

Product Data Sheet

Industrial SD / SDHC / SDXC Memory Card

S-46 SERIES (PSLC)

INDUSTRIAL SD/SDHC/SDXC MEMORY CARD-2/4/8/16/32/64GBYTE

Main Features

- Fully compliant with SD Memory Card specification 3.0
 - o SD / SDHC / SDXC high speed mode, UHS-I
 - Speed class 10 and U1 according SD3.0 specification
 - SD2.0 backward compliant
 - o FAT16 / FAT32 / exFAT preformatted
- High performance 3.0 specification
 - o SD burst up to 104MB/s
 - o SD Normal speed o...25MHz clock rate
 - o SD High speed 25...50MHz clock rate
 - SD UHS-I speed o...50MHz (DDR) and o...208MHz (SDR)
 - Up to 5oMByte/sec sequential data rate
 - durabit firmware optimized for random write performance, up to 1400 write IOPs (4kB)
- Power Supply: (Low-power CMOS technology)
 - o 2.7...3.6V normal operating voltage
- Standard SD Memory card form factor
 - o 32.0mm x 24.0mm x 2.1mm and Write Protect slider
- Optimized FW algorithms especially for high read access and long data retention applications
 - Patented power-off reliability technology
 - Wear Leveling technology
 - Equal wear leveling of static and dynamic data. The wear leveling assures that dynamic data as well as static data is balanced evenly across the memory. With that the maximum write endurance of the device is guaranteed
 - Write Endurance technology
 - Due to intelligent wear leveling an even use of the entire flash is guaranteed, regardless how much "static" (OS) data is stored.
 - o Read Disturb Management
 - The read commands are monitored and the content is refreshed when critical levels have occurred
 - Data Care Management
 - The interruptible background process maintain the user data for Read Disturb effects or Retention degradation due to high temperature effects
 - Near miss ECC technology
 - Minimize the risk of uncorrectable bit failure over the product life time. Each read command analyzes the ECC margin level and refresh data if necessary
 - o Diagnostic features with Life Time Monitoring tool support
- High reliability
 - Designed for industrial market especially read intensive application like navigation, infotainment, POS/POI, Medical and general boot medium use case:
 - The product is optimized for long life cycle that requires a good data retention because of high temperature mission profile.
 - S-46 cards with pseudo SLC (pSLC) feature higher write performance and endurance than MLC based cards (S-45) and have a cost advantage over SLC based cards (S-450)
 - Number of card insertions/removals up to 20,000
 - o Extended and Industrial Temperature range -25° up to 85°C and -40° up to 85°C, respectively
 - o SIP (System In Package) process for extreme dust, water and ESD proof
- Controlled BOM & PCN process
- Customized options like CID registers, CPRM keys, firmware incl. settings and marking by projects

1 Order Information

1.1 Standard product list

Table 1: Standard Product List

Density	Part Number	Temp. Range	Flash Technology
2GB	SFSD2048LgBM1TO-t-xx-2fP-STD		
4GB	SFSD4096LgBM1TO-t-xx-2fP-STD		
8GB	SFSD8192LgBM1TO-t-xx-2fP-STD	t = E -25°C to 85°C	pSLC NAND Flash
16GB	SFSD016GLgBM1TO-t-xx-2fP-STD	t = I -40°C to 85°C	15nm
32GB	SFSD032GLgBM1TO-t-xx-2fP-STD		
64GB	SFSD064GLgBM1TO-t-xx-2fP-STD		

g = 2, 3 generation; xx flash configuration, depending on generation, f = B, C, ...firmware

1.2 Current product generation

Table 2: Standard Product List

Density	Part Number	Temp. Range	Flash Technology	
2GB	SFSD2048L3BM1TO-E-GE-2CP-STD			
4GB	SFSD4096L3BM1TO-E-GE-2CP-STD			
8GB	SFSD8192L3BM1TO-E-GE-2CP-STD	-25°C to 85°C		
16GB	SFSD016GL3BM1TO-E-LF-2CP-STD	-25 *C 10 85 *C		
32GB	SFSD032GL3BM1TO-E-HG-2CP-STD			
64GB	SFSD064GL3BM1TO-E-OG-2CP-STD		pSLC NAND Flash	
2GB	SFSD2048L3BM1TO-I-GE-2CP-STD		15nm	
4GB	SFSD4096L3BM1TO-I-GE-2CP-STD			
8GB	SFSD8192L3BM1TO-I-GE-2CP-STD	-40°C to 85°C		
16GB	SFSD016GL3BM1TO-I-LF-2CP-STD	-40 (10 85 (
32GB	SFSD032GL3BM1TO-I-HG-2CP-STD			
64GB	SFSD064GL3BM1TO-I-OG-2CP-STD			

