S1D13A05 LCD/USB Companion Chip Hardware Functional Specification

Document Number: X40A-A-001-07.8

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.
©SEIKO EPSON CORPORATION 2002-2018. All rights reserved.

Table of Contents

1 Introduction 7
1.1 Scope 7
1.2 Overview Description 7
2 Features 8
2.1 Integrated Frame Buffer 8
2.2 CPU Interface 8
2.3 Display Support 8
2.4 Display Modes 9
2.5 Display Features 9
2.6 Clock Source 9
2.7 USB Device 9
2.8 2D Acceleration 10
2.9 Miscellaneous 10
3 Typical System Implementation Diagrams 11
3.1 Typical System Diagrams. 11
3.2 USB Interface 15
4 Pins 16
4.1 Pinout Diagrams 16
4.1.1 PFBGA 121-pin 16
4.2 Pin Descriptions 17
4.2.1 Host Interface 17
4.2.2 LCD Interface 20
4.2.3 Clock Input 24
4.2.4 Miscellaneous 25
4.2.5 Power And Ground 25
4.3 Summary of Configuration Options 26
4.4 Host Bus Interface Pin Mapping 27
4.5 LCD Interface Pin Mapping 28
5 D.C. Characteristics 29
6 A.C. Characteristics 30
6.1 Clock Timing 30
6.1.1 Input Clocks 30
6.1.2 Internal Clocks 32
6.2 RESET\# Timing 32
6.3 CPU Interface Timing 33
6.3.1 Generic \#1 Interface Timing 33
6.3.2 Generic \#2 Interface Timing 35
6.3.3 Hitachi SH-3 Interface Timing 37
6.3.4 Hitachi SH-4 Interface Timing 39
6.3.5 Motorola MC68K \#1 Interface Timing 41
6.3.6 Motorola MC68K \#2 Interface Timing 43
6.3.7 Motorola REDCAP2 Interface Timing 45
6.3.8 Motorola Dragonball Interface Timing with DTACK 47
6.3.9 Motorola Dragonball Interface Timing w/o DTACK 49
6.4 LCD Power Sequencing 51
6.4.1 Passive/TFT Power-On Sequence 51
6.4.2 Passive/TFT Power-Off Sequence 52
6.5 Display Interface 53
6.5.1 Generic STN Panel Timing 54
6.5.2 Single Monochrome 4-Bit Panel Timing 55
6.5.3 Single Monochrome 8-Bit Panel Timing 57
6.5.4 Single Color 4-Bit Panel Timing 59
6.5.5 Single Color 8-Bit Panel Timing (Format 1) 61
6.5.6 Single Color 8-Bit Panel Timing (Format 2) 63
6.5.7 Single Color 16-Bit Panel Timing 65
6.5.8 Generic TFT Panel Timing 67
6.5.9 9/12/18-Bit TFT Panel Timing 68
6.5.10 Sharp HR-TFT Panel Timing 71
6.5.11 Casio TFT Panel Timing 73
6.5.12 TFT Type 2 Panel Timing 75
6.5.13 TFT Type 3 Panel Timing 78
6.5.14 TFT Type 4 Panel Timing 82
6.6 USB Timing 85
7 Clocks 87
7.1 Clock Descriptions 87
7.1.1 BCLK 87
7.1.2 MCLK 87
7.1.3 PCLK 88
7.1.4 PWMCLK 89
7.2 Clock Selection 90
7.3 Clocks versus Functions 91
8 Registers 92
8.1 Register Mapping 92
8.2 Register Set 93
8.3 LCD Register Descriptions $($ Offset $=0 h)$ 95
8.3.1 Read-Only Configuration Registers 95
8.3.2 Clock Configuration Registers 96
8.3.3 Panel Configuration Registers 98
8.3.4 Look-Up Table Registers 103
8.3.5 Display Mode Registers 105
8.3.6 Picture-in-Picture Plus (PIP +) Registers 112
8.3.7 Miscellaneous Registers 117
8.3.8 Extended Panel Registers 128
8.4 USB Registers (Offset $=4000 \mathrm{~h})$ 139
8.5 2D Acceleration $($ BitBLT $)$ Registers $($ Offset $=8000 \mathrm{~h})$ 158
8.6 2D Accelerator (BitBLT) Data Register Descriptions 165
9 2D Accelerator (BitBLT) Engine 166
9.1 Overview 166
9.2 BitBLT Operations 166
10 Frame Rate Calculation 167
11 Display Data Formats 168
12 Look-Up Table Architecture 169
12.1 Monochrome Modes 169
12.2 Color Modes 171
13 SwivelView ${ }^{\text {TM }}$ 175
13.1 Concept 175
13.290° SwivelView $^{\text {TM }}$ 175
13.2.1 Register Programming 176
13.3180° SwivelView $^{\mathrm{TM}}$ 177
13.3.1 Register Programming 177
13.4270° SwivelView $^{\mathrm{TM}}$ 178
13.4.1 Register Programming 179
14 Picture-in-Picture Plus (PIP+) 180
14.1 Concept 180
14.2 With SwivelView Enabled 181
14.2.1 SwivelView 90° 181
14.2.2 SwivelView 180° 181
14.2.3 SwivelView 270° 182
15 Power Save Mode 183
16 USB Considerations 184
16.1 USB Oscillator Circuit 184
17 Mechanical Data 185
18 Change Record 186

19 Sales and Technical Support . 188

1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S1D13A05 LCD/USB Companion Chip. Included in this document are timing diagrams, AC and DC characteristics, register descriptions, and power management descriptions. This document is intended for two audiences: Video Subsystem Designers and Software Developers.

This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. The latest revision can be downloaded at vdc.epson.com.

We appreciate your comments on our documentation. Please contact us via email at vdc-documentation@ea.epson.com.

1.2 Overview Description

The S1D13A05 is an LCD/USB solution designed for seamless connection to a wide variety of microprocessors. The S1D13A05 integrates a USB slave controller and an LCD graphics controller with an embedded 256K byte SRAM display buffer. The LCD controller supports all standard panel types and multiple TFT types eliminating the need for an external timing control IC. The S1D13A05 includes a Hardware Acceleration Engine to greatly improve screen drawing functions and the built-in USB controller provides revision 1.1 compliance for applications requiring a USB client. This high level of integration provides a low cost, low power, single chip solution to meet the demands of embedded markets requiring USB client support, such as Mobile Communications devices and Palmsize PCs.

The S1D13A05 utilizes a guaranteed low-latency CPU architecture that provides support for microprocessors without READY/WAIT\# handshaking signals. The 32-bit internal data path, write buffer and the Hardware Acceleration Engine provide high performance bandwidth into display memory allowing for fast display updates.

Additionally, products requiring a rotated display can take advantage of the SwivelView ${ }^{\mathrm{TM}}$ feature which provides hardware rotation of the display memory transparent to the software application. The S1D13A05 also provides support for "Picture-in-Picture Plus" (a variable size Overlay window).

The S1D13A05, with its integrated USB client, provides impressive support for Palm OS ${ }^{\circledR}$ handhelds. However, its impartiality to CPU type or operating system makes it an ideal display solution for a wide variety of applications.

2 Features

2.1 Integrated Frame Buffer

- Embedded 256K byte SRAM display buffer.

2.2 CPU Interface

- Direct support of the following interfaces:

Hitachi SH-4 / SH-3.
Motorola M68xxx (REDCAP2, DragonBall, ColdFire).
Motorola DragonBall SZ Support (66 MHz).
Motorola "REDCAP2" - no WAIT\# signal.
Generic MPU bus interface with programmable ready (WAIT\#).

- "Fixed" low-latency CPU access times.
- Registers are memory-mapped - $\mathrm{M} / \mathrm{R} \#$ input selects between memory and register address space.
- The complete 256 K byte display buffer is directly and contiguously available through the 18 -bit address bus.

2.3 Display Support

- Single-panel, single drive passive displays.
- 4/8-bit monochrome LCD interface.
- 4/8/16-bit color LCD interface.
- Active Matrix TFT interface.
- 9/12/18-bit interface.
- Extended TFT interfaces (Type 2, 3, 4)
- 'Direct' support for 18-bit Sharp HR-TFT LCD (or compatible interfaces).
- 'Direct' support for the Casio TFT LCD (or compatible interfaces).

2.4 Display Modes

- 1/2/4/8/16 bit-per-pixel (bpp) color depths.
- Up to 64 gray shades on monochrome passive LCD panels.
- Up to 64 K colors on passive panels.
- Up to 64 K colors on active matrix LCD panels.
- Example resolutions:
320×320 at a color depth of 16 bpp 160x160 at a color depth of 16 bpp (2 pages) 160×240 at a color depth of 16 bpp

2.5 Display Features

- SwivelView ${ }^{\mathrm{TM}}: 90^{\circ}, 180^{\circ}, 270^{\circ}$ counter-clockwise hardware rotation of display image.
- Picture-in-Picture Plus (PIP^{+}): displays a variable size window overlaid over background image.
- Pixel Doubling: independent control of both horizontal and vertical pixel doubling.
- example usage: 160x160 8 bpp can be expanded to $320 \times 3208 \mathrm{bpp}$ without any additional memory.
- supports all color depths.
- Double Buffering/Multi-pages: provides smooth animation and instantaneous screen updates.

