

STGW60V60DF, STGWA60V60DF STGWT60V60DF

Trench gate field-stop IGBT, V series 600 V, 60 A very high speed

Datasheet - production data

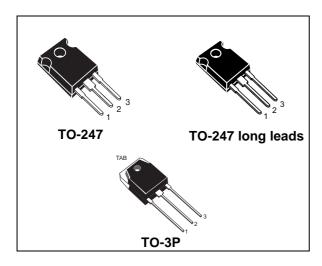
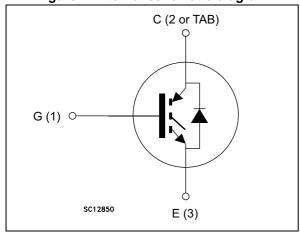



Figure 1. Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- Tail-less switching off
- V_{CE(sat)} = 1.85 V (typ.) @ I_C = 60 A
- Tight parameter distribution
- · Safe paralleling
- · Low thermal resistance
- · Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverters
- Uninterruptible power supply
- Welding
- Power factor correction
- · Very high frequency converters

Description

These devices are IGBTs developed using an advanced proprietary trench gate field-stop structure. These devices are part of the V series of IGBTs, which represents an optimum compromise between conduction and switching losses to maximize the efficiency of very high frequency converters. Furthermore, a positive $V_{\text{CE(sat)}}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1. Device summary

Order code	Marking	Package	Packing
STGW60V60DF	GW60V60DF	TO-247	Tube
STGWA60V60DF	G60V60DF	TO-247 long leads	Tube
STGWT60V60DF	GWT60V60DF	TO-3P	Tube

September 2016 DocID024154 Rev 7 1/20

Contents

1	Elec	Electrical ratings		
2	Elec	trical characteristics4		
	2.1	Electrical characteristics (curves)6		
3	Test	circuits11		
4	Pack	age information		
	4.1	TO-247 package information		
	4.2	TO-247 long leads package information		
	4.3	TO-3P package information		
5	Revi	sion history		

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
I _C	Continuous collector current at T _C = 25 °C	80 ⁽¹⁾	Α
I _C	Continuous collector current at T _C = 100 °C	60	Α
I _{CP} ⁽²⁾	Pulsed collector current	240	Α
V _{GE}	Gate-emitter voltage	±20	V
I _F	Continuous forward current at T _C = 25 °C	80 ⁽¹⁾	Α
I _F	Continuous forward current at T _C = 100 °C	60	Α
I _{FP} ⁽²⁾	Pulsed forward current	240	Α
P _{TOT}	Total dissipation at T _C = 25 °C	375	W
T _{STG}	Storage temperature range	- 55 to 150	°C
T _J	Operating junction temperature range	- 55 to 175	°C

^{1.} Current level is limited by bond wires

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	0.4	°C/W
R _{thJC}	Thermal resistance junction-case diode	1.14	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

^{2.} Pulse width limited by maximum junction temperature.

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 4. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 2 mA	600			V
		V _{GE} = 15 V, I _C = 60 A		1.85	2.3	
V _{CE(sat)}	V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 60 A T _J = 125 °C		2.15		V
, ,		V _{GE} = 15 V, I _C = 60 A T _J = 175 °C		2.35		
		I _F = 60 A		2	2.6	V
V _F	Forward on-voltage	I _F = 60 A T _J = 125 °C		1.7		V
		I _F = 60 A T _J = 175 °C		1.6		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V			25	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			±250	nA

Table 5. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	8000	-	pF
C _{oes}	Output capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GE} = 0$	-	280	-	pF
C _{res}	Reverse transfer capacitance		-	170	-	pF
Q_g	Total gate charge	V _{CC} = 480 V, I _C = 60 A, V _{GE} = 15 V, see <i>Figure 29</i>	-	334	-	nC
Q _{ge}	Gate-emitter charge		-	130	-	nC
Q _{gc}	Gate-collector charge	GL 1, 110 1 gm 2	-	58	-	nC

27

1.5

8.0

2.3

_

_

ns

mJ

mJ

mJ

Symbol Parameter Test conditions Min. Тур. Max. Unit Turn-on delay time 60 ns t_{d(on)} t_{r} Current rise time $(di/dt)_{on}$ Turn-on current slope 2365 A/µs $V_{CE} = 400 \text{ V}, I_{C} = 60 \text{ A},$ Turn-off delay time 208 ns t_{d(off)} $R_G = 4.7 \Omega$, $V_{GE} = 15 V$, Current fall time 14 ns t_f see Figure 28 $\overline{E_{on}^{(1)}}$ Turn-on switching energy 0.75 mJ $E_{off}^{(2)}$ Turn-off switching energy 0.55 mJ Total switching energy 1.3 mJ E_{ts} _ Turn-on delay time 57 ns t_{d(on)} t_{r} Current rise time 23 ns (di/dt)_{on} 2191 A/µs Turn-on current slope $V_{CE} = 400 \text{ V}, I_{C} = 60 \text{ A},$ Turn-off delay time 216 ns t_{d(off)} $R_G = 4.7 \Omega$, $V_{GE} = 15 V$, $T_J = 175 °C$, see *Figure 28*

Table 6. IGBT switching characteristics (inductive load)

Current fall time

Turn-on switching energy

Turn-off switching energy

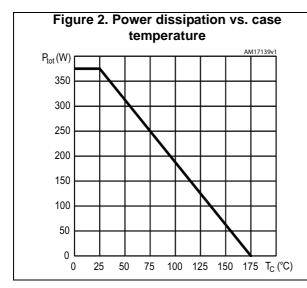
Total switching energy

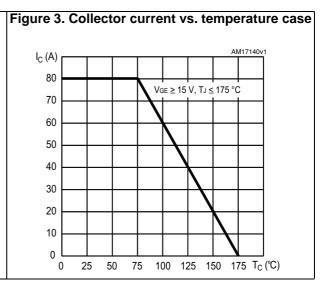
 t_f

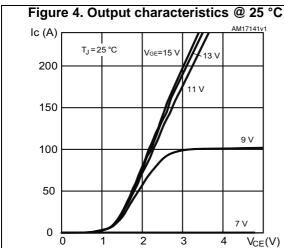
 $E_{on}^{(1)}$

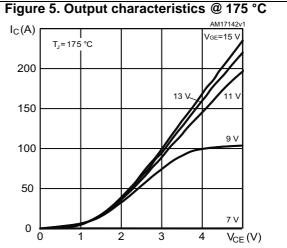
 $E_{off}^{(2)}$

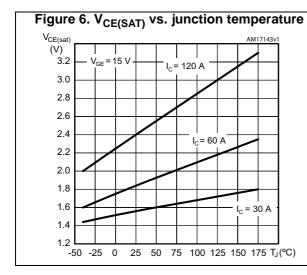
 E_{ts}

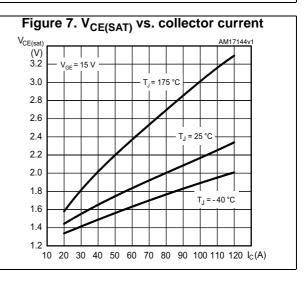
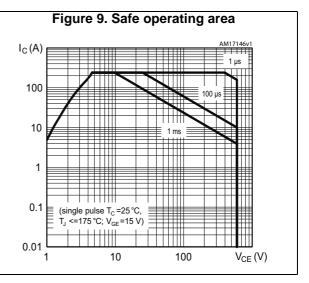
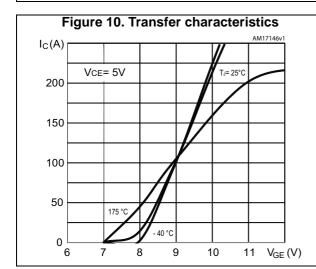
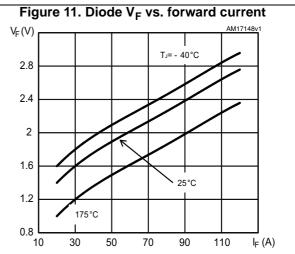
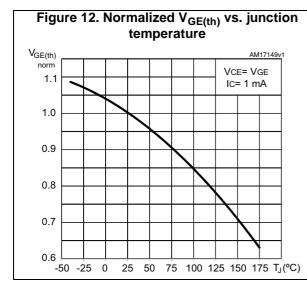

Table 7. Diode switching characteristics (inductive load)

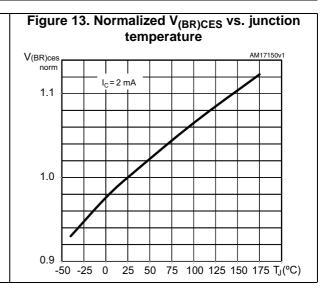

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	74	-	ns
Q_{rr}	Reverse recovery charge	$I_F = 60 \text{ A}, V_R = 400 \text{ V},$	-	703	-	nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V,	ı	19	-	Α
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b	di _F /dt = 1000 A/μs see <i>Figure 28</i>	ı	714	-	A/µs
E _{rr}	Reverse recovery energy		-	184	-	μJ
t _{rr}	Reverse recovery time		-	131	-	ns
Q _{rr}	Reverse recovery charge	$I_F = 60 \text{ A}, V_R = 400 \text{ V},$	-	2816	-	nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V	-	43	-	Α
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b	$di_F/dt = 1000 \text{ A/}\mu\text{s}$ $T_J = 175 ^{\circ}\text{C}$, see <i>Figure 28</i>	-	404	-	A/µs
E _{rr}	Reverse recovery energy		-	821	-	μJ

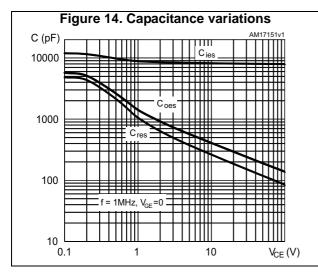

^{1.} Including the reverse recovery of the diode.

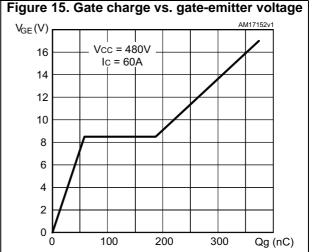

^{2.} Including the tail of the collector current.

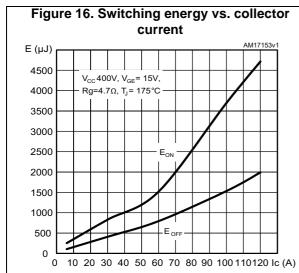

2.1 Electrical characteristics (curves)

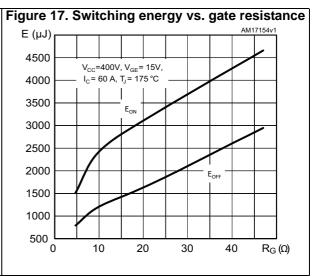






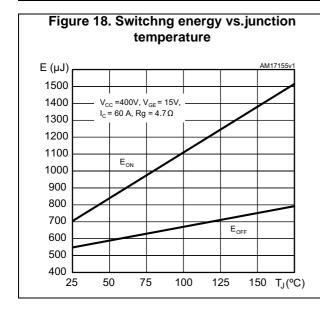

Figure 8. Collector current vs. switching frequency Ic [A] 110 100 90 Tc=100 °C 80 70 60 50 40 30 rectangular current shape, (duty cycle=0.5, V_{CC} = 400V, R_{G} =4.7 Ω , 20 V_{GE} = 0/15 V, T_J =175°C) 10 0 f [kHz]










47/

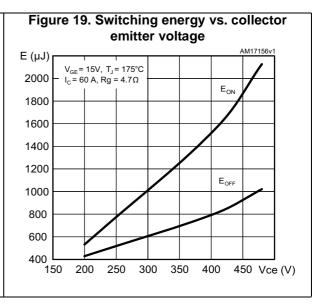
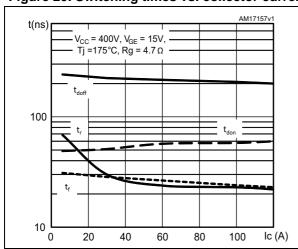
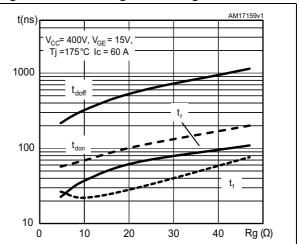
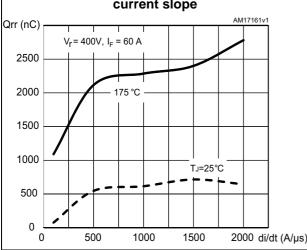
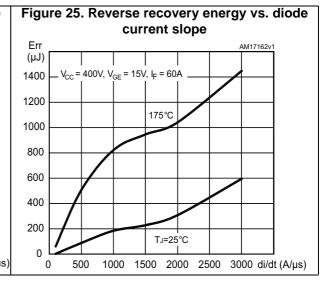



Figure 20. Switching times vs. collector current Figure 21. Switching times vs. gate resistance

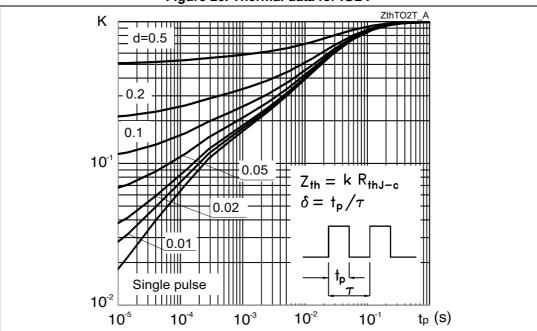

Figure 22. Reverse recovery current vs. diode current slope

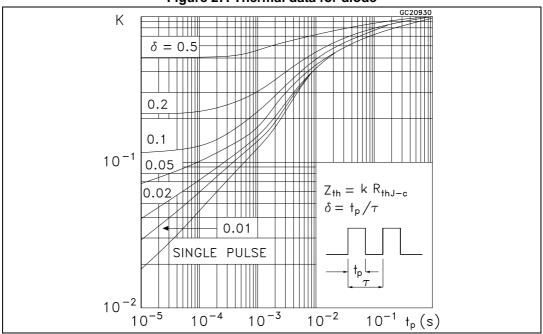
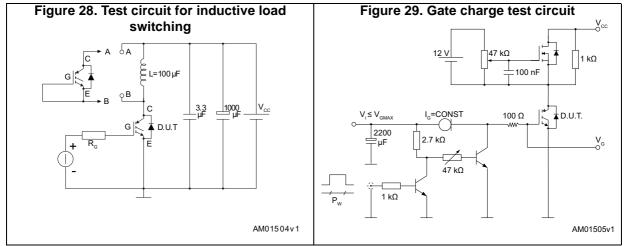
 $I_{rm}(A)$ $V_r = 400 \text{ V}, I_F = 60 \text{ A}$ 50 40 175°C 30 20 TJ=25°C 10 0 500 1000 1500 2000 di/dt (A/µs)

