

STF6N60M2, STP6N60M2, STU6N60M2

N-channel 600 V, 1.06 Ω typ., 4.5 A MDmesh™ M2 Power MOSFETs in TO-220FP, TO-220 and IPAK packages

Datasheet - production data

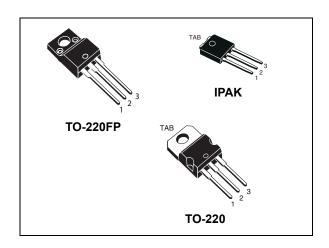
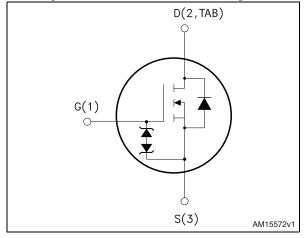



Figure 1. Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	I _D
STF6N60M2			
STP6N60M2	650 V	1.2 Ω	4.5 A
STU6N60M2			

- Extremely low gate charge
- Excellent output capacitance (C_{oss}) profile
- 100% avalanche tested
- Zener-protected

Applications

· Switching applications

Description

These devices are N-channel Power MOSFETs developed using MDmesh™ M2 technology. Thanks to their strip layout and improved vertical structure, the devices exhibit low on-resistance and optimized switching characteristics, rendering them suitable for the most demanding high efficiency converters.

Table 1. Device summary

Order code	Marking	Package	Packing
STF6N60M2		TO-220FP	
STP6N60M2	6N60M2	TO-220	Tube
STU6N60M2		IPAK	

October 2015 DocID024771 Rev 2 1/18

Contents

1	Elect	trical ratings
2	Elec	trical characteristics
	2.1	Electrical characteristics (curves)
3	Test	circuits
4	Pack	age information
	4.1	TO-220FP package information
	4.2	TO-220 package information
	4.3	IPAK(TO-251) package information
5	Revi	sion history 17

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Va	lue	Unit
Symbol	raiailletei	TO-220FP	TO-220, IPAK	Oilit
V_{GS}	Gate-source voltage	±	25	V
I _D	Drain current (continuous) at T _C = 25 °C	4.5 ⁽¹⁾	4.5	Α
I _D	Drain current (continuous) at T _C = 100 °C	2.9 ⁽¹⁾ 2.9		Α
I _{DM} ⁽²⁾	Orain current (pulsed) 18 ⁽¹⁾ 18		18	Α
P _{TOT}	Total dissipation at T _C = 25 °C	20	60	W
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s; T _C =25 °C)	2500		V
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15		V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50		V/IIS
T _{stg}	Storage temperature	FF to 150		°C
T _j	Operating junction temperature	- 55 to 150		

- 1. Limited by maximum junction temperature.
- 2. Pulse width limited by safe operating area.
- 3. $I_{SD} \leq$ 4.5 A, di/dt \leq 400 A/ μ s; $V_{DS\ peak}$ < $V_{(BR)DSS}$, V_{DD} =400 V
- $4. \quad V_{DS} \leq \ 480 \ V$

Table 3. Thermal data

Symbol	Parameter		Unit		
Symbol Parameter		TO-220FP	TO-220	IPAK	
R _{thj-case}	Thermal resistance junction-case max	6.25 2.08)8	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5 100		100	°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax})	1	Α
E _{AS}	Single pulse avalanche energy (starting T_j =25°C, I_D = I_{AR} ; V_{DD} =50)	86	mJ

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
1	Zero gate voltage	V _{DS} = 600 V			1	μA
DSS	I_{DSS} drain current ($V_{GS} = 0$)	V _{DS} = 600 V, T _C =125 °C			100	μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±10	μА
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 2.25 A		1.06	1.2	Ω

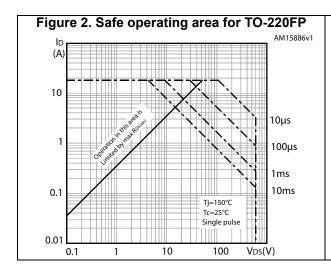
Table 6. Dynamic

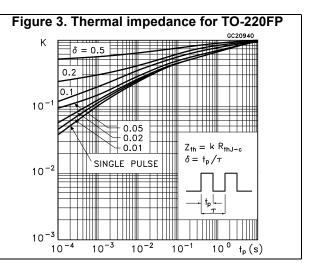
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	232	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	14	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	ı	0.7	ı	pF
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$	-	71	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	6.5	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 4.5 A,	-	8	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	1.7		nC
Q_{gd}	Gate-drain charge	(see Figure 18)	-	4	-	nC

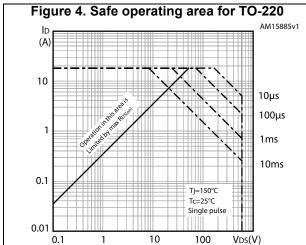
^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

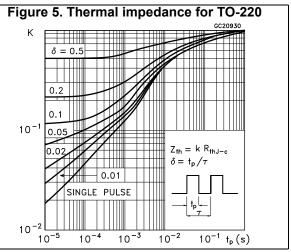
Table 7. Switching times

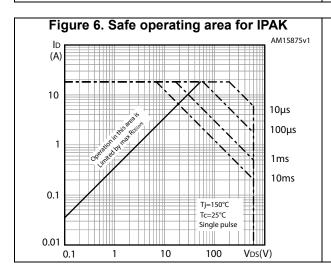
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	9.5	-	ns
t _r	Rise time	$V_{DD} = 300 \text{ V}, I_{D} = 1.65 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	7.4	-	ns
t _{d(off)}	Turn-off delay time	(see <i>Figure 17</i> and <i>Figure 22</i>)	-	24	-	ns
t _f	Fall time		-	22.5	-	ns

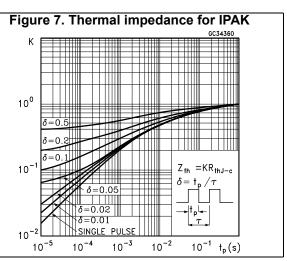

Table 8. Source drain diode

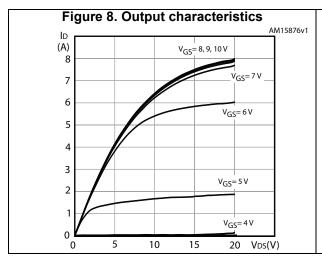

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		4.5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		18	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 4.5 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time	4.5.4.11.11.400.47	-	274		ns
Q _{rr}	Reverse recovery charge	$I_{SD} = 4.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V} \text{ (see Figure 19)}$	-	1.47		μC
I _{RRM}	Reverse recovery current	Top of t (cost igans to)	-	10.7		Α
t _{rr}	Reverse recovery time	I _{SD} = 4.5 A, di/dt = 100 A/μs	-	376		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	1.96		μC
I _{RRM}	Reverse recovery current	(see Figure 19)	-	10.5		Α

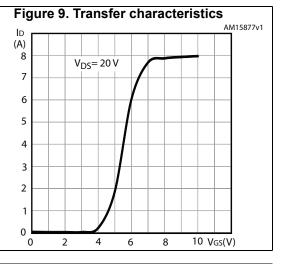

^{1.} Pulse width limited by safe operating area.