2.6 Clock Source

- Three independent clock inputs: CLKI, CLKI2 and USBCLK.
- Flexible clock source selection:
- internal Bus Clock (BCLK) selected from CLKI, CLKI/2, or CLKI2
- internal Memory Clock (MCLK) selected from BCLK or BCLK divide ratio (REG[04h)
- internal Pixel Clock (PCLK) selected from CLKI, CLKI2, MCLK, or BCLK. PCLK can also be divided down from source
- Single clock input possible if USB support not required.

2.7 USB Device

- USB Client, revision 1.1 compliant.
- Dedicated clock input: USBCLK.
- 48 MHz crystal oscillator for USBCLK.

Features

2.8 2D Acceleration

- 2D BitBLT engine including:

Write BitBLT Transparent Write BitBLT
Move BitBLT
Solid Fill BitBLT
Transparent Move BitBLT
Read BitBLT
Pattern Fill BitBLT
Color Expansion BitBLT
Move BitBLT with Color Expansion

2.9 Miscellaneous

- Software initiated Video Invert.
- Software initiated Power Save mode.
- General Purpose Input/Output pins are available.
- IO Operates at 3.3 volts $\pm 10 \%$.
- Core operates at 2.0 volts $\pm 10 \%$ or 2.5 volts $\pm 10 \%$.
- 121-pin PFBGA package.

3 Typical System Implementation Diagrams

3.1 Typical System Diagrams.

Figure 3-1: Typical System Diagram (Generic \#1 Bus)

Figure 3-2: Typical System Diagram (Generic \#2 Bus)

Typical System Implementation Diagrams

Figure 3-3: Typical System Diagram (Hitachi SH-4 Bus)

Figure 3-4: Typical System Diagram (Hitachi SH-3 Bus)

Figure 3-5: Typical System Diagram (MC68K \# 1, Motorola 16-Bit 68000)

Figure 3-6: Typical System Diagram (MC68K \#2, Motorola 32-Bit 68030)

Typical System Implementation Diagrams

Figure 3-7: Typical System Diagram (Motorola REDCAP2 Bus)

Figure 3-8: Typical System Diagram (Motorola MC68EZ328/MC68VZ328 "DragonBall" Bus)

Typical System Implementation Diagrams

3.2 USB Interface

Figure 3-9: USB Typical Implementation

Pins

4 Pins

4.1 Pinout Diagrams

4.1.1 PFBGA 121-pin

Figure 4-1: Pinout Diagram - PFBGA 121-pin
Table 4-1: PFBGA 121-pin Mapping

\mathbf{L}	NC	IOVDD	DB7	DB3	DB0	GPIO7	GPIO3	GPIO0	IOVDD	COREVDD	NC
\mathbf{K}	GPO0	VSS	DB8	DB4	DB1	GPIO6	GPIO2	IRQ	DRDY	VSS	GPO6
\mathbf{J}	GPO1	DB9	DB6	DB5	DB2	GPO3	GPIO1	USBCLK	FPFRAME	COREVDD	GPO7
\mathbf{H}	DB12	DB11	DB10	DB13	GPO2	IOVDD	GPIO4	GPO5	FPLINE	FPSHIFT	FPDAT0
\mathbf{G}	WAIT\#	DB15	DB14	IOVDD	VSS	GPIO5	FPDAT5	FPDAT1	FPDAT2	FPDAT3	FPDAT4
\mathbf{F}	RESET\#	VSS	RD/WR\#	WE1\#	CLKI	GPO4	FPDAT8	FPDAT6	VSS	FPDAT7	IOVDD
\mathbf{E}	RD\#	BS\#	M/R\#	CS\#	WE0\#	AB13	TESTEN	FPDAT9	FPDAT12	FPDAT11	FPDAT10
$\mathbf{D ~}$	AB0	AB1	AB2	AB8	AB12	AB17	CNF3	FPDAT13	FPDAT16	FPDAT15	FPDAT14
$\mathbf{C ~}$	USBOSCO	COREVDD	AB3	AB6	AB9	AB16	CNF2	CNF5	CNF6	FPDAT17	GPO8
$\mathbf{B ~}$	USBOSCI	VSS	AB5	GPO10	AB10	AB14	CNF1	CNF4	CLKI2	VSS	GPO9
$\mathbf{A ~}$	NC	COREVDD	AB4	AB7	AB11	AB15	CNF0	NC	PWMOUT	IOVDD	NC
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$

4.2 Pin Descriptions

Key:

1	$=$ Input
O	= Output
10	$=\mathrm{Bi}$-Directional (Input/Output)
P	$=$ Power pin
Cl	$=$ CMOS input
LI	$=$ LVTTL $^{\text {a }}$ input
LB2A	$=$ LVTTL IO buffer (6mA/-6mA@3.3V)
LB3P	$=$ Low noise LVTTL IO buffer (6mA/-6mA@3.3V)
LO3	= Low noise LVTTL Output buffer (3mA/-3mA@3.3V)
LB3M	$=$ Low noise LVTTL IO buffer with input mask (3mA/-3mA@3.3V)
T1	$=$ Test mode control input with pull-down resistor (typical value of $50 \mathrm{~K} \Omega$ at 3.3 V)
Hi-Z	$=$ High Impedance
CUS	= Custom Cell Type
	${ }^{\text {a }}$ LVTTL is Low Voltage TTL.

4.2.1 Host Interface

Table 4-2: Host Interface Pin Descriptions

Pin Name	PFBGA Pin \#	I/O type (see key above)	RESET\# State	Description

Table 4-2: Host Interface Pin Descriptions

Pin Name	PFBGA Pin \#	I/O type (see key above)	RESET\# State	Description
WEO\#	E5	LI	-	This input pin has multiple functions. - For Generic \#1, this pin inputs the write enable signal for the lower data byte (WEO\#). - For Generic \#2, this pin inputs the write enable signal (WE\#) - For SH-3/SH-4, this pin inputs the write enable signal for data byte 0 (WEO\#). - For MC68K \#1, this pin must be tied to IO $V_{D D}$ - For MC68K \#2, this pin inputs the bus size bit 0 (SIZO). - For REDCAP2, this pin inputs the byte enable signal for the $\mathrm{D}[7: 0]$ data byte ($\overline{\mathrm{EB} 1}$). - For DragonBall, this pin inputs the byte enable signal for the $\mathrm{D}[7: 0]$ data byte ($\overline{\mathrm{LWE}}$).
WE1\#	F4	LI	-	This input pin has multiple functions. - For Generic \#1, this pin inputs the write enable signal for the upper data byte (WE1\#). - For Generic \#2, this pin inputs the byte enable signal for the high data byte (BHE\#). - For SH-3/SH-4, this pin inputs the write enable signal for data byte 1 (WE1\#). - For MC68K \#1, this pin inputs the upper data strobe (UDS\#). - For MC68K \#2, this pin inputs the data strobe (DS\#). - For REDCAP2, this pin inputs the byte enable signal for the $\mathrm{D}[15: 8$] data byte ($\overline{\mathrm{EBO}}$). - For DragonBall, this pin inputs the byte enable signal for the $\mathrm{D}[15: 8]$ data byte (UWE).
CS\#	E4	Cl	-	Chip select input.
M/R\#	E3	LI	-	This input pin is used to select between the display buffer and register address spaces of the S1D13A05. M/R\# is set high to access the display buffer and low to access the registers.
BS\#	E2	LI	-	This input pin has multiple functions. - For Generic \#1, this pin must be tied to $I O V_{D D}$. - For Generic \#2, this pin must be tied to IO V $V_{D D}$. - For SH-3/SH-4, this pin inputs the bus start signal (BS\#). - For MC68K \#1, this pin inputs the address strobe (AS\#). - For MC68K \#2, this pin inputs the address strobe (AS\#). - For REDCAP2, this pin must be tied to $I O V_{D D}$. - For DragonBall, this pin must be tied to IO $V_{D D}$.

Table 4-2: Host Interface Pin Descriptions

Pin Name	PFBGA Pin \#	I/O type (see key above)	RESET\# State	Description
RD/WR\#	F3	LI	-	This input pin has multiple functions. - For Generic \#1, this pin inputs the read command for the upper data byte (RD1\#). - For Generic \#2, this pin must be tied to $I O V_{D D}$. - For SH-3/SH-4, this pin inputs the RD/WR\# signal. The S1D13A05 needs this signal for early decode of the bus cycle. - For MC68K \#1, this pin inputs the R/W\# signal. - For MC68K \#2, this pin inputs the R/W\# signal. - For REDCAP2, this pin inputs the R / \bar{W} signal. - For DragonBall, this pin must be tied to IO $V_{D D}$.
RD\#	E1	LI	-	This input pin has multiple functions. - For Generic \#1, this pin inputs the read command for the lower data byte (RDO\#). - For Generic \#2, this pin inputs the read command (RD\#). - For SH-3/SH-4, this pin inputs the read signal (RD\#). - For MC68K \#1, this pin must be tied to IO V $\mathrm{VD}_{\text {. }}$ - For MC68K \#2, this pin inputs the bus size bit 1 (SIZ1). - For REDCAP2, this pin inputs the output enable ($\overline{\mathrm{OE}})$. - For DragonBall, this pin inputs the output enable $(\overline{\mathrm{OE}})$.
WAIT\#	G1	LB2A	Hi-Z	During a data transfer, this output pin is driven active to force the system to insert wait states. It is driven inactive to indicate the completion of a data transfer. WAIT\# is released to the high impedance state after the data transfer is complete. Its active polarity is configurable. - For Generic \#1, this pin outputs the wait signal (WAIT\#). - For Generic \#2, this pin outputs the wait signal (WAIT\#). - For SH-3 mode, this pin outputs the wait request signal (WAIT\#). - For SH-4 mode, this pin outputs the device ready signal (RDY\#). - For MC68K \#1, this pin outputs the data transfer acknowledge signal (DTACK\#). - For MC68K \#2, this pin outputs the data transfer and size acknowledge bit 1 (DSACK1\#). - For REDCAP2, this pin is unused (Hi-Z). - For DragonBall, this pin outputs the data transfer acknowledge signal (DTACK). Note: This pin should be tied to the inactive voltage level as selected by CNF5, using a pull-up or pull-down resistor. If CNF5 $=1$, the WAIT\# pin should be tied low using a pull-down resistor. If CNF5 $=0$, the WAIT\# pin should be tied high using a pull-up resistor. If WAIT\# is not used, this pin should be tied either high or low using a pull-up or pull-down resistor.
RESET\#	F1	LI	-	Active low input to set all internal registers to the default state and to force all signals to their inactive states.