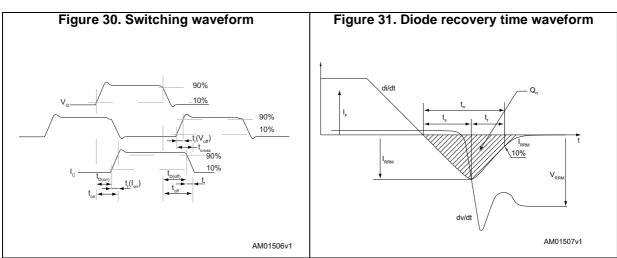
Figure 23. Reverse recovery time vs. diode current slope trr (ns) V_r = 400V, I_F = 60 A 200 150 175 °C 100 50 TJ=25°C 0 500 1000 1500 2000 di/dt (A/µs)

Figure 24. Reverse recovery charge vs. diode current slope

47/




Figure 26. Thermal data for IGBT

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-247 package information

HEAT-SINK PLANE

D

L2

L1

L1

L2

BACK VIEW

0075325_H

Figure 32. TO-247 package outline

Table 8. TO-247 package mechanical data

Dim		mm.	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

4.2 TO-247 long leads package information

HEAT-SINK PLANE <u>E</u>3 -A2 E 2 -A1 *b2* (3x) b BACK VIEW 8463846_A_F

Figure 33. TO-247 long leads package outline

Table 9. TO-247 long leads package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
E	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25

4.3 TO-3P package information

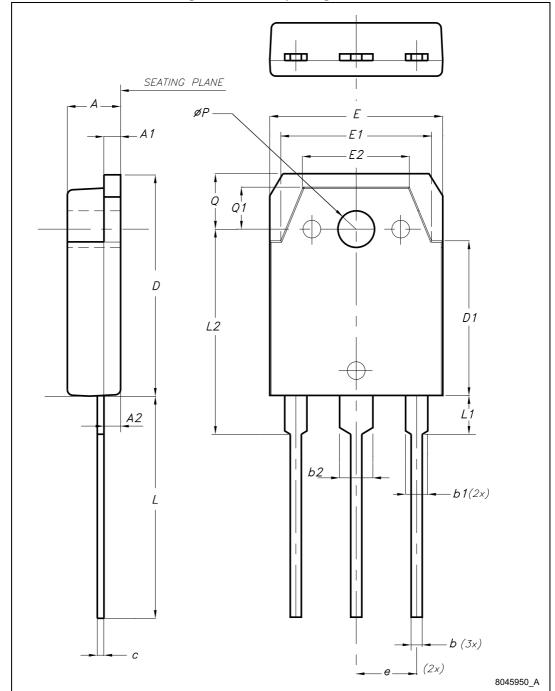


Figure 34. TO-3P package outline

Table 10. TO-3P mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.60		5
A1	1.45	1.50	1.65
A2	1.20	1.40	1.60
b	0.80	1	1.20
b1	1.80		2.20
b2	2.80		3.20
С	0.55	0.60	0.75
D	19.70	19.90	20.10
D1		13.90	
Е	15.40		15.80
E1		13.60	
E2		9.60	
е	5.15	5.45	5.75
L	19.50	20	20.50
L1		3.50	
L2	18.20	18.40	18.60
øΡ	3.10		3.30
Q		5	
Q1		3.80	

5 Revision history

Table 11. Document revision history

Date	Revision	Changes
15-Jan-2013	1	Initial release.
23-Apr-2013	2	Added: - New order code STGWT60V60DF and new package mechanical data TO-3P Table 9 on page 16, Figure 33 on page 15. - Section 2.1: Electrical characteristics (curves) on page 6.
04-Jun-2013	3	Updated <i>Table 4: Static characteristics</i> and <i>Figure 12 on page 7</i> . Document status changed from preliminary to production data.
21-Jun-2013	4	Updated Figure 3: Collector current vs. temperature case.
12-Jul-2013	5	Updated R _{thJC} value for Diode in <i>Table 3: Thermal data</i> .
21-Oct-2013	6	Updated title, features and description in cover page.
28-Sep-2016	7	Added part number STGWA60V60DF and TO-247 long leads package information. Updated Table 2 Table 4 and Table 6. Updated Figure 10: Transfer characteristics. Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

