

STB28NM60ND, STF28NM60ND, life.augmented STP28NM60ND, STW28NM60ND

N-channel 600 V, 0.13 Ω typ., 23 A FDmesh™ II Power MOSFETs in D2PAK, TO-220FP, TO-220 and TO-247 packages

Datasheet - production data

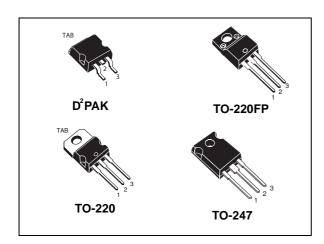
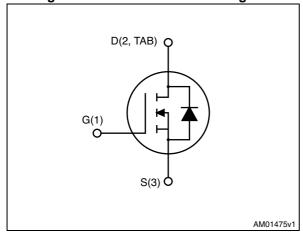



Figure 1. Internal schematic diagram

Features

Order codes	V _{DS @} T _{J max.}	R _{DS(on) max}	I _D
STB28NM60ND			
STF28NM60ND	CEO.V	0.450.0	00.4
STP28NM60ND	650 V	0.150 Ω	23 A
STW28NM60ND			

- Intrinsic fast-recovery body diode
- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

Applications

Switching applications

Description

These FDmesh™ II Power MOSFETs with intrinsic fast-recovery body diode are produced using the second generation of MDmesh™ technology. Utilizing a new strip-layout vertical structure, these revolutionary devices feature extremely low on-resistance and superior switching performance. They are ideal for bridge topologies and ZVS phase-shift converters.

Table 1. Device summary

Order codes	Marking	Packages	Packaging
STB28NM60ND		D ² PAK	Tape and reel
STF28NM60ND	28NM60ND -	TO-220FP	
STP28NM60ND		TO-220	Tube
STW28NM60ND		TO-247	

May 2014 DocID024520 Rev 3 1/22

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data1	0
	4.1 D ² PAK, STB28NM60ND	1
	4.2 TO-220FP, STF28NM60ND	3
	4.3 TO-220, STP28NM60ND	5
	4.4 TO-247, STW28NM60ND	7
5	Packing mechanical data1	9
6	Revision history	1

1 Electrical ratings

Table 2. Absolute maximum ratings

		Value)		
Symbol	Parameter	D ² PAK, TO-220, TO-247	TO-220FP	Unit	
V_{DS}	Drain-source voltage	600		V	
V _{GS}	Gate-source voltage	±25		V	
I _D	I _D Drain current (continuous) at T _C = 25 °C 23		23 ⁽¹⁾	Α	
I _D	Drain current (continuous) at T _C = 100 °C	14.5	14.5 ⁽¹⁾	Α	
I _{DM} ⁽²⁾	Drain current (pulsed)	92	92(1)	Α	
P _{TOT}	Total dissipation at T _C = 25 °C	190	35	W	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	40		V/ns	
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s; T _C =25 °C)	m 2500		V	
T _{stg}	Storage temperature	-55 to 150		°C	
TJ	Max. operating junction temperature	150		°C	

- 1. Limited by maximum junction temperature
- 2. Pulse width limited by safe operating area
- 3. $I_{SD} \le 23 \text{ A}, \text{ di/dt } \le 600 \text{ A/}\mu\text{s}, V_{DD} = 80\% V_{(BR)DSS}$

Table 3. Thermal data

Symbol	Parameter	D ² PAK	TO-220FP	TO-220	TO-247	Unit
R _{thj-case}	Thermal resistance junction-case max	0.66	3.6	0.	66	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max		62.5		50	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	30				°C/W

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu

Table 4. Avalanche characteristics

Symbol	Parameter	Max value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _J max)	5	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	450	mJ

2 Electrical characteristics

(T_{CASE}=25 °C unless otherwise specified).

Table 5. On/off states

Symbol	Parameter	Test conditions	Value			Unit
Symbol	Farameter	rest conditions	Min.	Тур.	Max.	Onit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
dv/dt ⁽¹⁾	Drain source voltage slope	V _{DD} = 480 V, I _D = 23 A, V _{GS} = 10 V		45		V/ns
lana	Zero gate voltage	V _{DS} = 600 V			1	μΑ
I _{DSS}	drain current (V _{GS} = 0)	$V_{DS} = 600 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$			100	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V, I _D = 11.5 A		0.13	0.15	Ω

^{1.} Characteristic value at turn off on inductive load.

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2090	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	90	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	5.5	-	pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	-	312	-	pF
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 11.5 A	-	23.5	-	ns
t _r	Rise time	$R_G = 4.7 \Omega V_{GS} = 10 V$	-	21.5	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 18),	-	92	-	ns
t _f	Fall time	(see Figure 20)	-	27	-	ns
Q_g	Total gate charge	V _{DD} = 480 V, I _D = 23 A,	-	62.5	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V, (see Figure 10)	-	11	-	nC
Q _{gd}	Gate-drain charge		-	38	-	nC
R _g	Gate input resistance	f = 1 MHz, test signal level = 20 mV, $I_D = 0$	-	4.7	-	Ω

^{1.} $C_{oss\ eq}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		23	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		92	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 23 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 23 A, V _{DD} = 60 V	-	170		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/μs	-	1160		nC
I _{RRM}	Reverse recovery current	(see Figure 17)	-	14		Α
t _{rr}	Reverse recovery time	I _{SD} = 23 A,V _{DD} = 60 V	-	237		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/µs, T _{.I} = 150 °C	-	2090		nC
I _{RRM}	Reverse recovery current	(see Figure 17)	-	18		Α

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for D²PAK and TO-220

Figure 3. Thermal impedance for D²PAK and TO-220

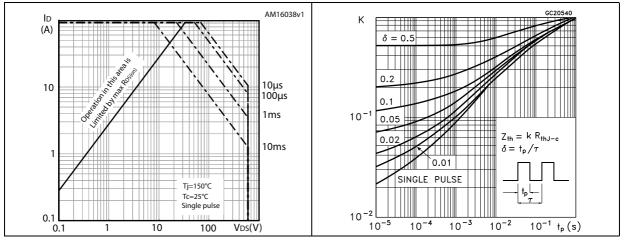
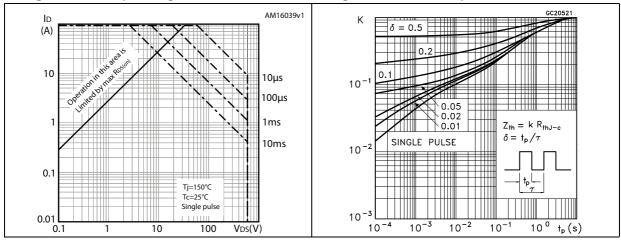
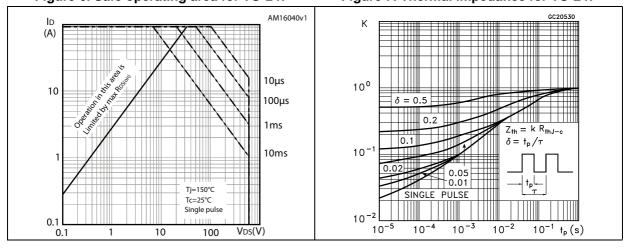


Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP

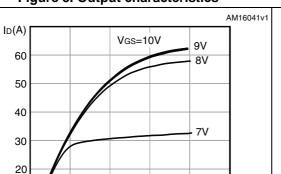

Figure 6. Safe operating area for TO-247

Figure 7. Thermal impedance for TO-247

6/22 DocID024520 Rev 3

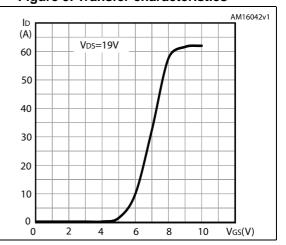
Figure 8. Output characteristics

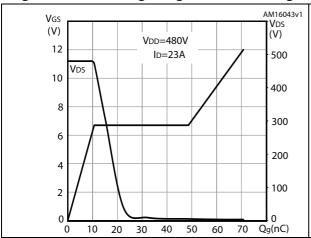
15

6V

V_{DS}(V)

Figure 9. Transfer characteristics




Figure 10. Gate charge vs gate-source voltage

10

5

10

Figure 11. Static drain-source on-resistance

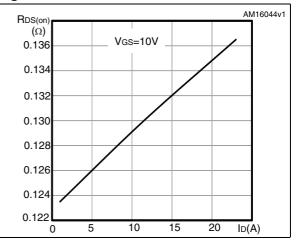
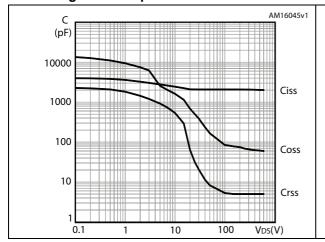
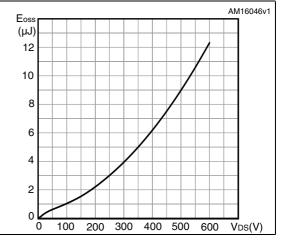
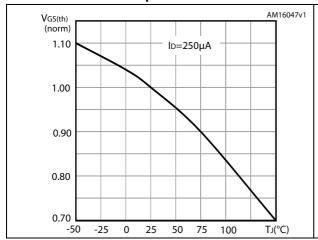




Figure 12. Capacitance variations

Figure 13. Output capacitance stored energy



47/

Figure 14. Normalized gate threshold voltage vs temperature

Figure 15. Normalized on-resistance vs temperature

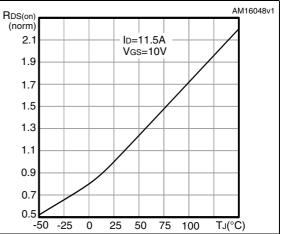
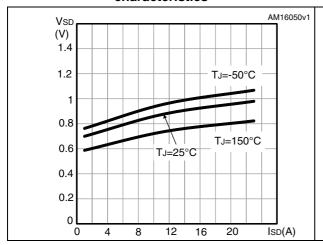
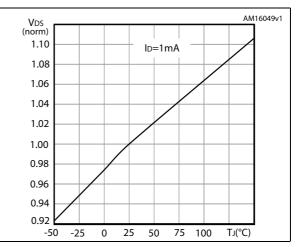




Figure 16. Source-drain diode forward characteristics

Figure 17. Normalized $\rm V_{\rm DS}$ vs temperature

8/22 DocID024520 Rev 3

3 Test circuits

Figure 18. Switching times test circuit for resistive load

Figure 19. Gate charge test circuit

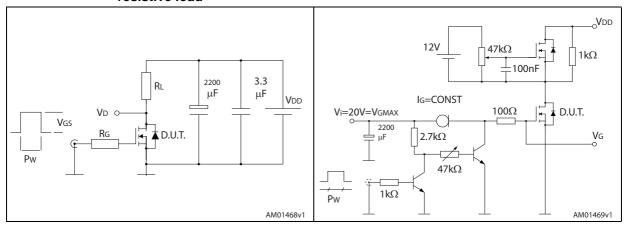


Figure 20. Test circuit for inductive load switching and diode recovery times

Figure 21. Unclamped inductive load test circuit

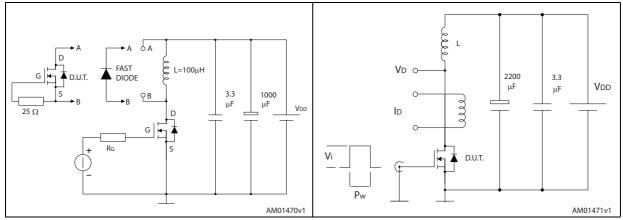
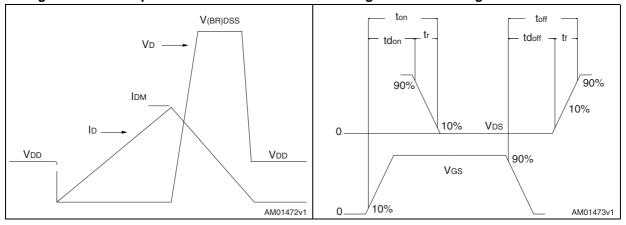



Figure 22. Unclamped inductive waveform

Figure 23. Switching time waveform

DocID024520 Rev 3

9/22

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

A7/

4.1 D²PAK, STB28NM60ND

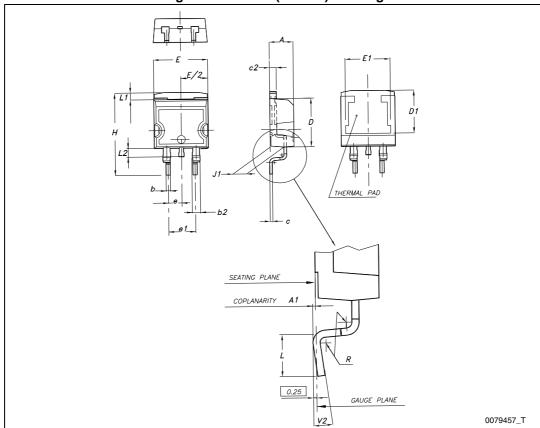
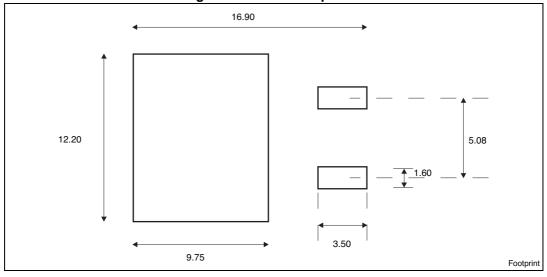



Figure 24. D²PAK (TO-263) drawing

Table 8. D²PAK (TO-263) mechanical data

Dim. mm			
Dilli.	Min.	Тур.	Max.
Α	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
Е	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Figure 25. D²PAK footprint^(a)

a. All dimension are in millimeters

Ay)

4.2 TO-220FP, STF28NM60ND

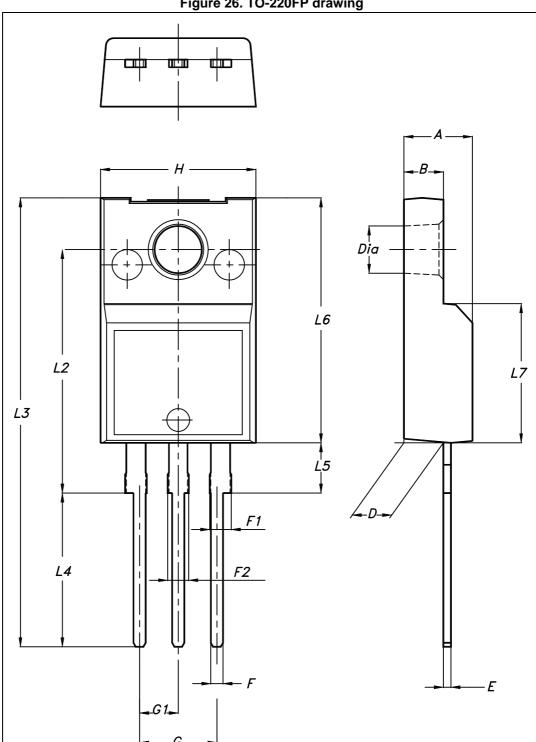
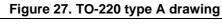