4.2.2 LCD Interface

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	Description
FPDAT[17:0]	$\begin{gathered} \hline \text { C10,D9,D10, } \\ \text { D11,D8,E9, } \\ \text { E10,E11, } \\ \text { E8,F7,F10, } \\ \text { F8,G7,G11, } \\ \text { G10,G9,G8, } \\ \text { H11 } \end{gathered}$	LB3P	0	Panel Data bits 17-0.
FPFRAME	J9	LB3P	0	This output pin has multiple functions. - Frame Pulse - SPS for HR-TFT - GSRT for Casio - STV for TFT Type 2 - STV for TFT Type 3
FPLINE	H9	LB3P	0	This output pin has multiple functions. - Line Pulse - LP for HR-TFT - GPCK for Casio - STB for TFT Type 2 - LP for TFT Type 3
FPSHIFT	H10	LB3P	0	This output pin has multiple functions. - Shift Clock - DCLK for HR-TFT - CLK for Casio - CLK for TFT Type 2 - CPH for TFT Type 3
DRDY	K9	LO3	0	This output pin has multiple functions. - LCD backplane bias signal (MOD) for all other LCD panels - 2nd shift clock (FPSHIFT2) for passive LCD with Format 1 interface - Display enable (DRDY) for TFT panels - INV for TFT Type $2 / 3$ - DRDY for TFT Type 4 - General Purpose Output
GPOO	K1	LO3	0	This is a general purpose output
GPO1	J1	LO3	0	This output pin has multiple functions. - When in TFT Type 3 mode, operates as VCOM - General purpose output bit otherwise
GPO2	H5	LO3	0	This output pin has multiple functions. - When in TFT Type 3 mode, operates as XOEV - General purpose output bit otherwise
GPO3	J6	LO3	0	This output pin has multiple functions. - When in TFT Type 3 mode, operates as CMD - General purpose output bit otherwise

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	LO3 GPO4
F6	LOscription			

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	Description
GPIO2	K7	LB3M	-	This pin has multiple functions. - REV for HR-TFT - FRP for Casio - POL for TFT Type 2/3 - General purpose IO pin 2 (GPIO2) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain.
GPIO3	L7	LB3M	-	This pin has multiple functions. - SPL for HR-TFT - STH for Casio - STH for TFT Type 2 - EIO for TFT Type 3 - General purpose IO pin 3 (GPIO3) When this pin is used for the above display modes, it must be configured as an output using REG[64h] after every RESET. Otherwise, it defaults to a Hi-Z state after every RESET and must either be configured as an output or be pulled high or low externally to avoid unnecessary current drain.
GPIO4	H7	LB3M	-	This pin has multiple functions. - USBPUP - General purpose IO pin 4 (GPIO4) This pin is Hi-Z after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.
GPIO5	G6	LB3M	-	This pin has multiple functions. - USBDETECT - General purpose IO pin 5 (GPIO5) This pin always defaults as an input. When not used as a USBDETECT pin, it must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.

Table 4-3: LCD Interface Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	Description
GPIO6	K6	CUS	-	This pin has multiple functions. - USBDM - General purpose IO pin 6 (GPIO6) When not used as a USB connection, this pin defaults to a Hi-Z state after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.
GPIO7	L6	CUS	-	This pin has multiple functions. - USBDP - General purpose IO pin 7 When not used as a USB connection, this pin defaults to a Hi-Z state after every RESET and must either be configured as an output using REG[64h] or be pulled high or low externally to avoid unnecessary current drain.
IRQ	K8	LO3	0	This output pin is the IRQ pin for USB. When IRQ is activated, an active high pulse is generated and stays high until the $I R Q$ is serviced by software at REG[404Ah] or REG[404Ch].
PWMOUT	A9	LO3	0	This pin has multiple functions. - PWM Clock output - General purpose output

4.2.3 Clock Input

Table 4-4: Clock Input Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	Description
CLKI	F 5	Cl	-	Typically used as input clock source for bus clock and memory clock
CLKI2	B 9	Cl	-	Optionally used as input clock source for pixel clock
USBCLK	J 8	Cl	-	Used as input clock source for USB. Note: If this pin is not connected to an input clock source, this pin must be connected to VSS.
USBOSCI	B 1	I	-	USB Crystal Oscillator feedback input from crystal. For an example implementation circuit using a crystal oscillator, see Section 16.1, "USB Oscillator Circuit" on page 184. Note: If this pin is not connected to a USB Crystal Oscillator, this pin must be connected to VSS.
USBOSCO	C 1	O	-	USB Crystal Oscillator output to crystal. For an example implementation circuit using a crystal oscillator, see Section 16.1, "USB Oscillator Circuit" on page 184.

4.2.4 Miscellaneous

Table 4-5: Miscellaneous Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	Description
CNF[6:0]	C9,C8,B8, D7,C7,B7, A7	Cl	-	These inputs are used to configure the S1D13A05 - see Table 4-7: "Summary of Power-On/Reset Options," on page 26. Note: These pins are used for configuration of the S1D13A05 and must be connected directly to IO \mathbf{V}_{DD} or $\mathrm{V}_{\text {SS }}$ -
TESTEN	E7	T1	-	Test Enable input used for production test only (has type 1 pull-down resistor with a typical value of 50K Ω at 3.3V). Note: This pin must be left un-connected.

4.2.5 Power And Ground

Table 4-6: Power And Ground Pin Descriptions

Pin Name	PFBGA Pin\#	I/O type (see key above)	RESET\# State	Description
IOVDD	L2,G4,H6, L9,A10,F11	P	-	IO power supply.
COREVDD	A2,C2,L10, J10	P	-	Core power supply.
VSS	B2,F2,K2, G5,F9,B10, K10	P	-	GND for IOVDD and COREVDD.

S1D13A05 Hardware Functional Specification	Seiko Epson Corporation	25
Rev. 7.8		

4.3 Summary of Configuration Options

These pins are used for configuration of the S1D13A05 and must be connected directly to $\mathrm{IOV}_{\mathrm{DD}}$ or V_{SS}. The state of CNF[6:0] are latched on the rising edge of RESET\#. Changing state at any other time has no effect.

Table 4-7: Summary of Power-On/Reset Options

Note
If CNF5 $=1$, the WAIT\# pin should be tied low using a pull-down resistor. If CNF5 $=0$, the WAIT\# pin should be tied high using a pull-up resistor. If WAIT\# is not used, this pin should be tied either high or low using a pull-up or pull-down resistor.

4.4 Host Bus Interface Pin Mapping

Table 4-8: Host Bus Interface Pin Mapping

S1D13A05 Pin Name	Generic \#1	Generic \#2	$\begin{gathered} \text { Hitachi } \\ \text { SH-3/SH-4 } \end{gathered}$	Motorola MC68K \#1	Motorola MC68K \#2	Motorola REDCAP2	Motorola MC68EZ328/ MC68VZ328 DragonBall
AB[17:1]	A[17:1]						
AB0	A0 ${ }^{1}$	A0	$A 0^{1}$	LDS\#	A0	A0 ${ }^{1}$	A0 ${ }^{1}$
DB[15:0]	D [15:0]	D [15:0]	D[15:0]	D[15:0]	$\mathrm{D}[15: 0]^{2}$	D[15:0]	D [15:0]
CS\#	External Decode		CSn\#	External Decode		$\overline{\mathrm{CSn}}$	$\overline{\text { CSX }}$
M/R\#	External Decode						
CLKI	BUSCLK	BUSCLK	CKIO	CLK	CLK	CLK	CLKO
BS\#	Connected to IOV ${ }_{\text {DD }}$		BS\#	AS\#	AS\#	Connected to IOV ${ }_{\text {DD }}$	
RD/WR\#	RD1\#	Connected to $I O V_{D D}$	RD/WR\#	R/W\#	R/W\#	$\mathrm{R} / \overline{\mathrm{W}}$	Connected to $I O V_{D D}$
RD\#	RD0\#	RD\#	RD\#	Connected to $I O V_{D D}$	SIZ1	$\overline{\mathrm{OE}}$	$\overline{\mathrm{OE}}$
WEO\#	WEO\#	WE\#	WEO\#	Connected to $I O V_{D D}$	SIZO	$\overline{\text { EB1 }}$	$\overline{\text { LWE }}$
WE1\#	WE1\#	BHE\#	WE1\#	UDS\#	DS\#	$\overline{\text { EB0 }}$	$\overline{\text { UWE }}$
WAIT\#	WAIT\#	WAIT\#	WAIT\#I RDY\#	DTACK\#	DSACK1\#	N/A	$\overline{\text { DTACK }}$
RESET\#	RESET\#	RESET\#	RESET\#	RESET\#	RESET\#	$\overline{\text { RESET_OUT }}$	RESET

Note

${ }^{1}$ A0 for these busses is not used internally by the S1D13A05 and should be connected to V_{SS}.
${ }^{2}$ If the target MC68K bus is 32 -bit, then these signals should be connected to D [31:16].

