

QUAD FORWARD-CONDUCTING P-GATE THYRISTORS PROGRAMMABLE OVERVOLTAGE PROTECTORS

Description

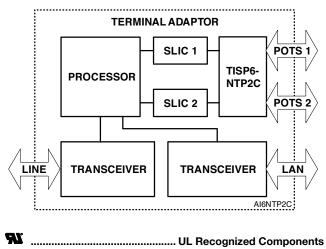
File Number: E215609

MDRXAN

TISP6NTP2C High Voltage Ringing SLIC Protector

Agency Recognition

UL


Independent Tracking Overvoltage Protection for Two SLICs:

- Dual Voltage-Programmable Protectors
- Supports Battery Voltages Down to -155 V
- Low 5 mA max. Gate Triggering Current - High 150 mA min. (70 °C) Holding Current
- Specified 2/10 Limiting Voltage
- Small Outline Surface Mount Package - Full 0 °C to 70 °C Temperature Range

Rated for Common Impulse Waveforms

	•	
Voltage Impulse	Current Impulse	I _{PPSM}
Wave Shape	Wave Shape	Α
10/1000	10/1000	25
10/700	5/310	40
2/10	2/10	90

Typical TISP6NTP2C Router Application

Description

The TISP6NTP2C has been designed for short loop systems such as:

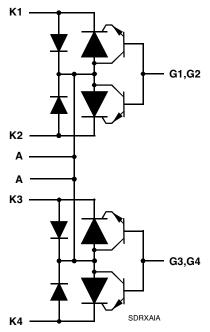
- WILL (Wireless In the Local Loop)

- FITL (Fibre In The Loop)
- DAML (Digital Added Main Line, Pair Gain)
- SOHO (Small Office Home Office) - ISDN-TA (Integrated Services Digital Network - Terminal Adaptors)

How to Order

Device	Package Carrier		Order As
TISP6NTP2C	D (8-pin Small-Outline)	R (Embossed Tape Reeled)	TISP6NTP2CDR-S

MARCH 2002 - REVISED JULY 2019



*RoHS Directive 2015/863, Mar 31, 2015 and Annex. Specifications are subject to change without notice. Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

D Package (Top View) K1 [□ K2 8 7 ΠA G1.G2 2

Device Symbol

BOURNS

Description (Continued)

The systems described often have the need to source two POTS (Plain Old Telephone Service) lines, one for a telephone and the other for a facsimile machine. In a single surface mount package, the TISP6NTP2C protects the two POTS line SLICs (Subscriber Line Interface Circuits) against overvoltages caused by lightning, a.c. power contact and induction.

The TISP6NTP2C has an array of four buffered P-gate forward conducting thyristors with twin commoned gates and a common anode connection. Each thyristor cathode has a separate terminal connection. An antiparallel anode-cathode diode is connected across each thyristor. The buffer transistors reduce the gate supply current.

In use, the cathodes of an TISP6NTP2C thyristors are connected to the four conductors of two POTS lines (see applications information). Each gate is connected to the appropriate negative voltage battery feed of the SLIC driving that line pair. By having separate gates, each SLIC can be protected at a voltage level related to the negative supply voltage of that individual SLIC. The anode of the TISP6NTP2C is connected to the SLIC common. The TISP6NTP2C voltage and current ratings also make it suitable for the protection of ISDN d.c. feeds of down to -115 V (ETSI Technical Report ETR 080:1993, ranges 1 to 5).

Positive overvoltages are clipped to common by forward conduction of the TISP6NTP2C antiparallel diode. Negative overvoltages are initially clipped close to the SLIC negative supply by emitter follower action of the TISP6NTP2C buffer transistor. If sufficient clipping current flows, the TISP6NTP2C thyristor will regenerate and switch into a low voltage on-state condition. As the overvoltage subsides, the high holding current of the TISP6NTP2C helps prevent d.c. latchup.

Rating	Symbol	Value	Unit
Repetitive peak off-state voltage, V _{GK} = 0	V _{DRM}	-170	V
Repetitive peak gate-cathode voltage, $V_{KA} = 0$	V _{GKRM}	-167	V
Non-repetitive peak on-state pulse current (see Notes 1 and 2)			
10/1000 (Telcordia (Bellcore) GR-1089-CORĘ, Issue 2, February 1999, Section 4) 5/320 (ITU-T K.20, K.21& K.45, K.44 open-circuit voltage wave shape 10/700) 8/20 (ITU-T K.21 & K.44 CWG), V _{GG} = -48 V 2/10 (Telcordia (Bellcore) GR-1089-CORĘ, Issue 2, February 1999, Section 4)	IPPSM	25 40 60 90	A
Non-repetitive peak on-state current, 50 Hz/60 Hz (see Notes 1 and 2) 0.1 s 1 s 5 s 300 s 900 s	I _{TSM}	7 2.7 1.5 0.45 0.43	A
Non-repetitive peak gate current, $1/2 \ \mu s$ pulse, cathodes commoned (see Note 1)	I _{GSM}	+25	А
Operating free-air temperature range		-40 to +85	°C
Junction temperature	TJ	-40 to +150	°C
Storage temperature range	T _{stg}	-40 to +150	°C

Absolute Maximum Ratings, 0 °C \leq T_J \leq 70 °C (Unless Otherwise Noted)

NOTES: 1. Initially, the protector must be in thermal equilibrium. The surge may be repeated after the device returns to its initial conditions. Gate voltage range is -20 V to -155 V.

2. These non-repetitive rated currents are peak values for either polarity. The rated current values may be applied to any cathodeanode terminal pair. Additionally, all cathode-anode terminal pairs may have their rated current values applied simultaneously (in this case the anode terminal current will be four times the rated current value of an individual terminal pair).

Recommended Operating Conditions

	Component	Min	Тур	Max	Unit
C _G	Gate decoupling capacitor	100	220		nF
Ba	Series resistor for GR-1089-CORE intra-building surge survival, section 4.5.9, tests 1 and 2	5	50		Ω
R _S	Series resistor for K.20, K.21 and K.45 coordination with a 400 V primary protector	10	50		Ω

MARCH 2002 - REVISED JULY 2019

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

BOURNS

Electrical Characteristics, 0 °C ≤ TJ ≤ 70 °C (Unless Otherwise Noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
	Off state surrent	$T_{\rm J} = 25 ^{\circ}{\rm C}$			-5	μA
۱ _D	Off-state current	$V_{\rm D} = V_{\rm DRM}, V_{\rm GK} = 0$			-50	μA
V _(BO)	Ramp breakover	UL 497B, dv/dt \leq ±100 V/µs, di/dt = ±10 A/µs, T _J = 25 °C			-112	V
()	voltage	$V_{GG} = -100 \text{ V}$, Maximum ramp value = ±10 A				
V _(BO)	Impulse breakover	2/10 μ s, I _{TM} = -27 A, di/dt = -27 A/ μ s, R _S = 50 Ω , V _{GG} = -100 V,			-115	v
•(BO)	voltage	(see Note 3)			110	v
V	Gate-cathode impulse	2/10 μs, I_{TM} = -27 A, di/dt = -27 A/μs, R_S = 50 Ω, V_{GG} = -100 V,			15	v
V _{GK(BO)}	breakover voltage	(see Note 3)			15	v
V _F	Forward voltage	I _F = 5 A, t _w = 200 μs			3	V
V	Ramp peak forward	UL 497B, dv/dt $\leq \pm 100$ V/µs, di/dt = ± 10 A/µs,			5	v
V _{FRM}	recovery voltage	Maximum ramp value = ± 10 A T _J = 25 °C			5	v
V	Impulse peak forward	2/10 μs, I_{TM} = -27 A, di/dt = -27 A/μs, R_S = 50 Ω,			12	v
V _{FRM}	recovery voltage	(see Note 3)			12	v
Ι _Η	Holding current	I _T = -1 A, di/dt = 1A/ms, V _{GG} = -100 V	-150			mA
	Gate reverse current	$T_J = 25 \degree C$			-5	μΑ
I _{GKS}	Gale reverse current	$V_{GG} = V_{GK} = V_{GKRM}, V_{KA} = 0$			-50	μA
1	Gate trigger current	$T_{\rm J} = 25 ^{\circ}{\rm C}$			5	mA
I _{GT}	Gale ingger current	$I_T = -3 \text{ A}, t_{p(g)} \ge 20 \mu\text{s}, V_{GG} = -100 V$			6	mA
Var	Gate-cathode trigger	$L = -3.4 \pm > 20 \text{ us} V_{res} = -100 \text{ V}$			2.5	V
V _{GT}	voltage	$I_T = -3 \text{ A}, t_{p(g)} \ge 20 \ \mu s, V_{GG} = -100 \text{ V}$			2.0	v
C _{KA}	Cathode-anode off-	$f = 1 \text{ MHz}, V_d = 1 \text{ V}, I_G = 0, (see \text{ Note } 4)$ $V_D = -3 \text{ V}$			100	pF
ΨKA	state capacitance	$V_{\rm D} = -48 \text{ V}$			50	pF

NOTES: 3. GR-1089-CORE intra-building 2/10, 1.5 kV conditions with 20 MHz bandwidth. The diode forward recovery and the thyristor gate impulse breakover (overshoot) are not strongly dependent of the SLIC supply voltage value (V_{GG}).

4. These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The unmeasured device terminals are a.c. connected to the guard terminal of the bridge.

Thermal Characteristics

Parameter		Test Conditions	Min	Тур	Max	Unit
R ₀ ,	Junction to free air thermal resistance	$T_A = 70 \degree C$, EIA/JESD51-3 PCB, EIA/JESD51-2 environment, $P_{tot} = 0.52 \text{ W}$			160	°C/W

Environmental Characteristics

Specification	
Moisture Sensitivity Level	1
ESD Classification (Human Body Model)	2

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

BOURNS

Parameter Measurement Information

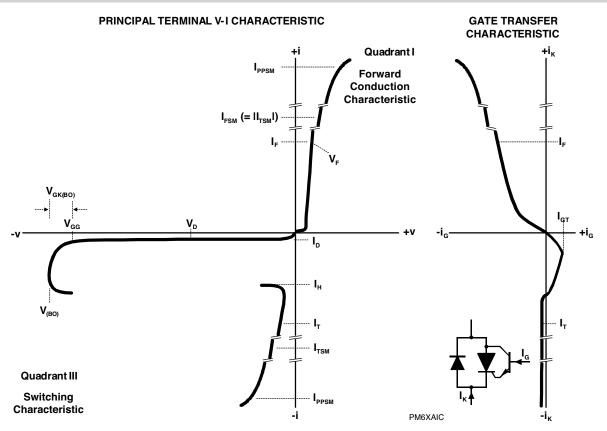


Figure 1. Principal Terminal and Gate Transfer Characteristics

BOURNS

APPLICATIONS INFORMATION

SLIC Protection

The generation of POTS lines at the customer premise normally uses a ringing SLIC. Although the lines are short, a central office ringing voltage level is often required for fax machine operation. High voltage SLICs are now available that can produce adequate ringing voltage (see table). The TISP6NTP2C has been designed to work with these SLICs which use battery voltages, V_{BATH}, down to -150 V. Figure 2 shows a typical example with one TISP6NTP2C protecting two SLICs.

The table below shows some details of HV SLICs using multiple negative supply rails.

Manufacturer	INFINE	ON‡			LEGERI	TY™‡			Unit
SLIC Series	s SLIC-P‡		ISLIC	ISLIC™‡					Unit
SLIC #	PEB 4266		79R	241	79F	101	79F	R100	
Data Sheet Issue	14/02/2001		-/08/2	2000	-/07/2	2000	-/07/2	2000	
Short Circuit Current	11	0	15	50	15	50	15	50	mA
V _{BATH} max.	-15	-104		04	-104		-104		V
V _{BATL} max.	-15	50	-104		V _{BATH}		V _{BATH}		V
AC Ringing for:	8	5	45†		50†		5	5†	V rms
Crest Factor	1.	1.4 1.4 1.4		1.4		4	1.	25	
V _{BATH}	-7	70	-90		-9	9	-9	9	V
V _{BATR}	-15	50	-36		-2	4	-2	4	V
R or T Overshoot < 250 ns			-15	15	-20	12	-20	12	V
Line Feed Resistance	20 -	+ 30	50		5	0	5	60	

† Assumes -20 V battery voltage during ringing.

