	54ACT	11000	74ACT	11000	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	V	1.5	7.2	10.9	1.5	13.3	1.5	12.3	
^t PHL	AUD	ř	1.5	5.8	8	1.5	9.5	1.5	8.8	ns

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

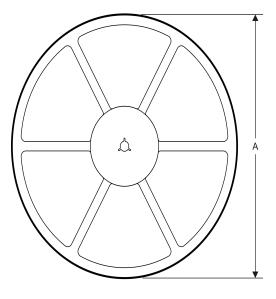
PARAMETER		TEST CONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance per gate	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	23	pF

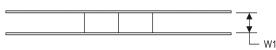
NOTES: A. CL includes probe and jig capacitance.

B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

C. The outputs are measured one at a time with one input transition per measurement.

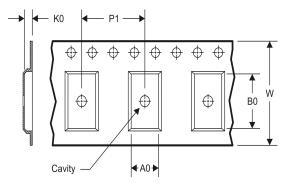
Figure 1. Load Circuit and Voltage Waveforms


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

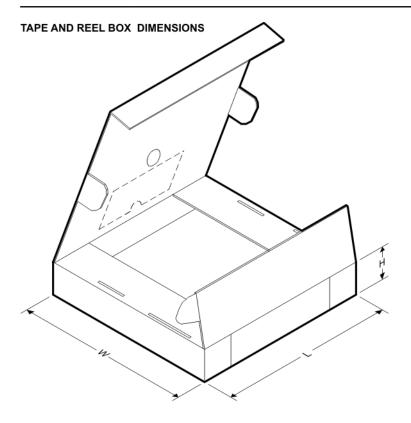
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ACT11000DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
74ACT11000NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74ACT11000DR	SOIC	D	16	2500	333.2	345.9	28.6
74ACT11000NSR	SO	NS	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated