

STL7N6LF3

Automotive-grade N-channel 60 V, 35 mΩ typ., 6.5 A STripFET[™] F3 Power MOSFET in a PowerFLAT[™] 5x6 package

2

1

8 7 6 5

1 2

3 4

AM15540v2

Top View

PowerFLAT[™] 5x6

Figure 1: Internal schematic diagram

D(5, 6, 7, 8)

S(1, 2, 3)

Datasheet - production data

Features

Order code	VDS	R _{DS(on)} max.	ID
STL7N6LF3	60 V	43 mΩ	6.5 A

- AEC-Q101 qualified
- Logic level V_{GS(th)}
- 175 °C maximum junction temperature
- 100% avalanche rated
- Wettable flank package

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using STripFET™ F3 technology. It is designed to minimize on-resistance and gate charge to provide superior switching performance.

Table 1: Device summary

Order code	Marking	Package	Packing
STL7N6LF3	7N6LF3	PowerFLAT™ 5x6	Tape and reel

February 2017

G(4) O—

DocID027038 Rev 4

www.st.com

This is information on a product in full production.

1/15

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT 5x6 WF type R package information	9
	4.2	Packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{GS}	Gate-source voltage	±20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	20	А
ID ⁽¹⁾	Drain current (continuous) at T _c = 100 °C	16	А
ID ⁽²⁾	Drain current (continuous) at T _{pcb} = 25 °C	6.5	А
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	4.6	А
IDM ^{(3),(2)}	Drain current (pulsed)	26	А
P _{TOT} ⁽¹⁾	Total dissipation at $T_C = 25 \ ^{\circ}C$	52	W
Ртот ⁽²⁾	Total dissipation at $T_{pcb} = 25^{\circ}C$	4.3	W
lav	Not-repetitive avalanche current 6.5		А
Eas ⁽⁴⁾	Single pulse avalanche energy	190	mJ
Tj	Operating junction temperature range	55 to 175	*0
T _{stg}	Storage temperature range	-55 to 175 °C	

Notes:

 $^{(1)}$ This value is rated according to $R_{thj\text{-}case}$

 $^{(2)}$ This value is rated according to $R_{thj\text{-}pcb}$

 $^{\left(3\right) }$ Pulse width limited by safe operating area.

 $^{(4)}$ Starting TJ= 25 °C, ID= 8 A, VDD= 25 V.

Table 3: Thermal resitance

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case	2.9	°C/W
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

 $^{(1)}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 s

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	60			V
IDSS	Zero gate voltage drain current $V_{GS} = 0 V, V_{DS} = 60 V$				1	μA
Igss	Gate-body leakage current	$V_{DS} = 0 V. V_{GS} = \pm 20 V$			±100	nA
$V_{GS(th)}$	Gate threshold voltage	V_{DS} = V_{GS} , I_{D} = 250 μA	1		2.5	V
Basi	Static drain-source	$V_{GS}=10~V,~I_{D}=3~A$		35	43	mΩ
R _{DS(on)}	on-resistance	$V_{GS} = 5 V$, $I_D = 3 A$		48	60	mΩ

Table 4: On/Off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	432	-	
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0 V	-	93	-	pF
Crss	Reverse transfer capacitance	VGS - 0 V	-	10.5	-	
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 6.5 \text{ A},$	-	8.7	-	
Q _{gs}	Gate-source charge	$V_{GS} = 0$ to 10 V	-	1.9	-	nC
Q _{gd}	Gate-drain charge	(see Figure 13: "Test circuit for gate charge behavior")	-	1.9	-	
R _G	Intrinsic gate resistance	f =1 MHz, ID=0 A	-	6.3	-	Ω

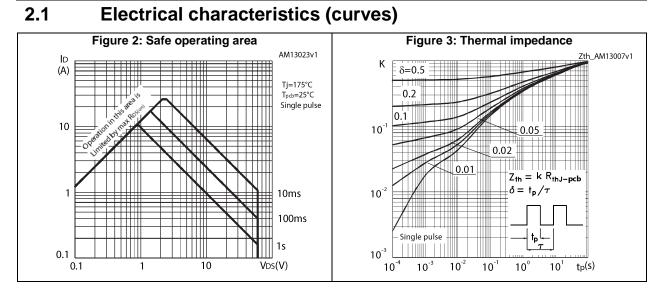
Table 5: Dynamic

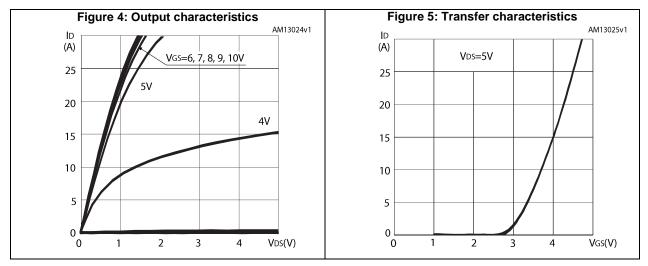
Table 6: Switching times

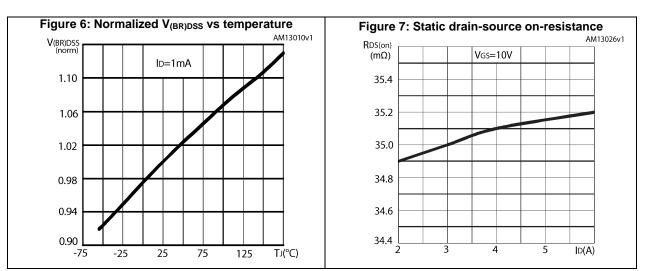
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 V, I_D = 3 A,$	-	6.7	-	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 12: "Test circuit for resistive load switching	-	10.4	-	
t _{d(off)}	Turn-off delay time		-	32.4	-	ns
t _f	Fall time	times" and Figure 17: "Switching time waveform")	-	5.4	-	

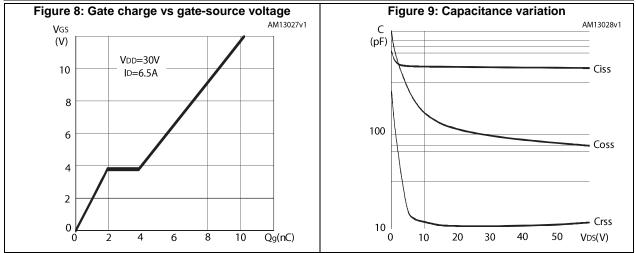
Electrical characteristics

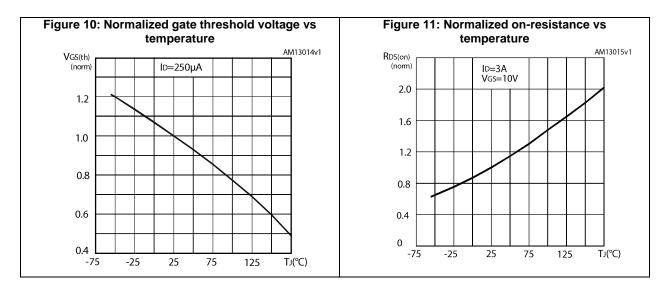
	Table 7: Source-drain diode					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		6.5	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		26	А
V _{SD} ⁽²⁾	Forward on voltage	I _{DS} = 6.5 A, V _{GS} = 0 V	-		1.3	V
trr	Reverse recovery time	I _{SD} = 6.5 A, di/dt = 100 A/µs	-	24		ns
Qrr	Reverse recovery charge	V _{DD} = 48 V, T _j = 150 °C (see <i>Figure 14: "Test circuit</i>	-	23.3		nC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	1.9		А


Notes:

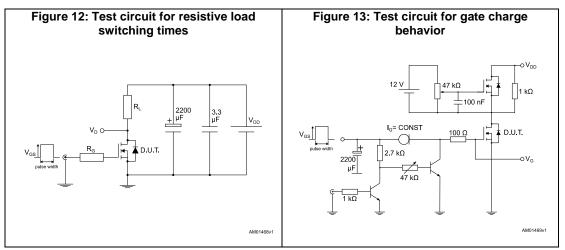

⁽¹⁾Pulse width limited by safe operating area

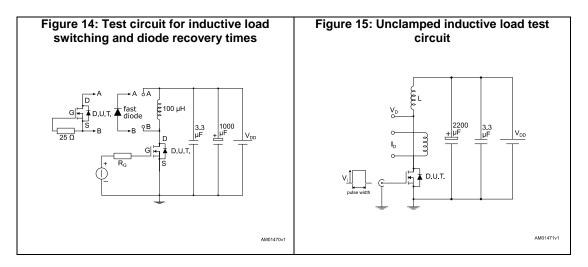

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5 %


6/15


DocID027038 Rev 4

STL7N6LF3


Electrical characteristics





3 Test circuits

DocID027038 Rev 4

9/15

Package information 4

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

PowerFLAT 5x6 WF type R package information 4.1

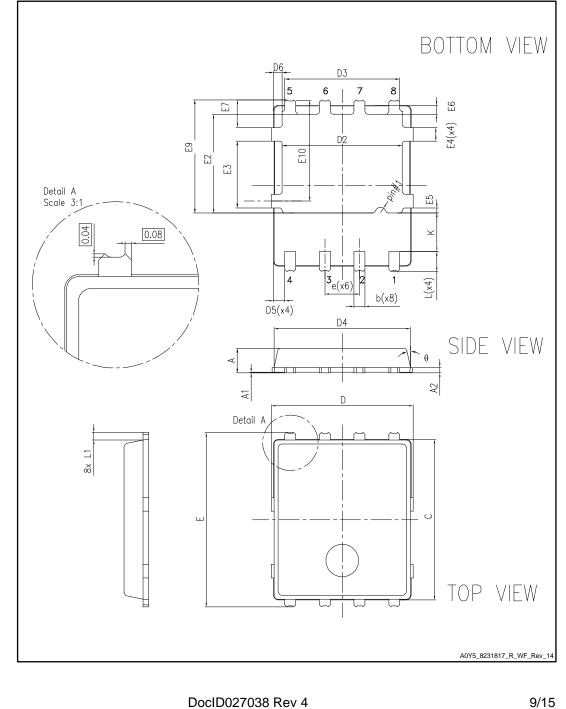
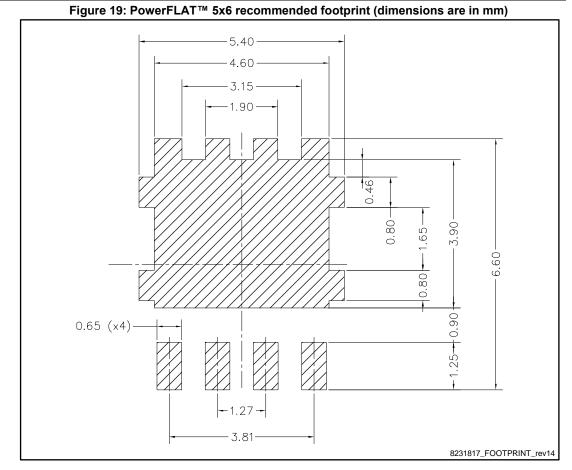
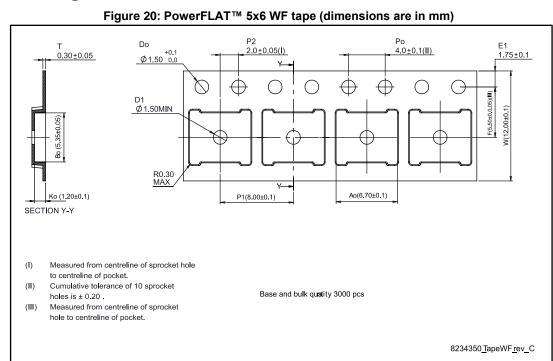


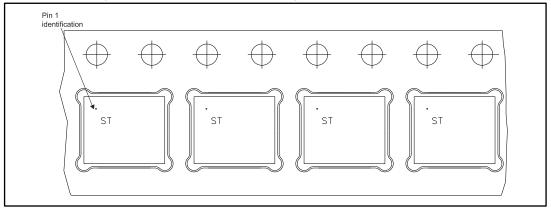
Figure 18: PowerFLAT™ 5x6 WF type R package outline

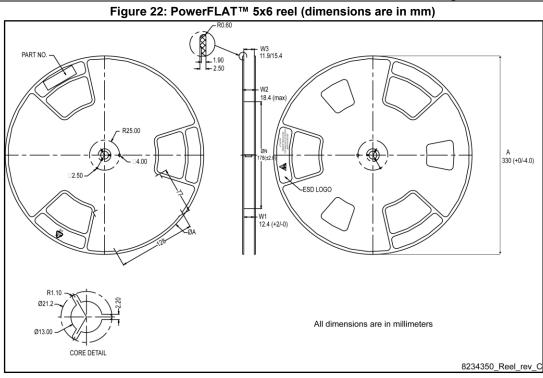

Package information

STL7N6LF3


Table 8: PowerFLAT™ 5x6 WF type R mechanical data				
Dim		mm		
Dim.	Min.	Тур.	Max.	
A	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
С	5.80	6.00	6.10	
D	5.00	5.20	5.40	
D2	4.15		4.45	
D3	4.05	4.20	4.35	
D4	4.80	5.00	5.10	
D5	0.25	0.4	0.55	
D6	0.15	0.3	0.45	
е		1.27		
E	6.20	6.40	6.60	
E2	3.50		3.70	
E3	2.35		2.55	
E4	0.40		0.60	
E5	0.08		0.28	
E6	0.20	0.325	0.45	
E7	0.85	1.00	1.15	
E9	4.00	4.20	4.40	
E10	3.55	3.70	3.85	
К	1.275		1.575	
L	0.725	0.825	0.925	
L1	0.175	0.275	0.375	
θ	0°		12°	

10/15





4.2 Packing information

Figure 21: PowerFLAT™ 5x6 package orientation in carrier tape

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
14-Oct-2014	1	First release.
10-Feb-2015	2	Updated Table 4: On/off states, Table 5: Dynamic, Table 6: Switching times, Table 7: Source drain diode and Section 4: Package mechanical data.
26-May-2015	3	Updated title and features. Document status from preliminary to production data.
13-Feb-2017	4	Modified features on cover page. Modified <i>Table 2: "Absolute maximum ratings"</i> and <i>Table 5: "Dynamic"</i> . Minor text changes.

STL7N6LF3

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