Contents

MAIN FEATURES	2
1 ORDER INFORMATION	:
1.1 Standard product list	
1.2 CURRENT PRODUCT GENERATION	
2 PRODUCT SPECIFICATION	!
2.1 System Performance 2.2 Environmental Specifications. 2.3 Recommended Operating Conditions. 2.3.1 Recommended Storage Conditions. 2.3.2 Humidity & EMC. 2.3.3 Environmental Conditions. 2.4 Physical Dimensions. 2.5 Reliability	(
3 CAPACITY SPECIFICATION	
4 CARD PHYSICAL	
4.1 Physical description	
5 ELECTRICAL INTERFACE	
5.1 ELECTRICAL DESCRIPTION 5.2 POWER UP / POWER DOWN BEAVIOUR AND RESET 5.2.1 Power up 5.2.2 Power down 5.2.3 Power drop 5.2.4 Operation below minimum voltage 5.3 DC CHARACTERISTICS. 5.4 SIGNAL LOADING 5.5 AC CHARACTERISTICS. 5.5.1 Default Speed mode (o – 25MHz) 5.5.2 High Speed mode (o – 50MHz) 5.5.3 UHS modes	9
6 HOST ACCESS SPECIFICATION	1
6.1 SD AND SPI BUS MODES 6.1.1 SD BUS Mode Protocol 6.1.2 SPI BUS Mode Protocol 6.1.3 Mode Selection 6.2 CARD REGISTERS	1 1
7 PART NUMBER DECODER	1
8 SWISSBIT LABEL SPECIFICATION	1
8.1 FRONT SIDE LABEL	
9 REVISION HISTORY	19

2 Product Specification

The SD Memory Card is a small form factor non-volatile memory card which provides high capacity data storage. Its aim is to capture, retain and transport data, audio and images, facilitating the transfer of all types of digital information between a large variety of digital systems.

The card operates in two basic modes:

- SDHC/SDXC and UHS-I card modes
- SPI mode

The SD Memory Card also supports SD **Default and High Speed mode** with up to 50MHz clock frequency as well as **UHS-I modes DDR50, SDR12/25/50/104** with up to 208MHz clock frequency.

- SD Memory card Specification Part 1, Physical layer Specification V3.01
- SD Memory card Specification Part 2, File System Specification V3.00
- SD Memory card Specification Part 3, Security Specification V3.00
- SD Memory Card Addendum V4.00

Simplified specifications are available at https://www.sdcard.org/downloads/pls/simplified specs/

The Card has an internal **intelligent controller** which manages interface protocols, data storage and retrieval as well as hardware **BCH Error Correction Code (ECC)**, **defect handling**, **diagnostics and clock control**. The **advanced wear leveling** mechanism assures an equal usage of the Flash memory cells to extend the life

The hardware BCH-code ECC allows to detect and correct up to 40 defect bits per 1kByte.

The controller performs control read operations and checks the consistence of the data. If an error of some bits is detected, the card refreshes all data in the flash cells to prevent data retention problems.

The card has a power-loss management feature to prevent data corruption after power-down.

The cards are RoHS compliant and lead-free.

2.1 System Performance

Table 3: Performance

System Performance	typ ⁽¹⁾⁽²⁾	max ⁽¹⁾⁽³⁾	Unit	
Burst Data transfer Rate (max SD clock 208MHz)		104	MB/s	
2GB ⁽⁴⁾				
Sustained Sequential Read	46	50	MB/s	
Sustained Sequential Write	40	45	IMD12	
Sustained Random Read 4k	4.4	5.5	MB/s	
Sustained Random Write 4k	4.6	5.5	141012	
4 to 64GB				
Sustained Sequential Read	46	50	MB/s	
Sustained Sequential Write	49	55	IMD12	
Sustained Random Read 4k	3.9	5.0	MB/s	
Sustained Random Write 4k	4.8	5.7	IMD12	

- 1. All values refer to Toshiba Flash 16/32/64Gb
- 2. Sustained Speed measured with USB-SD Memory Card reader with crystal disk test tool. It depends on burst speed, flash number, previous operations, and file size.
- 3. Target values
- 4. Swissbit SDSC cards (up to 2GB) also supports UHS speed modes

2.2 Environmental Specifications

2.3 Recommended Operating Conditions

Table 4: SD Memory Card Recommended Operating Conditions

Parameter	min	typ	max	unit
Extended Operating Temperature	-25	25	85*)	°C
Industrial Operating Temperature	-40	25	85*)	°C

2.3.1 Recommended Storage Conditions

Table 5: SD Memory Card Recommended Storage Conditions

Parameter	min	typ	max	unit
Extended Storage Temperature	-25	25	100*)	°C
Industrial Operating Temperature	-40	25	100*)	°C

^{*)} high temperature storage without operation reduces the data retention, in operation the data will be refreshed, if data error issues were detected

2.3.2 Humidity & EMC

Table 6: Humidity & EMC

Parameter	Condition				
Humidity (non-condensing)	85% RH @85°C 1000h				
ESD	up to ±4 kV (contact discharge),				
	according to IEC61000-4-2 and SDA, Human Body Model 150pF/ 3300hm,				
	on each contact pad, non-operating				
	up to ±15 kV, (air discharge),				
	according to IEC61000-4-2 and SDA, Human Body Model 150pF/ 3300hm,				
	isolated contact pad area, non-operating				

2.3.3 Environmental Conditions

Table 7: Environmental Conditions

Parameter	Condition			
UV light exposure	UV: 254nm, 15Ws/cm² according to ISO7816-1			
X-Ray	o.1 Gy 70keV to 140keV (ISO7816-1) according SDA			
Durability	20,000 mating cycles			
Drop Test	1.5m free fall			
Bending / Torque	10N / 0.15Nm ±2.5° max			
Mechanical Shock	1500G, 0.5ms, half sine wave ±xyz-axis, 4 pulses each			
	non-operating, JESD22B110/B104 Condition B			
Vibration	50G, p-p, 202000Hz, sweep xyz-axis,			
	4 pulses each, non-operating, MIL-STD-883 M2007.3 Condition B			

2.4 Physical Dimensions

Table 8: Physical Dimensions

Outer Physical Dimensions	Value	Unit	
Length	32.00±0.1		
Width	24.00±0.1	mm	
Thickness	2.10±0.15		
Weight (typ.)	2	g	

2.5 Reliability

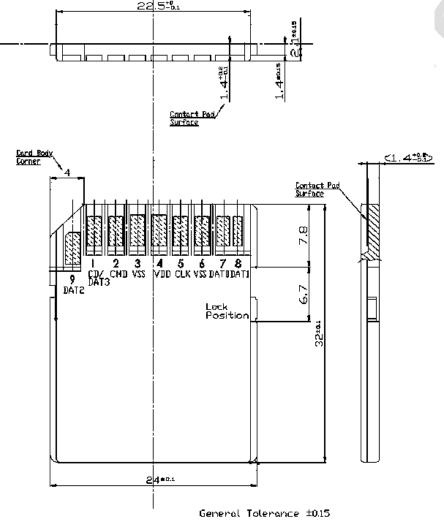
Table 9: Reliability

Parameter	Value
Data Retention at beginning @ 40°C	10 years *)
Data Retention at life end (20k PE cycles) @ 40°C	1 year *)

^{*)} After every power on the card reads the whole flash and performs a data refresh if necessary. So the data retention can be much longer in most use cases.

3 Capacity specification

Table 10: SD Memory Card capacity specification


Capacity	Sectors	Total addressable capacity (Byte)
2GB	3,938,304	2,016,411,648
4GB	7,774,208	3,980,394,496
8GB	15,802,368	8,090,812,416
16GB	31,834,112	16,299,065,344
32GB	62,333,952	31,914,983,424
64GB	124,735,488	63,864,569,856

4 Card physical

4.1 Physical description

The SD Memory Card contains a single chip controller and Flash memory module(s). The controller interfaces with a host system allowing data to be written to and read from the Flash memory module(s). Figure 1 shows card dimensions.