‡ Legerity, the Legerity logo and ISLIC are the trademarks of Legerity, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

ISDN Protection

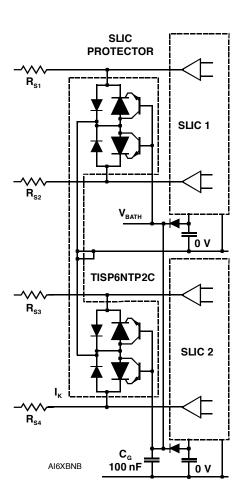
For voltage feed protection, the cathodes of an TISP6NTP2C thyristors are connected to the four conductors to be protected (see Figure 3). Each gate is connected to the appropriate negative voltage feed. The anode of the TISP6NTP2C is connected to the system common. Positive overvoltages are clipped to common by forward conduction of the TISP6NTP2C antiparallel diode. Negative overvoltages are initially clipped close to the negative supply by emitter follower action of the TISP6NTP2C buffer transistor. If sufficient clipping current flows, the TISP6NTP2C thyristor will regenerate and switch into a low voltage on-state condition. As the negative overvoltage subsides, the high holding current of the TISP6NTP2C prevents d.c. latchup.

Voltage Stress Levels

Figure 4 shows the protector electrodes. The package terminal designated gate, G, is the transistor base, B, electrode connection and so is marked as B (G). The following junctions are subject to voltage stress: Transistor EB and CB, SCR AK (off state) and the antiparallel diode (reverse blocking). This clause covers the necessary testing to ensure the junctions are good.

Testing transistor CB and EB: The maximum voltage stress level for the TISP6NTP2C is V_{BATH} with the addition of the short term antiparallel diode voltage overshoot, V_{FRM} . The current flowing out of the G terminal is measured at V_{BATH} plus V_{FRM} . The SCR K terminal is shorted to the common (0 V) for this test (see Figure 4). The measured current, I_{GKS} , is the sum of the junction currents I_{CB} and I_{EB} .

Testing transistor CB, SCR AK off state and diode reverse blocking: The highest AK voltage occurs during the overshoot period of the protector. To make sure that the SCR and diode blocking junctions do not break down during this period, a d.c. test for off-state current, I_{p} , can be applied at the overshoot voltage value. To avoid transistor CB current amplification by the transistor gain, the transistor base-emitter is shorted during this test (see Figure 5).


Summary: Two tests are need to verify the protector junctions. Maximum current values for I_{GKS} and I_D are required at the specified applied voltage conditions.

MARCH 2002 - REVISED JULY 2019

Specifications are subject to change without notice. Users should verify actual device performance in their specific applications.

The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

BOURNS

APPLICATIONS INFORMATION

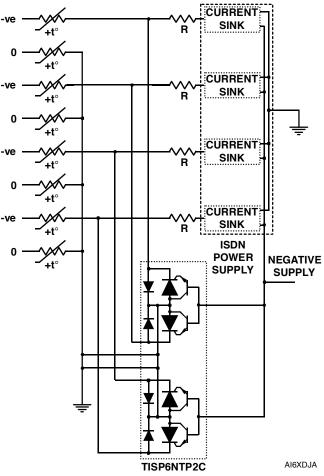


Figure 2. SLIC Protection

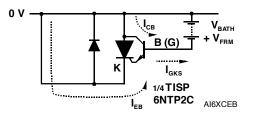
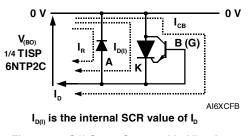



Figure 4. Transistor CB and EB Verification

Resistor "R" may be needed if sink has internal clamp diode

Figure 3. Protection of Four ISDN Power Feeds

MARCH 2002 - REVISED JULY 2019

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.

BOURNS

MECHANICAL DATA

Device Symbolization Code

Devices will be coded as below.

Device	Symbolization Code
TISP6NTP2CDR-S	6NTP2C

Asia-Pacific: Tel: +886-2 2562-4117 · Email: asiacus@bourns.com Europe: Tel: +36 88 885 877 · Email: eurocus@bourns.com The Americas: Tel: +1-951 781-5500 • Email: americus@bourns.com www.bourns.com

MARCH 2002 - REVISED JULY 2019 "TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is registered in the U.S. Patent and Trademark Office. "Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.

Specifications are subject to change without notice.

Users should verify actual device performance in their specific applications. The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at <u>www.bourns.com/docs/legal/disclaimer.pdf</u>.

Legal Disclaimer Notice

This legal disclaimer applies to purchasers and users of Bourns[®] products manufactured by or on behalf of Bourns, Inc. and its affiliates (collectively, "Bourns").