Pins

4.5 LCD Interface Pin Mapping

Table 4-9: LCD Interface Pin Mapping

Pin Name	Monochrome Passive Panel Single		Color Passive Panel				Color TFT Panel								USB
			Single				Generic TFT (TFT Type 1)			Sharp 1 18-bit 18-bit	Casio TFT ${ }^{1}$ 18-bit	TFT Type $\mathbf{2}^{1}$ 18 -bit	TFT Type ${ }^{1}{ }^{1}$ 18-bit	TFT Type 4 18 -bit ${ }^{3}$	
	4-bit	8-bit	4-bit		$\begin{gathered} \text { Format } 2 \\ 8 \text {-bit } \end{gathered}$	16-Bit	9-bit	12-bit	18-bit						
FPFRAME	FPFRAME									SPS	GSRT	STV	STV	FPFRAME	-
FPLINE	FPLINE									LP	GPCK	STB	LP	FPLINE	-
FPSHIFT	FPSHIFT									DCLK	CLK	CLK	CPH	FPSHIFT	-
DRDY	MOD			$\begin{gathered} \text { FPSHIFT } \\ 2 \end{gathered}$	MOD		DRDY			driven 0	no connect	INV	INV	DRDY	-
FPDATO	driven 0	D0	driven 0	D0 (B5) ${ }^{2}$	D0 (G3) ${ }^{2}$	D0 (R6) ${ }^{2}$	R2	R3	R5	R5	R5	R5	R5	R5	-
FPDAT1	driven 0	D1	driven 0	D1 (R5) ${ }^{2}$	D1 (R3) ${ }^{2}$	D1 (G5) ${ }^{2}$	R1	R2	R4	R4	R4	R4	R4	R4	-
FPDAT2	driven 0	D2	driven 0	D2 (G4) ${ }^{2}$	D2 (B2) ${ }^{2}$	D2 (B4) ${ }^{2}$	R0	R1	R3	R3	R3	R3	R3	R3	-
FPDAT3	driven 0	D3	driven 0	D3 (B3) ${ }^{2}$	D3 (G2) ${ }^{2}$	D3 (R4) ${ }^{2}$	G2	G3	G5	G5	G5	G5	G5	G5	-
FPDAT4	D0	D4	D0 (R2) ${ }^{2}$	$\mathrm{D} 4(\mathrm{R} 3)^{2}$	D 4 (R2) ${ }^{2}$	D8 (B5) ${ }^{2}$	G1	G2	G4	G4	G4	G4	G4	G4	-
FPDAT5	D1	D5	D1 (B1) ${ }^{2}$	D5 (G2) ${ }^{2}$	D5 (B1) ${ }^{2}$	D9 (R5) ${ }^{2}$	G0	G1	G3	G3	G3	G3	G3	G3	-
FPDAT6	D2	D6	D2 (G1) ${ }^{2}$	D6 (B1) ${ }^{2}$	D6 (G1) ${ }^{2}$	D10 (G4) ${ }^{2}$	B2	B3	B5	B5	B5	B5	B5	B5	-
FPDAT7	D3	D7	D3 (R1) ${ }^{2}$	D7 (R1) ${ }^{2}$	D7 (R1) ${ }^{2}$	D11 (B3) ${ }^{2}$	B1	B2	B4	B4	B4	B4	B4	B4	-
FPDAT8	driven 0	D4 (G3) ${ }^{2}$	B0	B1	B3	B3	B3	B3	B3	B3	-				
FPDAT9	driven 0	D5 (B2) ${ }^{2}$	driven 0	R0	R2	R2	R2	R2	R2	R2	-				
FPDAT10	driven 0	D6 (R2) ${ }^{2}$	driven 0	driven 0	R1	R1	R1	R1	R1	R1	-				
FPDAT11	driven 0	D7 (G1) ${ }^{2}$	driven 0	driven 0	R0	R0	R0	R0	R0	R0	-				
FPDAT12	driven 0	D12 (R3) ${ }^{2}$	driven 0	G0	G2	G2	G2	G2	G2	G2	-				
FPDAT13	driven 0	D13 (G2) ${ }^{2}$	driven 0	driven 0	G1	G1	G1	G1	G1	G1	-				
FPDAT14	driven 0	D14 (B1) ${ }^{2}$	driven 0	driven 0	G0	G0	G0	G0	G0	G0	-				
FPDAT15	driven 0	D15 (R1) ${ }^{2}$	driven 0	B0	B2	B2	B2	B2	B2	B2	-				
FPDAT16	driven 0	B1	B1	B1	B1	B1	B1	-							
FPDAT17	driven 0	B0	B0	B0	B0	B0	B0	-							
GPIO0	PS	POL	VCLK	CPV	GPIO0	-									
GPIO1	CLS	GRES	AP	OE	GPIO1	-									
GPIO2	REV	FRP	POL	POL	GPIO2	-									
GPIO3	SPL	STH	STH	EIO	GPIO3	-									
GPIO4	USBPUP														
GPIO5	USBDETECT														
GPIO6	USBDM														
GPIO7	USBDP														
GPO0							GPO0 (Ge	eral Purpos	Output)						-
GPO1													VCOM	GPO1	-
GPO2													XOEV	GPO2	-
GPO3													CMD	GPO3	-
GPO4													PCLK1	GPO4	-
GPO5													PCLK2	GPO5	-
GPO6													XRESH	GPO6	-
GPO7													XRESV	GPO7	-
GPO8													XOHV	GPO8	-
GPO9													XSTBY	GPO9	-
GPO10													PMDE	GPO10	-
PWMOUT								WMOUT							-

Note

${ }^{1}$ GPIO pins which are used by the HR-TFT, Casio, TFT Type 2, and TFT Type 3 interfaces, must be configured as outputs using REG[64h] bits 23-16 after every RESET or power-up.
${ }^{2}$ These pin mappings use signal names commonly used for each panel type, however signal names may differ between panel manufacturers. The values shown in brackets represent the color components as mapped to the corresponding FPDATxx signals at the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see Section 6.5, "Display Interface" on page 53.
${ }^{3}$ The S1D13A05 also supports the 9-bit and 12-bit variations of the Type 4 TFT panel.

5 D.C. Characteristics

Note

When applying Supply Voltages to the S1D13A05, Core V_{DD} must be applied to the chip before, or simultaneously with IO V_{DD}, or damage to the chip may result.

Table 5-1: Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
Core V_{DD}	Supply Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to 3.0	V
$\mathrm{IO} \mathrm{V}_{\mathrm{DD}}$	Supply Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to 4.0	V
$\mathrm{~V}_{\mathrm{IN}}$	Input Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $10 \mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\text {OUT }}$	Output Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$ to $10 \mathrm{~V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~T}_{\text {STG }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Solder Temperature/Time	260 for 10 sec. max at lead	${ }^{\circ} \mathrm{C}$

Table 5-2: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Typ	Max	Units
Core V DD	Supply Voltage	$\mathrm{V}_{S S}=0 \mathrm{~V}$	1.8 (note 1)	2.0 (note 1)	2.2 (note 1)	V
		$\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$	2.25	2.5	2.75	V
$\mathrm{IO} \mathrm{V}_{\mathrm{DD}}$	Supply Voltage	$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$	3.0	3.3	3.6	V
$\mathrm{V}_{\text {IN }}$	Input Voltage		$V_{S S}$		$10 V_{\text {DD }}$	V
			$V_{S S}$		CORE V ${ }_{\text {DD }}$	
ToPR	Operating Temperature		-40	25	85	${ }^{\circ} \mathrm{C}$

1. When Core V_{DD} is $2.0 \mathrm{~V} \pm 10 \%$, the MCLK must be less than or equal to 30 MHz ($\mathrm{MCLK} \leq 30 \mathrm{MHz}$)

Table 5-3: Electrical Characteristics for VDD $=3.3 \mathrm{~V}$ typical

Symbol	Parameter	Condition	Min	Typ	Max	Units
IDDS	Quiescent Current	Quiescent Conditions			170	$\mu \mathrm{A}$
IZ	Input Leakage Current		-1		1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current		-1		1	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{VDD}=\min \\ & \mathrm{I}_{\mathrm{OH}}=\quad-3 \mathrm{~mA} \text { (Type 1) } \\ & \\ & -6 \mathrm{~mA} \text { (Type 2) } \end{aligned}$	$V_{D D}-0.4$			V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{VDD}=\min \\ & \mathrm{I}_{\mathrm{OL}}=\quad 3 \mathrm{~mA} \text { (Type 1) } \\ & \quad 6 \mathrm{~mA} \text { (Type 2) } \end{aligned}$			0.4	V
V_{IH}	High Level Input Voltage	LVTTL Level, $\mathrm{V}_{\mathrm{DD}}=\max$	2.0			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	LVTTL Level, $\mathrm{V}_{\mathrm{DD}}=\min$			0.8	V
$\mathrm{R}_{\text {PD }}$	Pull Down Resistance	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	20	50	120	$\mathrm{k} \Omega$
C_{1}	Input Pin Capacitance				10	pF
C_{O}	Output Pin Capacitance				10	pF
$\mathrm{C}_{1 \mathrm{O}}$	Bi-Directional Pin Capacitance				10	pF