Figure 1: Simplified mechanical dimensions SD card

5 Electrical interface

5.1 Electrical description

Figure 2: SD Memory Card Shape and Interface (Top View)

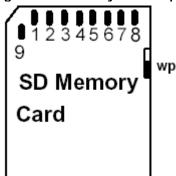


Table 11: SD Memory Card Pad Assignment

Pin #		SD Mode			SPI Mode			
	Name	Type ¹	Description	Name	Type ¹	Description		
1	CD/DAT3 ²	I/O/PP3	Card Detect/ Data Line [Bit 3]	CS	I 3	Chip Select (neg true)		
2	CMD	PP	Command/Response	DI	I	Data In		
3	VSS1	S	Supply voltage ground	VSS	S	Supply voltage ground		
4	VDD	S	Supply voltage	VDD	S	Supply voltage		
5	CLK	1	Clock	SCLK	I	Clock		
6	VSS2	S	Supply voltage ground	VSS2	S	Supply voltage ground		
7	DATo	I/O/PP	Data Line [Bit o]	DO	O/PP	Data Out		
8	DAT1 ⁴	I/O/PP	Data Line [Bit 1]	RSV				
9	DAT2 ⁵	I/O/PP	Data Line [Bit 2]	RSV				

Notes:

- 1) S: power supply; I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers;
- The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode, as well, while they are not used.
- 3) At power up this line has a 50k0hm pull up enabled in the card. This resistor serves two functions Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user, during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command
- 4) DAT1 line may be used as Interrupt Output (from the Card) in SDIO mode during all the times that it is not in use for data transfer operations (refer to "SDIO Card Specification" for further details).
- 5) DAT2 line may be used as Read Wait signal in SDIO mode (refer to "SDIO Card Specification" for further details).

Revision: 0.91

Page 8 Of 19

5.2 Power up / Power down beaviour and reset

5.2.1 Power up

When the voltage is ramped up the controller is ready (internal reset pin released) if the voltage reaches 1.65V. The host can start with communication 1ms after 2.7V is reached according the SDA soecification. That should perform 74 clock cycles and start with the sequence CMDo, CMD8, ACMD41 until card is ready as described in the SD specification 3.01.

5.2.2 Power down

When the power falls below 2.6V the controller stopps the communication to the flash, but enables the flash to finish a started flash program operation (if voltage drop is not fast).

After next initialization the controller checks the last written data for consistency and refreshs the data. Either the new or the old data (if the write operation could not be finished) are available.

5.2.3 Power drop

If the voltage drops below 2.6V and rises again, the card performes a reset. The card must be initialized like after a power on.

5.2.4 Operation below minimum voltage

If the card initialization is performed below the specified voltage of 2.7V, the card may be detected as 1MB card with no usefull data. In this case the host should power off and on the card and start initialization above 2.7V.

5.3 DC characteristics

Measurements are at Recommended Operating Conditions unless otherwise specified.

Table 12: DC Characteristics

Symbol	Parameter	min	typ	max	unit	notes
	Operating Current Read		75	120	mA	@ 25°C
	Operating Current Write		80	120	mA	@ 25°C
ı	Background read and refresh 1)		80	120	mA	@ 25°C
I _{DD}	Pre-initialization Standby Current		5	15	mA	@ 25°C
	Post initialization Standby Surrent 2)		2	9	mA	@ 25°C
	Post-initialization Standby Current ²⁾		5	15	mA	@ 85°C
ILI	Input Leakage Current	-2		2	μA	without
I _{LO}	Output Leakage Current	-2		2	μA	pull up R

Notes:

- 1) The card can perform auto data read of the whole card to check for ECC errors and performs data refresh.
- 2) Before auto read the idle current is larger than the typical idle current after auto read.

Table 13: SD Memory Card Recommended Operating Conditions

Symbol		Parameter	min	typ	max	unit
V_{DD}	Supply Voltage	Normal Operating Status	2.7	3.3	3.6	V
_	Power Up Time (f	rom oV to VDD min)			250	ms

Revision: 0.91

Page 9 Of 19

5.4 Signal Loading

according to SD specification

5.5 AC characteristics

5.5.1 Default Speed mode (o - 25MHz)

according to SD specification

5.5.2 High Speed mode (0 - 50MHz)

according to SD specification

5.5.3 UHS modes

UHS modes were driven with a signal level of 1.8V. The cards support following UHS-I modes:

Table 14: Supported UHS-I modes

Mode	max. Burst MB/s	max. Clock frequency MHz
SDR12	12.5	25
SDR25	25	50
SDR50	50	100
SDR104	104	208
DDR50	50	50 (rising and falling edge)

According to SD specification

6 Host access Specification

The following chapters summarize how the host accesses the card:

- Chapter 6.1 summarizes the SD and SPI buses.
- Chapter 4summarizes the registers.

6.1 SD and SPI Bus Modes

The card supports SD and the SPI Bus modes. Application can chose either one of the modes. Mode selection is transparent to the host. The card automatically detects the mode of the reset command and will expect all further communication to be in the same communication mode. The SD mode uses a 4-bit high performance data transfer, and the SPI mode provides compatible interface to MMC host systems with little redesign, but with a lower performance.

6.1.1 SD Bus Mode Protocol

The SD Bus mode has a single master (host) and multiple slaves (cards) synchronous topology. Clock, power, and ground signals are common to all cards. After power up, the SD Bus mode uses DATo only; after initialization, the host can change the cards' bus width from 1 bit (DATo) to 4 bits (DATo-DAT3). In high speed mode, only one card can be connected to the bus.

Communication over the SD bus is based on command and data bit streams which are initiated by a start bit and terminated by a stop bit.

- Command: a command is a token which starts an operation. A command is sent from the host either to a single card (addressed command) or to all connected cards (broadcast command). A command is transferred serially on the CMD line.
- Response: a response is a token which is sent from an addressed card, or (synchronously) from all
 connected cards, to the host as an answer to a previously received command. A response is
 transferred serially on the CMD line.
- Data: data can be transferred from the card to the host or vice versa. Data is transferred via the data lines.

6.1.2 SPI Bus Mode Protocol

The Serial Parallel Interface (SPI) Bus is a general purpose synchronous serial interface. The SPI mode consists of a secondary communication protocol. The interface is selected during the first reset command after power up (CMDo) and it cannot be changed once the card is powered on.

While the SD channel is based on command and data bit streams which are initiated by a start bit and terminated by a stop bit, the SPI channel is byte oriented. Every command or data block is built of 8-bit bytes and is byte aligned to the CS signal.

The card identification and addressing methods are replaced by a hardware Chip Select (CS) signal. There are no broadcast commands. For every command, a card (slave) is selected by asserting (active low) the CS signal.

The CS signal must be continuously active for the duration of the SPI transaction (command, response and data). The only exception occurs during card programming, when the host can de-assert the CS signal without affecting the programming process.

The bidirectional CMD and DAT lines are replaced by unidirectional dataIn and dataOut signals.

Table 15: SPI Bus Signals

Table 15. or i bus	Jigilui3
Signal	Description
/CS	Host to card chip select
CLK	Host to card clock signal
Data In	Host to card data signal
Data Out	Card to host data signal
Vdd. Vss	Power and ground

6.1.3 Mode Selection

The SD Memory Card wakes up in the SD mode. It will enter SPI mode if the CS signal is asserted (negative) during the reception of the reset command (CMDo) and the card is in *idle_state*. If the card recognizes that the SD mode is required it will not respond to the command and remain in the SD mode. If SPI mode is required the card will switch to SPI and respond with the SPI mode R1 response.

The only way to return to the SD mode is by entering the power cycle. In SPI mode the SD Memory Card protocol state machine is not observed. All the SD Memory Card commands supported in SPI mode are always available.

During the initialization sequence, if the host gets Illegal Command indication for ACMD41 sent to the card, it may assume that the card is Multimedia Card. In that case it should re-start the card as Multimedia Card using CMD0 and CMD1.

6.2 Card Registers

The SD Memory Card has registers. Refer to Table 16 to

Table 22 for detail.