Figure 26. TO-220FP drawing

47/

DocID024520 Rev 3


13/22

7012510_Rev_K_B

Table 9. TO-220FP mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

4.3 TO-220, STP28NM60ND

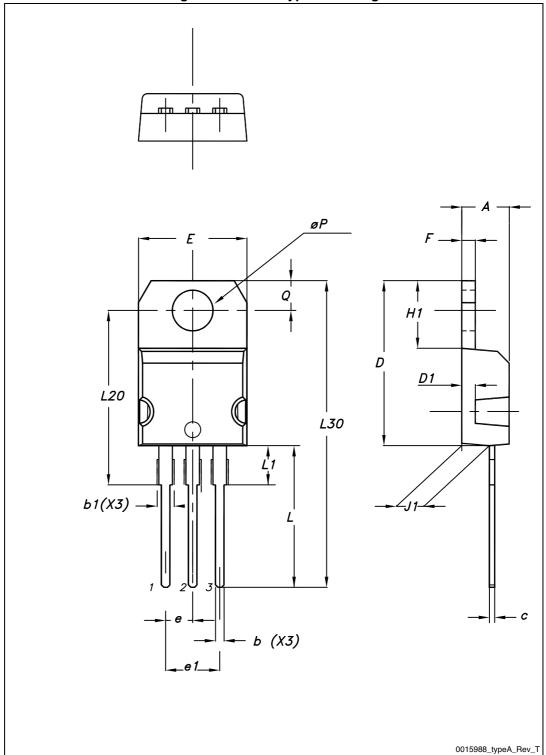


Table 10. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

4.4 TO-247, STW28NM60ND

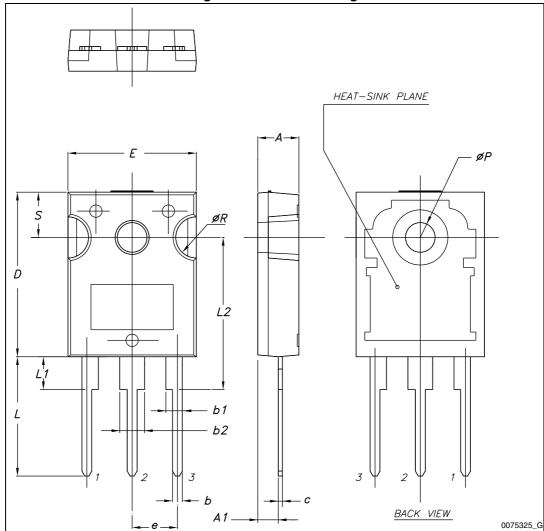


Figure 28. TO-247 drawing

Table 11. TO-247 mechanical data

Dim.	mm.				
	Min.	Тур.	Max.		
А	4.85		5.15		
A1	2.20		2.60		
b	1.0		1.40		
b1	2.0		2.40		
b2	3.0		3.40		
С	0.40		0.80		
D	19.85		20.15		
E	15.45		15.75		
е	5.30	5.45	5.60		
L	14.20		14.80		
L1	3.70		4.30		
L2		18.50			
ØP	3.55		3.65		
ØR	4.50		5.50		
S	5.30	5.50	5.70		

5 Packing mechanical data

10 pitches cumulative tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power tolerance on tape +/- 0.2 mm
Top cover power

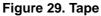
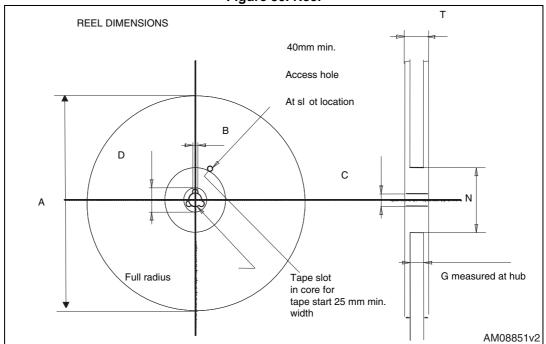



Table 12. D²PAK (TO-263) tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	10.5	10.7	Α		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Figure 30. Reel

6 Revision history

Table 13. Document revision history

Date	Revision	Changes	
15-Apr-2013	1	First release.	
25-Nov-2013	2	 Document status changed from preliminary to production data Modified: typical values in <i>Table 6</i> and 7 Added: Section 2.1: Electrical characteristics (curves) Updated: <i>Table 10</i> and <i>Figure 27</i> Minor text changes 	
05-May-2014	3	Modified: E_{AS} value in <i>Table 4</i>Minor text changes	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

22/22 DocID024520 Rev 3