A.C. Characteristics

6 A.C. Characteristics

Conditions: $\mathrm{IO} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {rise }}$ and $\mathrm{T}_{\text {fall }}$ for all inputs must be $\leq 5 \mathrm{nsec}(10 \% \sim 90 \%)$
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Bus/MPU Interface)
$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ (LCD Panel Interface)

6.1 Clock Timing

6.1.1 Input Clocks

Figure 6-1: Clock Input Requirements

Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide >1

Symbol	Parameter	Min	Max	Units
$\mathrm{f}_{\mathrm{OSC}}$	Input Clock Frequency (CLKI)		100	MHz
$\mathrm{T}_{\mathrm{OSC}}$	Input Clock period (CLKI)	$1 / \mathrm{f}_{\mathrm{OSC}}$		ns
$\mathrm{t}_{\mathrm{PWH}}$	Input Clock Pulse Width High (CLKI)	4.5		ns
$\mathrm{t}_{\mathrm{PWL}}$	Input Clock Pulse Width Low (CLKI)	4.5		ns
t_{f}	Input Clock Fall Time (10\% -90\%)		5	ns
t_{r}	Input Clock Rise Time (10\% -90\%)		5	ns

Note

Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, "Internal Clocks" on page 32 for internal clock requirements.

A.C. Characteristics

Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide $=1$

Symbol	Parameter	Min	Max	Units
$\mathrm{f}_{\mathrm{OSC}}$	Input Clock Frequency (CLKI)		66	MHz
$\mathrm{T}_{\mathrm{OSC}}$	Input Clock period (CLKI)	$1 / \mathrm{f}_{\mathrm{OSC}}$		ns
$\mathrm{t}_{\mathrm{PWH}}$	Input Clock Pulse Width High (CLKI)	3		ns
$\mathrm{t}_{\mathrm{PWL}}$	Input Clock Pulse Width Low (CLKI)	3		ns
t_{f}	Input Clock Fall Time (10\% -90\%)		5	ns
t_{r}	Input Clock Rise Time (10\% $-90 \%)$		5	ns

Note

Maximum internal requirements for clocks derived from CLKI must be considered when determining the frequency of CLKI. See Section 6.1.2, "Internal Clocks" on page 32 for internal clock requirements.

Table 6-3: Clock Input Requirements for CLKI2

Symbol	Parameter	Min	Max	Units
$\mathrm{f}_{\mathrm{OSC}}$	Input Clock Frequency (CLKI2)		66	MHz
$\mathrm{T}_{\mathrm{OSC}}$	Input Clock period (CLKI2)	$1 / \mathrm{f}_{\mathrm{OSC}}$		ns
$\mathrm{t}_{\mathrm{PWH}}$	Input Clock Pulse Width High (CLKI2)	3		ns
$\mathrm{t}_{\mathrm{PWL}}$	Input Clock Pulse Width Low (CLKI2)	3		ns
t_{f}	Input Clock Fall Time (10\% -90\%)		5	ns
t_{r}	Input Clock Rise Time (10\% -90\%)		5	ns

Note

Maximum internal requirements for clocks derived from CLKI2 must be considered when determining the frequency of CLKI2. See Section 6.1.2, "Internal Clocks" on page 32 for internal clock requirements.

A.C. Characteristics

6.1.2 Internal Clocks

Table 6-4: Internal Clock Requirements

Symbol	Parameter	Min	Max	Units	
$\mathrm{f}_{\mathrm{BCLK}}$	Bus Clock frequency		66	MHz	
$\mathrm{f}_{\text {MCLK }}$	Memory Clock frequency (see note 1)	COREVDD $=2.0 \mathrm{~V}$		30	MHz
	COREVDD $=2.5 \mathrm{~V}$		50	MHz	
$\mathrm{f}_{\text {PCLK }}$	Pixel Clock frequency		50	MHz	
$\mathrm{f}_{\text {PWMCLK }}$	PWM Clock frequency		66	MHz	

1. MCLK is derived from BCLK, therefore when BCLK is greater than $50 \mathrm{MHz}, \mathrm{MCLK}$ must be divided using REG[04h] bits 5-4.

Note
For further information on internal clocks, refer to Section 7, "Clocks" on page 87.

6.2 RESET\# Timing

Figure 6-2 S1D13A05 RESET\# Timing

Table 6-5 S1D13A05 RESET\# Timing

Symbol	Parameter	Min	Max	Units
t 1	Active Reset Pulse Width	1	-	CLKI

6.3 CPU Interface Timing

6.3.1 Generic \#1 Interface Timing

Figure 6-3: Generic \#1 Interface Timing

Table 6-6: Generic \#1 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\mathrm{CLK}}$	Bus clock frequency		50	MHz
$\mathrm{T}_{\text {CLK }}$	Bus clock period	$1 / \mathrm{f}_{\text {CLK }}$		ns
t 1	A[16:1], M/R\# setup to first CLK rising edge where CS\# = 0 and either RD0\#, RD1\# = 0 or WE0\#, WE1\# = 0	0	ns	
t 2	CS\# setup to CLK rising edge	0		ns
t 3	RD0\#, RD1\#, WE0\#, WE1\# setup to CLK rising edge	0		ns
t 4	RD0\#, RD1\# or WE0\#, WE1\# state change to WAIT\# driven low	3	8	ns
t 5	A[16:1], M/R\# and CS\# hold from RD0\#, RD1\#, WE0\#, WE1\# rising edge	0	ns	
t 6	CS\# deasserted to reasserted	0		ns
t 7	WAIT\# rising edge to RD0\#, RD1\#, WE0\#, WE1\# rising edge	0		ns
t8	WE0\#, WE1\#, RD0\#, RD1\# deasserted to reasserted	1		$\mathrm{~T}_{\text {CLK }}$
t9	CLK rising edge to WAIT\# rising edge	5	14	ns

A.C. Characteristics

Table 6-6: Generic \#1 Interface Timing

Symbol	Parameter	Min	Max	Unit
t 10	Rising edge of either RD0\#, RD1\# or WEO\#, WE1\# to WAIT\# high impedance		5	ns
t 11	[115:0] setup to 4th rising CLK edge after CS\#=0 and WE0\#, WE1\#=0	1	$\mathrm{~T}_{\text {CLK }}$	
t 12	D[15:0] hold from WE0\#, WE1\# rising edge (write cycle)	0	ns	
t 13	D[15:0] valid to WAIT\# rising edge (read cycle)	0.5		$\mathrm{~T}_{\text {CLK }}$
t 14	D[15:0] hold from RD0\#, RD1\# rising edge (read cycle)	2	ns	
t 15	Cycle Length	6	$\mathrm{~T}_{\text {CLK }}$	

Table 6-7: Generic \#1 Interface Truth Table for Little Endian

WE0\#	WE1\#	RD0\#	RD1\#	D[15:8]	D[7:0]	Comments
0	0	1	1	valid	valid	16-bit write
0	1	1	1	-	valid	8-bit write; data on low byte (even byte address ${ }^{1}$)
1	0	1	1	valid	-	8-bit write; data on high byte (odd byte address ${ }^{1}$)
1	1	0	0	valid	valid	16-bit read
1	1	0	1	-	valid	8-bit read; data on low byte (even byte address ${ }^{1}$)
1	1	1	0	valid	-	8-bit read; data on high byte (odd byte address ${ }^{1}$)

Table 6-8: Generic \#1 Interface Truth Table for Big Endian

WE0\#	WE1\#	RD0\#	RD1\#	D[15:8]	D[7:0]	Comments
0	0	1	1	valid	valid	16-bit write
0	1	1	1	-	valid	8-bit write; data on low byte (odd byte address ${ }^{1}$)
1	0	1	1	valid	-	8-bit write; data on high byte (even byte address ${ }^{1}$)
1	1	0	0	valid	valid	16-bit read
1	1	0	1	-	valid	8-bit read; data on low byte (odd byte address ${ }^{1}$)
1	1	1	0	valid	-	8-bit read; data on high byte (even byte address ${ }^{1}$)

1. Because A0 is not used internally, all addresses are seen by the S1D13A05 as even addresses (16-bit word address aligned on even byte addresses).