Table 16: SD Memory Card registers

		iloly cald registers		
Register Name	Bit Width	Description	cion Function	
CID	128		This register contains the card identification information used during the Card Identification phase.	
OCR			This register describes the operating voltage range and contains the status sbit in the power supply.	
CSD			This register provides information on how to access the card content. Some fields of this register are writeable by PROGRAM_CSD (CMD27).	
SCR		SD Memory Card's Special features	This register provides information on special features.	
RCA 1)	16	Relative Card Address	This register carries the card address is SD Card mode.	
SSR	512		information about the card proprietary features and vendor specific life time information	

Notes

5. RCA register is not available in SPI mode

Table 17: CID register

Register Name	Bit Width	Description	typ. value
MID	8	Manufacture ID	ox5d
OID	16	OEM/Application ID	0X5342
PNM	40	Product Name	e.g."0008G"
PRV	8	Product Revision	oxgg
PSN	32	Product Serial Number	XXXXXXXX
_	4	Reserved	0X0
MDT	12	Manufacture Date	oxyym
CRC	CRC 7		chksum
_	1	Not used; always=1	1

Table 18: OCR register

OCR bit position	VDD voltage window	typ. value	OCR bit position	VDD voltage window	typ. value
0-3	Reserved	0	15	2.7-2.8	1
4	1.6-1.7	0	16	2.8-2.9	1
5	1.7-1.8	0	17	2.9-3.0	1
6	1.8-1.9	0	18	3.0-3.1	1
7	1.9-2.0	0	19	3.1-3.2	1
8	2.0-2.1	0	20	3.2-3.3	1
9	2.1-2.2	0	21	3.3-3.4	1
10	2.2-2.3	0	22	3.4-3.5	1
11	2.3-2.4	0	23	3.5-3.6	1
12	2.4-2.5	0	24	Switching to 1.8V accepted	1
13	2.5-2.6	0	25-30	Reserved	
14	2.6-2.7	0	30	Card Capacity Status (CCS)	*1)
			31	o=busy; 1=ready	*2)

Notes

- 6. This bit is valid only when the card power up status bit is set.
- 7. This bit is set to LOW if the card has not finished the power up routine.

Swissbit AG Revision: 0.91

Table 19: CSD register

Register Name			typ. Value SDSC	typ. Value SDHC/SDXC	
CSD_STRUCTURE	127:126	2	CSD structure	00	01
=	125:120	6	Reserved 00000		00
TAAC	119:112	8	Data read access time 1	00001	110
NSAC	111:104	8	Data read access time 2 (CLK cycle)	00000	000
TRAN_SPEED	103:96	8	Data transfer rate 0010010 Defaul or other val		DR 104
CCC	95:84	12	Card command classes	010110111101	010110110101
READ_BL_LEN	83:80	4	Read data block length	1010	1001
READ_BL_PARTIAL	79	1	Partial blocks for read allowed	1	0
WRITE_BLK_MISALIGN	78	1	Write block misalignment	0	
READ_BLK_MISALIGN	77	1	Read block misalignment	0	
DSR_IMP	76	1	DSR implemented	0	
_	75:70	6	Reserved	-	000000
C SIZE	69:48	22	Device size	-	xxx*)
_	47	1	Reserved	-	0
_	75:74	2	reserved	00	_
C SIZE	73:62	12	device size	xxx*)	_
VDD_R_CURR_MIN	61:59	3	max. read current @VDD min	7	-
VDD R CURR MAX	58:56	3	max. read current @VDD max	7	-
VDD W CURR MIN	55:53	3	max. write current @VDD min	7	_
VDD_W_CURR_MAX	52:50	3	max. write current @VDD max	7	_
C SIZE MULT	49:47	3	device size multiplier	xxx*)	_
ERASE BLK EN	46	1	Erase single block enable	1	1
SECTOR SIZE	45:39	7	Erase sector size	1111111	1111111
WP GRP SIZE	38:32	7	Write protect group size	0000000	0000000
WP GRP ENABLE	31	1	Write protect group enable	0	0
-	30:29	2	Reserved	00	00
R2W FACTOR	28:26	3	Write speed factor	010	010
WRITE BL LEN	25:22	4	Write data block length	1001*)	1001*)
WRITE BL PARTIAL	21	1	Partial blocks for write allowed	0	0
_	20:16	5	Reserved	00000	00000
FILE FORMAT GRP	15	1	File format group	o W(1)	o W(1)
COPY	14	1	Copy flag	o W(1)	o W(1)
PERM WRITE PROTECT	13	1	Permanent write protection	o W(1)	o W(1)
TMP WRITE PROTECT	12	1	Temporary write protection	o W	o W
FILE FORMAT	11:10	2	File format	00 W(1)	00 W(1)
_	9:8	2	Reserved	00 W	00 W
CRC	7:1	7	Checksum of CSD contents	xxxxxxx W	xxxxxxx W
-	0		Always=1	1	1
*) Drive Size and block					