Unless otherwise expressly indicated in writing, Bourns[®] products and data sheets relating thereto are subject to change without notice. Users should check for and obtain the latest relevant information and verify that such information is current and complete before placing orders for Bourns[®] products.

The characteristics and parameters of a Bourns[®] product set forth in its data sheet are based on laboratory conditions, and statements regarding the suitability of products for certain types of applications are based on Bourns' knowledge of typical requirements in generic applications. The characteristics and parameters of a Bourns[®] product in a user application may vary from the data sheet characteristics and parameters due to (i) the combination of the Bourns[®] product with other components in the user's application, or (ii) the environment of the user application itself. The characteristics and parameters of a Bourns[®] product also can and do vary in different applications and actual performance may vary over time. Users should always verify the actual performance of the Bourns[®] product in their specific devices and applications, and make their own independent judgments regarding the amount of additional test margin to design into their device or application to compensate for differences between laboratory and real world conditions.

Unless Bourns has explicitly designated an individual Bourns[®] product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949) or a particular qualification (e.g., UL listed or recognized), Bourns is not responsible for any failure of an individual Bourns[®] product to meet the requirements of such industry standard or particular qualification. Users of Bourns[®] products are responsible for ensuring compliance with safety-related requirements and standards applicable to their devices or applications.

Bourns[®] products are not recommended, authorized or intended for use in nuclear, lifesaving, life-critical or life-sustaining applications, nor in any other applications where failure or malfunction may result in personal injury, death, or severe property or environmental damage. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any Bourns[®] products in such unauthorized applications might not be safe and thus is at the user's sole risk. Life-critical applications include devices identified by the U.S. Food and Drug Administration as Class III devices and generally equivalent classifications outside of the United States.

Bourns expressly identifies those Bourns[®] standard products that are suitable for use in automotive applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns[®] standard products in an automotive application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk. If Bourns expressly identifies a sub-category of automotive application in the data sheet for its standard products (such as infotainment or lighting), such identification means that Bourns has reviewed its standard product and has determined that if such Bourns[®] standard product is considered for potential use in automotive applications, it should only be used in such sub-category of automotive applications. Any reference to Bourns[®] standard product in the data sheet as compliant with the AEC-Q standard or "automotive grade" does not by itself mean that Bourns has approved such product for use in an automotive application.

Bourns[®] standard products are not tested to comply with United States Federal Aviation Administration standards generally or any other generally equivalent governmental organization standard applicable to products designed or manufactured for use in aircraft or space applications. Bourns expressly identifies Bourns[®] standard products that are suitable for use in aircraft or space applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns[®] standard product in an aircraft or space application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk.

The use and level of testing applicable to Bourns[®] custom products shall be negotiated on a case-by-case basis by Bourns and the user for which such Bourns[®] custom products are specially designed. Absent a written agreement between Bourns and the user regarding the use and level of such testing, the above provisions applicable to Bourns[®] standard products shall also apply to such Bourns[®] custom products.

Users shall not sell, transfer, export or re-export any Bourns[®] products or technology for use in activities which involve the design, development, production, use or stockpiling of nuclear, chemical or biological weapons or missiles, nor shall they use Bourns[®] products or technology in any facility which engages in activities relating to such devices. The foregoing restrictions apply to all uses and applications that violate national or international prohibitions, including embargos or international regulations. Further, Bourns[®] products and Bourns technology and technical data may not under any circumstance be exported or re-exported to countries subject to international sanctions or embargoes. Bourns[®] products may not, without prior authorization from Bourns and/or the U.S. Government, be resold, transferred, or re-exported to any party not eligible to receive U.S. commodities, software, and technical data.

To the maximum extent permitted by applicable law, Bourns disclaims (i) any and all liability for special, punitive, consequential, incidental or indirect damages or lost revenues or lost profits, and (ii) any and all implied warranties, including implied warranties of fitness for particular purpose, non-infringement and merchantability.

For your convenience, copies of this Legal Disclaimer Notice with German, Spanish, Japanese, Traditional Chinese and Simplified Chinese bilingual versions are available at:

Web Page: http://www.bourns.com/legal/disclaimers-terms-and-policies PDF: http://www.bourns.com/docs/Legal/disclaimer.pdf