6.3.2 Generic \#2 Interface Timing

Figure 6-4: Generic \#2 Interface Timing

Table 6-9: Generic \#2 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {BUSCLK }}$	Bus clock frequency		50	MHz
$\mathrm{T}_{\text {BUSCLK }}$	Bus clock period	$1 / \mathrm{f}_{\text {BUSCLK }}$		ns
t 1	A[16:0], M/R\#, BHE\# setup to first BUSCLK rising edge where CS\# $=$ 0 and either RD\# = 0 or WE\# = 0	0		ns
t 2	CS\# setup to BUSCLK rising edge	0		ns
t 3	RD\#, WE\# setup to BUSCLK rising edge	0		ns
t 4	RD\# or WE\# state change to WAIT\# driven low	3	9	ns
t5	A[16:0], M/R\#, BHE\# and CS\# hold from RD\#, WE\# rising edge	0		ns
t6	CS\# deasserted to reasserted	0		ns
t7	WAIT\# rising edge to RD\#, WE\# rising edge	0		ns
t8	WE\#, RD\# deasserted to reasserted	5	14	ns
t9	WAIT\# rising edge after BUSCLK rising edge		7	ns
t10	Rising edge of either RD\# or WE\# to WAIT\# high impedance	1		$T_{\text {BuscLK }}$
t11	D[15:0] setup to 4th rising BUSCLK edge after CS\#=0 and WE\#=0	1		

A.C. Characteristics

Table 6-9: Generic \#2 Interface Timing

Symbol	Parameter	Min	Max	Unit
t 12	$\mathrm{D}[15: 0]$ hold from WE\# rising edge (write cycle)	0		ns
t 13	$\mathrm{D}[15: 0]$ valid to WAIT\# rising edge setup (read cycle)	0.5		$\mathrm{~T}_{\text {BUSCLK }}$
t 14	$\mathrm{D}[15: 0]$ hold from RD\# rising edge (read cycle)	2		ns
t 15	Cycle Length	6		$\mathrm{~T}_{\text {BUSCLK }}$

Table 6-10: Generic \#2 Interface Truth Table for Little Endian

WE\#	RD\#	BHE\#	A0	D[15:8]	D[7:0]	
0	1	0	0	valid	valid	16-bit write
0	1	1	0	-	valid	8-bit write at even address
0	1	0	1	valid	-	8-bit write at odd address
1	0	0	0	valid	valid	16-bit read
1	0	1	0	-	valid	8-bit read at even address
1	0	0	1	valid	-	8-bit read at odd address

6.3.3 Hitachi SH-3 Interface Timing

Figure 6-5: Hitachi SH-3 Interface Timing

Note
A minimum of one software wait state is required.

A.C. Characteristics

Table 6-11: Hitachi SH-3 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\mathrm{CKIO}}$	Bus clock frequency		66	MHz
$\mathrm{T}_{\text {CKIO }}$	Bus clock period	1/f $\mathrm{f}_{\text {CKIO }}$		ns
t1	A[16:1], RD/WR\# setup to CKIO	0		ns
t2	BS\# setup	0		ns
t3	BS\# hold	9		ns
t4	CSn\# setup	0		ns
t5	WEn\#, RD\# setup to next CKIO after BS\# low	0		ns
t6	Falling edge CSn\# to WAIT\# driven low	4	9	ns
t7	D[15:0] setup to 3rd CKIO rising edge after BS\# deasserted (write cycle)	1		ns
t8	WE\#, RD\# deasserted to A[16:1], M/R\#, RD/WR\# deasserted	0		ns
t9	Rising edge of WAIT\# to BS\# falling	$\mathrm{T}_{\text {CKIO }}+16$		ns
t10	CKIO rising edge before WAIT\# deasserted to WEn\#, RD\# asserted for next cycle	2		$\mathrm{T}_{\text {CKIO }}$
t11	Rising edge of WAIT\# to WE\#, RD\# deasserted	0		ns
t12	WAIT\# rising edge after CKIO rising edge	5	14	ns
t13	Rising edge of CSn\# to WAIT\# high impedance		6	ns
t14	D[15:0] hold from WEn\# deasserted (write cycle)	0		ns
t15	D[15:0] setup to WAIT\# rising edge (read cycle)	0.5		$\mathrm{T}_{\text {CKIO }}$
t16	Rising edge of RD\# to D [15:0] high impedance (read cycle)	3	7	ns
t17	Cycle Length	5		$\mathrm{T}_{\text {CKIO }}$

1. The S1D13A05 requires 2 ns of write data hold time.

6.3.4 Hitachi SH-4 Interface Timing

Figure 6-6: Hitachi SH-4 Interface Timing

Note

A minimum of one software wait state is required.

A.C. Characteristics

Table 6-12: Hitachi SH-4 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\mathrm{CKIO}}$	Bus clock frequency		66	MHz
TCKIO	Bus clock period	1/f ${ }_{\text {CKIO }}$		ns
t1	A[16:1], M/R\#, RD/WR\# setup to CKIO	0		ns
t2	BS\# setup	0		ns
t3	BS\# hold	9		ns
t4	CSn\# setup	0		ns
t5	WEn\#, RD\# setup to 1st CKIO rising edge after BS\# low	0		ns
t6	Falling edge CSn\# to RDY driven high	3	7	ns
t7	D[15:0] setup to 3rd CKIO rising edge after BS\# deasserted (write cycle)	1		ns
t8	WE\#,RD\# deasserted to A[16:1],M/R\#,RD/WR\# deasserted	0		ns
t9	RDY falling edge to BS\# falling	$\mathrm{T}_{\text {CKIO }}+11$		ns
t10	CKIO rising edge before RDY deasserted to WEn\#, RD\# asserted for next cycle	2		$\mathrm{T}_{\text {CKIO }}$
t11	RDY falling edge to WE\#,RD\# deasserted	0		ns
t12	RDY falling edge after CKIO rising edge	5	14	ns
t13	Rising edge CSn\# to RDY rising edge	4	10	ns
t14	CKIO falling edge to RDY tristate	4	12	ns
t15	D[15:0] hold from WEn\# deasserted (write cycle)	0		ns
t16	D [15:0] valid setup to RDY falling edge (read cycle)	0.5		$\mathrm{T}_{\text {CKIO }}$
t17	Rising edge of RD\# to D[15:0] high impedance (read cycle)	2	7	ns
t18	Cycle Length	4		$\mathrm{T}_{\text {CKIO }}$

6.3.5 Motorola MC68K \#1 Interface Timing

Figure 6-7: Motorola MC68K \#1 Interface Timing

A.C. Characteristics

Table 6-13: Motorola MC68K\#1 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {CLK }}$	Bus clock frequency		50	MHz
TCLK	Bus clock period	1/f CLK		ns
t1	A[16:1], M/R\#, R/W\# and CS\# and AS\# and UDS\#, LDS\# setup to first CLK rising edge	1		ns
t2	CS\# and AS\# asserted to DTACK\# driven	2	7	ns
t3	A[16:1], M/R\#, R/W\# and CS\# hold from AS\# rising edge	0		ns
t4	AS\# rising edge to CLK falling edge	1		ns
t5	DTACK\# falling edge to UDS\#, LDS\# rising edge	0		ns
t6	CLK rising edge to DTACK\# falling edge	5	14	ns
t7	AS\# rising edge to DTACK\# rising edge	3	9	ns
t8	1st CLK falling edge after AS\# deasserted to DTACK\# high impedance		$\begin{gathered} 0.5 \mathrm{~T}_{\mathrm{CLK}}+ \\ 12 \end{gathered}$	ns
t9	D[15:0] valid to 4th CLK rising edge where CS\# $=0$, AS\# $=0$ and either UDS\# = 0 or LDS\# = 0 (write cycle)	1		TCLK
t10	D [15:0] hold from DTACK\# falling edge (write cycle)	0		ns
t11	D[15:0] valid setup time to DTACK\# goes low (read cycle)	0.5		$\mathrm{T}_{\text {CLK }}$
t12	UDS\#, LDS\# rising edge to D[15:0] high impedance (read cycle)	2		ns
t13	Cycle Length	7		$\mathrm{T}_{\text {CLK }}$

6.3.6 Motorola MC68K \#2 Interface Timing

Figure 6-8: Motorola MC68K \#2 Interface Timing

A.C. Characteristics

Table 6-14: Motorola MC68K\#2 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {CLK }}$	Bus clock frequency		50	MHz
TCLK	Bus clock period	1/f CLK		ns
t1	A[16:0], M/R\#, R/W\#, SIZ[1:0] and CS\# and AS\# and DS\# setup to first CLK rising edge	0		ns
t2	CS\# and AS\# asserted low to DSACK1\# driven	2	7	ns
t3	A[16:1], M/R\#, R/W\#, SIZ[1:0] hold from AS\# rising edge	0		ns
t4	CS\# hold from AS\# rising edge	0		ns
t5	DS\# rising edge to AS\# rising edge	0		ns
t6	AS\# setup to CLK falling edge	1		ns
t7	DSACK1\# falling edge to DS\# rising edge	0		ns
t8	CLK rising edge to DSACK1\# falling edge	5	14	ns
t9	AS\# rising edge to DSACK1\# rising edge	3	9	ns
t10	1st CLK falling edge after AS\# deasserted to DSACK1\# high impedance		$\mathrm{T}_{\text {CLK }}+3$	ns
t11	D[15:0] setup to 4th CLK rising edge after CS\#=0, AS\#=0, DS\#=0, and DSACK1\#=0	1		TCLK
t12	D[15:0] hold from DSACK1\# falling edge	0		ns
t13	D[15:0] valid setup to DSACK1\# falling edge (read cycle)	0.5		$\mathrm{T}_{\text {CLK }}$
t14	DS\# rising edge to D[15:0] high impedance (read cycle)	2	9	ns
t15	Cycle Length	7		T CLK