^{*)} Drive Size and block sizes vary with card capacity

memory capacity = (C_SIZE+1) * 512kByte

W value can be changed with CMD27 (PROGRAM_CSD)
W(1) value can be changed ONCE with CMD27 (PROGRAM_CSD)

Page 13 Of 19

Table 20: SCR register

Table For Sell register				
Field	Bits	Bit Width	typ Value	remark
SCR_STRUCTURE	63:60	4	0000	SCR 1.012.00
SD_SPEC	59:56	4	0010	SD 2.0 or 3.0
DATA_STAT_AFTER_ERASE	55	1	1	data are oxFF after erase
			010	SDSC
SD_SECURITY	54:52	3	011	SDHC
			100	3.xx SDXC
SD_BUS_WIDTHS	51:48	4	0101	1 or 4 bit
SD_SPEC3	47	1	1	yes→ SD3.o
EX_SECURITY	46:43	4	0000	no extended security
Reserved	42:34	9	0	0
CMD_SUPPORT	33:32	2	11	CMD23 and CMD20 supported
Reserved	31:0	32	0	0

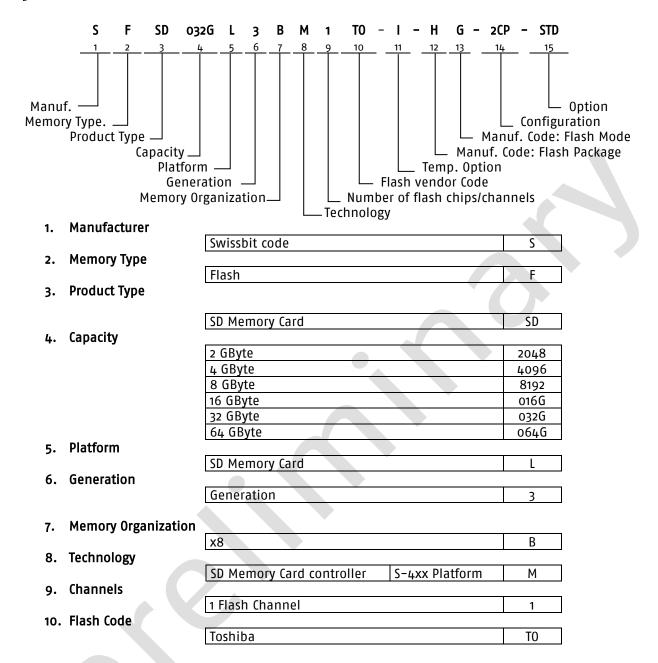
Table 21: RCA register

Field	Bit Width	typ Value
RCA	16	0x0000*)

^{*)} After Initialization the card can change the RCA register.

Table 22: SSR register

Field	Bits	Bit	typ Value	nom o nic
Field	BILS	Width	.	remark
Data bus width	511:510	2	0X2*)	4 bit width
Secured mode	509:509	1	0X0	not secured
Reserved for security	508:502	7	0X00	_
Reserved	501:496	6	0X00	-
SD card type	495:480	16	0X0000	Regular SD
Size protected area	479:448	32	0X03000000 0X04000000	48MB 64MB
Speed class	447:440	8	0X04	Class 10
Move performance	439:432	8	0X05	5 MB/s
Allocation unit size	431:428	4	OX9	4 MiB
Reserved	427:424	4	0X0	
Erase unit size	423:408	16	0X0001	1 AU
Erase unit timeout	407:402	6	0X01	1 second
Erase unit offset	401:400	2	0X1	1 seconds
UHS mode Speed Grade	399:396	4	0X1	UHS Grade1
Allocation unit size in UHS mode	395:392	4	ox9	4MB/s
Reserved	391:312	80		
Data structure version identifier, currently 1	311:304	8	0X01	version 1
Number of manufacturer marked defect blocks	303:288	16	0X0008	8 initial BB
Number of initial spare blocks (worst chip)	287:272	16	0X0074	116 spare blocks
Number of initial spare blocks (sum over all chips)	271:256	16	0X0074	116 spare blocks
Percentage of remaining spare blocks (worst chip)	255:248	8	ox64*)	100%
Percentage of remaining spare blocks (all chips)	247:240	8	0x64*)	100%
Number of uncorrectable ECC errors (not including ECC errors during startup)	239:224	16	oxoooo*)	o uncorrectable errors
Number of correctable ECC errors (not including ECC errors during startup)	223:192	32	oxoo45074b*)	4523851 correctable ECC errors
Lowest wear level class	191:176	16	oxoooo*)	0
Highest wear level class	175:160	16	oxoooo*)	0
Wear level threshold	159:144	16	0x003f	63 block erases per WL class
Total number of block erases	143:96	48	oxoo1ffo*)	8176 block erase commands
Number of flash blocks, in units of 256 blocks	95:80	16	0X0008	2048 flash blocks
Maximum flash block erase count target, in wear level class units	79:64	16	OXOOXX	Flash endurance xx WL classes
Power on count	63:32	32	oxooooooo3*)	3x power on
Firmware version	31:0	32	<i>OXYYMMDDXX</i>	Firmware Version