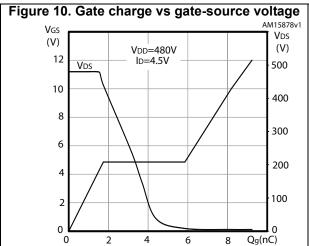

^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

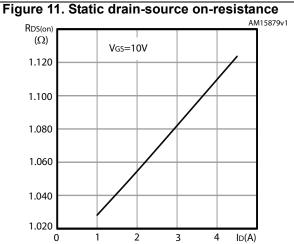

2.1 Electrical characteristics (curves)

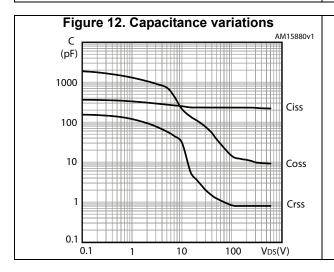


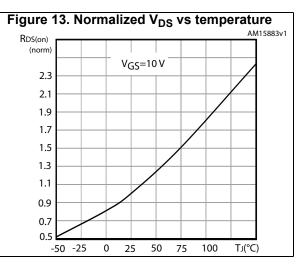


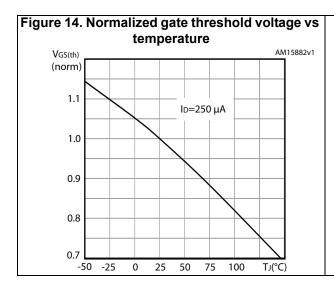


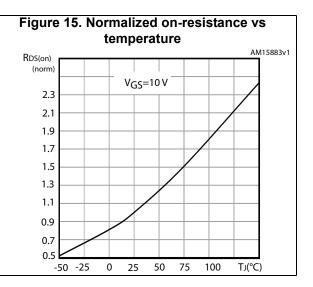


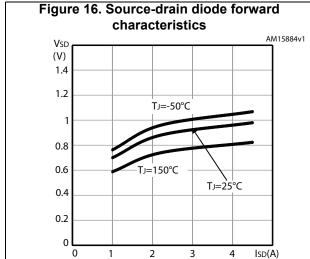


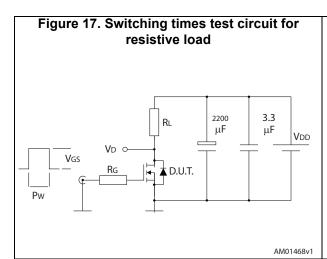

DocID024771 Rev 2

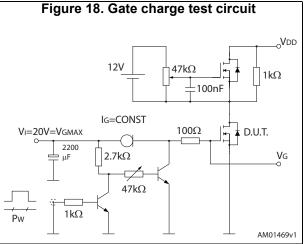


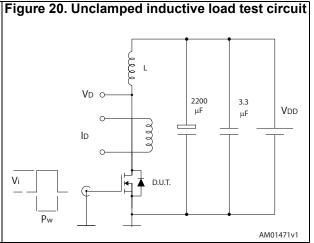


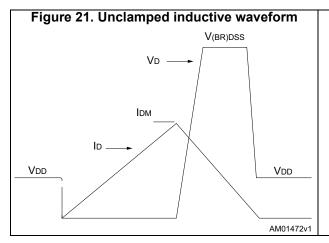


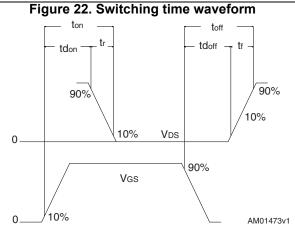









577


3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

577

4.1 TO-220FP package information

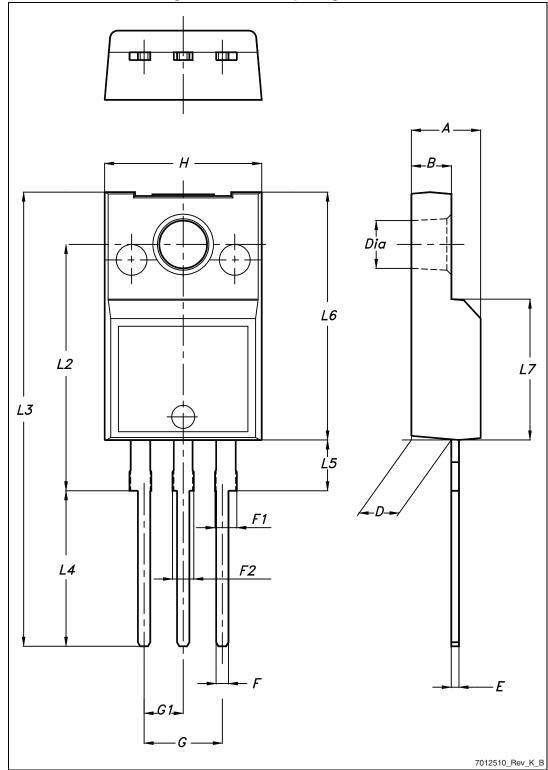


Figure 23. TO-220FP package outline

Table 9. TO-220FP mechanical data

	mm			
Dim.	Min.	Тур.	Max.	
Α	4.4		4.6	
В	2.5		2.7	
D	2.5		2.75	
Е	0.45		0.7	
F	0.75		1	
F1	1.15		1.70	
F2	1.15		1.70	
G	4.95		5.2	
G1	2.4		2.7	
Н	10		10.4	
L2		16		
L3	28.6		30.6	
L4	9.8		10.6	
L5	2.9		3.6	
L6	15.9		16.4	
L7	9		9.3	
Dia	3		3.2	

4.2 TO-220 package information

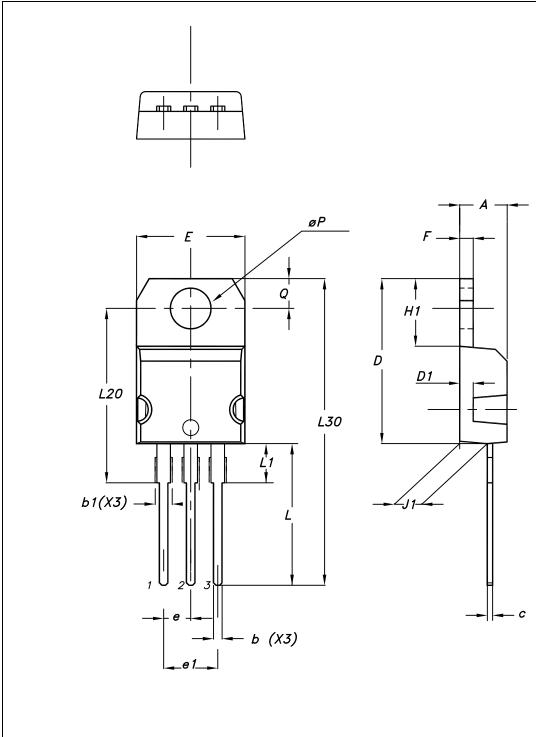


Figure 24. TO-220 type A package outline

5//

0015988_typeA_Rev_T

Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

577

4.3 IPAK(TO-251) package information

E-L2 D *b2* (3x) **b** (3x) A 1 -*B5* 0068771_IK_typeA_rev13

Figure 25. IPAK (TO-251) type A package outline

e1-

Table 11. IPAK (TO-251) type A mechanical data

DIM	mm.		
	min.	typ.	max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
E	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

5 Revision history

Table 12. Document revision history

Date	Revision	Changes
11-Jun-2013	1	First release.
01-Oct-2015	2	Updated title, features and description. Updated Table 2.: Absolute maximum ratings and Table 8.: Source drain diode. Updated 4.3: IPAK(TO-251) package information. Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

577