6.3.7 Motorola REDCAP2 Interface Timing

Figure 6-9: Motorola Redcap2 Interface Timing

A.C. Characteristics

Table 6-15: Motorola Redcap2 Interface Timing

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {CKO }}$	Bus clock frequency		17	MHz
T ${ }_{\text {CKO }}$	Bus clock period	1/f ${ }_{\text {CKO }}$		ns
t1	A[16:1], R/W, CSn\# setup to CKO rising edge	0		ns
t2	EB0, $\overline{\mathrm{EB} 1}$ setup to CKO rising edge (write)	0		ns
t3	D [15:0] input setup to 4 th CKO rising edge after CSn\# and $\overline{\mathrm{EBO}}$ or EB1 asserted low (write cycle)	1		$\mathrm{T}_{\text {CKO }}$
t4	D[15:0] input hold from 4th CKO rising edge after CSn\# and EB0 or EB1 asserted low (write cycle)	7		ns
t5	$\overline{\mathrm{EB0}}, \overline{\mathrm{EB1}}, \overline{\mathrm{OE}}$ setup to CKO rising edge (read cycle)	0		ns
t6a	1st CKO rising edge after CSn\#, EB0 or EB1,OE asserted low to D [15:0] valid for MCLK = BCLK (read cycle)		$6 \mathrm{CKO}^{+17}$	ns
t6b	1st CKO rising edge after CSn\#, EB0 or EB1,OE asserted low to D [15:0] valid for MCLK = BCLK $\div 2$ (read cycle)		$9 \mathrm{CKO}^{+17}$	ns
t6c	1st CKO rising edge after CSn\#, EB0 or EB1,OE asserted low to D [15:0] valid for MCLK = BCLK $\div 3$ (read cycle)		${ }^{12} \mathrm{~T}_{\text {CKO }}+17$	ns
t6d	1st CKO rising edge after CSn\#, EB0 or EB1,OE asserted low to D [15:0] valid for MCLK $=\mathrm{BCLK} \div 4$ (read cycle)		$15 \mathrm{~T}_{\text {CKO }}+17$	ns
t7	$\overline{\mathrm{EB0}}, \overline{\mathrm{~EB} 1}, \overline{\mathrm{OE}}$ falling edge to D[15:0] driven (read cycle)	2	9	ns
t8	A[16:1], R/W, CSn hold from CKO rising edge	0		ns
t9	EB0, EB1 setup to CKO rising edge (write cycle)	1		ns
t10	CKO falling edge to EB0, EB1, OE deasserted (read)	0		ns
t11	OE, EB0, EB1 deasserted to D[15:0] output high impedance (read)	2	8	ns
t12	Cycle Length (note 1)			$\mathrm{T}_{\text {CKO }}$

1. The cycle length for the REDCAP interface is fixed at $10 \mathrm{~T}_{\text {CKO }}$.
2. The Read and Write 2D BitBLT functions are not available when using the REDCAP interface.

6.3.8 Motorola Dragonball Interface Timing with DTACK

Figure 6-10: Motorola Dragonball Interface Timing with $\overline{D T A C K}$

A.C. Characteristics

Table 6-16: Motorola Dragonball Interface Timing with $\overline{D T A C K}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {CLKO }}$	Clock frequency		66 (note 1)	MHz
T CLKO	Clock period	1/f ${ }_{\text {CLKO }}$		ns
t1	A $16: 1$], $\overline{\mathrm{CSX}}, \overline{\mathrm{UWE}}, \overline{\mathrm{LWE}}, \overline{\mathrm{OE}}$ setup to CLKO rising edge	1		ns
t2	$\overline{\mathrm{CSX}}$ asserted low to $\overline{\text { DTACK }}$ driven	2	7	ns
t3	A[16:1] hold from $\overline{\mathrm{CSX}}$ rising edge	0		ns
t4	$\overline{\text { DTACK }}$ falling edge to $\overline{\text { UWE, }} \overline{\text { LWE }}$ and $\overline{\mathrm{CSX}}$ rising edge	0		ns
t5	$\overline{\text { UWE, }} \overline{\text { LWE }}$ deasserted to reasserted	1		TCLKO
t6	$\mathrm{D}[15: 0]$ valid to fourth CLKO rising edge where $\overline{\mathrm{CSX}}=0$ and $\overline{\mathrm{UWE}}$ $=0$ or LWE $=0$ (write cycle)	1		TCLKo
t7	D [15:0] hold from $\overline{\text { DTACK }}$ falling edge (write cycle)	0		ns
t8	D [15:0] valid setup to $\overline{\text { DTACK }}$ falling edge (read cycle)	0.5		TCLKO
t9	$\overline{\mathrm{CSX}}$ rising edge to D[15:0] high impedance (read cycle)	2	6	ns
t10	CLKO rising edge to DTACK\# falling edge	5	14	ns
t11	$\overline{\mathrm{CSX}}$ rising edge to $\overline{\text { DTACK }}$ rising edge	3	9	ns
t12	First CLKO falling edge after deassertion of CSX\# to DTACK\# high impedance	$0.5 \mathrm{~T}_{\text {CLKO }}+4$	$0.5 \mathrm{~T}_{\text {CLKO }}+8$	ns
t13	Cycle Length	8		TCLKO

1. The MC68SZ328 with a maximum clock frequency of 66 MHz is supported.

The MC68VZ328 with a maximum clock frequency of 33 MHz is supported.
The MC68EZ328 with a maximum clock frequency of 16 MHz is supported.

6.3.9 Motorola Dragonball Interface Timing w/o $\overline{\text { DTACK }}$

Figure 6-11: Motorola Dragonball Interface Timing w/o $\overline{D T A C K}$

A.C. Characteristics

Table 6-17: Motorola Dragonball Interface Timing w/o $\overline{D T A C K}$

Symbol	Parameter	Min	Max	Unit
$\mathrm{f}_{\text {CLKO }}$	Bus clock frequency		33 (note 1)	MHz
TCLKO	Bus clock period	1/f ${ }_{\text {CLKO }}$		ns
t1	A[16:1] and CSX\# and UWE\#, LWE\# and OE\# setup to CLKO rising edge	1		ns
t2	D[15:0] valid to 4th CLK rising edge where CSX\# = 0 and UWE\# $=$ 0 or LWE\# = 0 (write cycle)	1		T CLKo
t3	CSX\# and OE\# asserted low to D[15:0] driven (read cycle)	2	8	ns
t4a	1st CLKO rising edge after CSX\# and OE\# asserted to D[15:0] valid for MCLK=BCLK (read cycle)		7	TCLKO
t4b	1st CLKO rising edge after CSX\# and OE\# asserted to D[15:0] valid for MCLK=BCLK $\div 2$ (read cycle)		10	T CLKo
t4c	1st CLKO rising edge after CSX\# and OE\# asserted to D[15:0] valid for MCLK=BCLK $\div 3$ (read cycle) (see note 2)		13	T CLKo
t5	A[16:1] and UWE\#, LWE\# and OE\# and D[15:0] (write) hold from CSX\# rising edge	0		ns
t6	CSX\# rising edge to D[15:0] high impedance	2	8	ns
t7	Cycle Length (see note 3)			TCLKO

1. The MC68VZ328 with a maximum clock frequency of 33 MHz is supported. The MC68EZ328 with a maximum clock frequency of 16 MHz is supported.
2. The MC68EZ328 does not support the MCLK $=B C L K \div 3$ and $M C L K=B C L K \div 4$ options. The MC68VZ328 does not support the MCLK = BCLK $\div 4$ option.
3. The cycle length for the Dragonball w/o $\overline{\text { DTACK }}$ interface is fixed at $10 \mathrm{~T}_{\text {CLKO }}$.
4. The Read and Write 2D BitBLT functions are not available when using the Dragonball w/o $\overline{\text { DTACK }}$ interface.

6.4 LCD Power Sequencing

6.4.1 Passive/TFT Power-On Sequence

Figure 6-12: Passive/TFT Power-On Sequence Timing

Table 6-18: Passive/TFT Power-On Sequence Timing

Symbol	Parameter	Min	Max	Units
t 1	LCD signals active to LCD bias active	Note 1	Note 1	
t 2	Power Save Mode disabled to LCD signals active	0	1	BCLK

1. t 1 is controlled by software and must be determined from the bias power supply delay requirements of the panel connected.

A.C. Characteristics

6.4.2 Passive/TFT Power-Off Sequence

Figure 6-13: Passive/TFT Power-Off Sequence Timing

Table 6-19: Passive/TFT Power-Off Sequence Timing

Symbol	Parameter	Min	Max	Units
t 1	LCD bias deactivated to LCD signals inactive	Note 1	Note 1	
t 2	Power Save Mode enabled to LCD signals low	0	1	BCLK

1. $t 1$ is controlled by software and must be determined from the bias power supply delay requirements of the panel connected.

A.C. Characteristics

6.5 Display Interface

The timing parameters required to drive a flat panel display are shown below. Timing details for each supported panel type are provided in the remainder of this section.