Bit 311:0 are vendor specific, example values in the table

Page 15 Of 19

^{*)} value change in operation

7 Part Number Decoder

	11.	Temp.	. Option
--	-----	-------	----------

Extended Temp. Range -25°C to 85°C	E
Industrial Temp. Range -40°C to 85°C	I

12. DIE Classification

	S-4x MLC/pSLC	S-4xx SLC
MONO (single die package)	G	М
DDP (dual die package)	L	D
QDP (quad die package)	Н	Q
ODP (octal die package)	0	N

13. PIN Mode

Single nCE & R/nB	E
Dual nCE & Dual R/nB	F
Quad nCE & Quad R/nB	G

14. Configuration XYZ

X→ Configuration

Configuration	х
default, non UHS	1
UHS-I	2

Y → FW Revision

FW Revision	Y
durabit Version 2	В
durabit Version 3	С

Z → optional

2 7 optional		
Optional	Z	
standard	1	
2plane 2plane	2	
pSLC (pseudo SLC)	Р	

15. Option

Swissbit / Standard	STD

8 Swissbit Label specification

8.1 Front side label

2GB SD

4GB SDHC

8GB SDHC

16GB SDHC

32GB SDHC

64GB SDXC

8.2 Back side marking

SWISSBIT
SFSDXXXXLXBM1
T0-X-XX-2CP-XXX
5016-6131210X
Made in Germany
CE WEEE

Partnumber calendar week and year – Lot code

Example of the back side laser marking

9 Revision History

Table 23: Document Revision History

Date	Revision	Description	Revision Details
September 28, 2016	0.90	Initial preliminary release	Doc. req. no. 1294
October 04, 2016	0.91	Update to newest firmware "C", lasermarking	Doc. req. no. 1300

Disclaimer:

No part of this document may be copied or reproduced in any form or by any means, or transferred to any third party, without the prior written consent of an authorized representative of Swissbit AG ("SWISSBIT"). The information in this document is subject to change without notice. SWISSBIT assumes no responsibility for any errors or omissions that may appear in this document, and disclaims responsibility for any consequences resulting from the use of the information set forth herein. SWISSBIT makes no commitments to update or to keep current information contained in this document. The products listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. Moreover, SWISSBIT does not recommend or approve the use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If a customer wishes to use SWISSBIT products in applications not intended by SWISSBIT, said customer must contact an authorized SWISSBIT representative to determine SWISSBIT willingness to support a given application. The information set forth in this document does not convey any license under the copyrights, patent rights, trademarks or other intellectual property rights claimed and owned by SWISSBIT. The information set forth in this document is considered to be "Proprietary" and "Confidential" property owned by SWISSBIT.

ALL PRODUCTS SOLD BY SWISSBIT ARE COVERED BY THE PROVISIONS APPEARING IN SWISSBIT'S TERMS AND CONDITIONS OF SALE ONLY, INCLUDING THE LIMITATIONS OF LIABILITY, WARRANTY AND INFRINGEMENT PROVISIONS. SWISSBIT MAKES NO WARRANTIES OF ANY KIND, EXPRESS, STATUTORY, IMPLIED OR OTHERWISE, REGARDING INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED PRODUCTS FROM INTELLECTUAL PROPERTY INFRINGEMENT, AND EXPRESSLY DISCLAIMS ANY SUCH WARRANTIES INCLUDING WITHOUT LIMITATION ANY EXPRESS, STATUTORY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

©2016 SWISSBIT AG All rights reserved.