Figure 6-14: Panel Timing Parameters

Table 6-20: Panel Timing Parameter Definition and Register Summary

Symbol	Description	Derived From	Units
HT	Horizontal Total	((REG[20h] bits 6-0) + 1) $\times 8$	Ts
HDP ${ }^{1}$	Horizontal Display Period ${ }^{1}$	((REG[24h] bits 6-0) + 1) $\times 8$	
HDPS	Horizontal Display Period Start Position	For STN panels: ((REG[28h] bits 9-0) + 22)	
		For TFT panels: ((REG[28h] bits 9-0) + 5)	
HPS	FPLINE Pulse Start Position	(REG[2Ch] bits 9-0) + 1	
HPW	FPLINE Pulse Width	(REG[2Ch] bits 22-16) + 1	
VT	Vertical Total	(REG[30h] bits 9-0) + 1	Lines (HT)
VDP	Vertical Display Period	(REG[34h] bits 9-0) + 1	
VDPS	Vertical Display Period Start Position	REG[38h] bits 9-0	
VPS	FPFRAME Pulse Start Position	REG[3Ch] bits 9-0	
VPW	FPFRAME Pulse Width	(REG[3Ch] bits 18-16) +1	

1. For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16 .

For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8 .
2. The following formulas must be valid for all panel timings:

HDPS + HDP $<\mathrm{HT}^{-}$
VDPS + VDP < VT

A.C. Characteristics

6.5.1 Generic STN Panel Timing

Figure 6-15: Generic STN Panel Timing

VT	= Vertical Total	$=[($ REG $[30 \mathrm{~h}]$ bits 9-0) +1$]$ lines
VPS	= FPFRAME Pulse Start Position	$=0$ lines, because REG[3Ch] bits 9-0 $=0$
VPW	= FPFRAME Pulse Width	$=[($ REG $[3 C h]$ bits 18-16) +1$]$ lines
VDPS	= Vertical Display Period Start Position	$=0$ lines, because REG[38h] bits 9-0 $=0$
VDP	= Vertical Display Period	$=[($ REG $[34 \mathrm{~h}]$ bits 9-0) +1$]$ lines
HT	= Horizontal Total	$=[((\operatorname{REG}[20 \mathrm{~h}]$ bits 6-0) + 1) $\times 8 \mathrm{l}$ pixels
HPS	= FPLINE Pulse Start Position	$=[($ REG 2 Ch$]$ bits 9-0) + 1] pixels
HPW	= FPLINE Pulse Width	$=[($ REG 2 Ch$]$ bits 22-16) +1$]$ pixels
HDPS	= Horizontal Display Period Sta	$=22$ pixels, because REG[28h] bits 9-0 $=0$
HDP	= Horizontal Display Period	$=[($ REG[24h] bits 6-0) +1$) \times 8]$ pixels

*For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16 .
*HPS should comply with the following formula:
HPS > HDP + 22
HPS + HPW < HT
*Panel Type Bits (REG[0Ch] bits 1-0) $=00 \mathrm{~b}$ (STN)
*FPFRAME Pulse Polarity Bit (REG[3Ch] bit 23) = 1 (active high)
*FPLINE Polarity Bit (REG[2Ch] bit 23) $=1$ (active high)
${ }^{*}$ MOD 1 is the MOD signal when REG[OCh] bits 21-16 $=0$ (MOD toggles every FPFRAME)
*MOD ${ }^{2}$ is the MOD signal when REG[OCh] bits 21-16 $=n$ (MOD toggles every n FPLINE)

6.5.2 Single Monochrome 4-Bit Panel Timing

Figure 6-16: Single Monochrome 4-Bit Panel Timing

```
VDP = Vertical Display Period
    = (REG[34h] bits 9:0) + 1 Lines
VNDP = Vertical Non-Display Period
    = VT - VDP
    = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines
HDP = Horizontal Display Period
    = ((REG[24h] bits 6:0) + 1) x 8Ts
HNDP = Horizontal Non-Display Period
    = HT - HDP
    = (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)
```


A.C. Characteristics

Figure 6-17: Single Monochrome 4-Bit Panel A.C. Timing

Table 6-21: Single Monochrome 4-Bit Panel A.C. Timing

Symbol		Parameter	Min	Typ
t 1	FPFRAME setup to FPLINE falling edge	Mote 2		
t 2	FPFRAME hold from FPLINE falling edge	note 3		
t 3	FPLINE period	note 4		
t 4	FPLINE pulse width	note 5		
t 5	MOD transition to FPLINE rising edge	note 6		Ts
t 6	FPSHIFT falling edge to FPLINE rising edge	note 7		Ts
t 7	FPSHIFT falling edge to FPLINE falling edge	$\mathrm{t6}+\mathrm{t} 4$		Ts
t 8	FPLINE falling edge to FPSHIFT falling edge	$\mathrm{t} 14+2$		Ts
t 9	FPSHIFT period	4		Ts
t 10	FPSHIFT pulse width low	2		Ts
t 11	FPSHIFT pulse width high	2		Ts
t 12	FPDAT[7:4] setup to FPSHIFT falling edge	1		Ts
t 13	FPDAT[7:4] hold to FPSHIFT falling edge	2		Ts
t 14	FPLINE falling edge to FPSHIFT rising edge	note 8		Ts

1. Ts = pixel clock period
2. $\mathrm{t} 1_{\text {min }}=\mathrm{HPS}+\mathrm{t} 4_{\text {min }}$
3. $\mathrm{t} 2_{\text {min }}=\mathrm{t} 3_{\text {min }}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$
4. $\mathrm{t} 3_{\text {min }}=\mathrm{HT}$
5. $t 4_{\text {min }}=H P W$
6. $t 5_{\text {min }}=$ HPS -1
7. $t 6_{\text {min }}=$ HPS $-(H D P+$ HDPS $)+2$, if negative add $\mathrm{t} 3_{\text {min }}$
8. $\mathrm{t} 14_{\text {min }}=\mathrm{HDPS}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$, if negative add $\mathrm{t} 3_{\text {min }}$

6.5.3 Single Monochrome 8-Bit Panel Timing

Figure 6-18: Single Monochrome 8-Bit Panel Timing

```
VDP = Vertical Display Period
    = (REG[34h] bits 9:0) +1 Lines
VNDP = Vertical Non-Display Period
    = VT - VDP
    = (REG[30h] bits 9:0) \(-(\) REG[34h] bits 9:0) Lines
HDP = Horizontal Display Period
    \(=((\) REG 24 h\(]\) bits 6:0) +1\() \times 8 \mathrm{Ts}\)
HNDP = Horizontal Non-Display Period
    = HT - HDP
    \(=(((\) REG 20 h\(]\) bits \(6: 0)+1) \times 8 \mathrm{Ts})-(((\) REG[24h] bits 6:0 \()+1) \times 8 \mathrm{Ts})\)
```


A.C. Characteristics

Figure 6-19: Single Monochrome 8-Bit Panel A.C. Timing

Table 6-22: Single Monochrome 8-Bit Panel A.C. Timing

Symbol		Parameter	Min	Typ	Max
t 1	FPFRAME setup to FPLINE falling edge	note 2			Units
t 2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t 3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7		Ts	
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 +4		Ts	
t9	FPSHIFT period	8		Ts	
t10	FPSHIFT pulse width low	4		Ts	
t11	FPSHIFT pulse width high	4			Ts
t12	FPDAT[7:0] setup to FPSHIFT falling edge	4			Ts
t13	FPDAT[7:0] hold to FPSHIFT falling edge	4			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

1. Ts = pixel clock period
2. $\mathrm{t} 1_{\text {min }}=\mathrm{HPS}+\mathrm{t} 4_{\text {min }}$
3. $\mathrm{t} 2_{\text {min }}=\mathrm{t} 3_{\text {min }}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$
4. $\mathrm{t} 3_{\text {min }}=\mathrm{HT}$
5. $t 4_{\text {min }}=H P W$
6. $t 5_{\text {min }}=$ HPS -1
7. $t 6_{\text {min }}=$ HPS $-($ HDP + HDPS $)+4$, if negative add $t 3_{\text {min }}$
8. $\mathrm{t} 14_{\text {min }}=\mathrm{HDPS}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$, if negative add $\mathrm{t} 3_{\text {min }}$

6.5.4 Single Color 4-Bit Panel Timing

Figure 6-20: Single Color 4-Bit Panel Timing

VDP	$=$ Vertical Display Period
	$=($ REG[34h] bits 9:0) +1 Lines
VNDP	$=$ Vertical Non-Display Period
	$=$ VT - VDP
	$=($ REG[30h] bits $9: 0)-($ REG[34h] bits $9: 0)$ Lines
HDP	$=$ Horizontal Display Period
	$=((R E G[24 \mathrm{~h}]$ bits $6: 0)+1) \times 8 \mathrm{Ts}$
HNDP	$=$ Horizontal Non-Display Period
	$=H T-$ HDP
	$=((($ REG[20h] bits $6: 0)+1) \times 8 \mathrm{Ts})-((($ REG[24h] bits $6: 0)+1) \times 8 \mathrm{Ts})$

A.C. Characteristics

Figure 6-21: Single Color 4-Bit Panel A.C. Timing

Table 6-23: Single Color 4-Bit Panel A.C. Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t5	MOD transition to FPLINE rising edge	note 6			Ts
t6	FPSHIFT falling edge to FPLINE rising edge	note 7			Ts
t7	FPSHIFT falling edge to FPLINE falling edge	t6 + t4			Ts
t8	FPLINE falling edge to FPSHIFT falling edge	t14 + 0.5			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width low	0.5			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPDAT[7:4] setup to FPSHIFT falling edge	0.5			Ts
t13	FPDAT[7:4] hold to FPSHIFT falling edge	0.5			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

1. Ts = pixel clock period
2. $\mathrm{t} 1_{\text {min }}=\mathrm{HPS}+\mathrm{t} 4_{\text {min }}$
3. $\mathrm{t} 2_{\text {min }}=\mathrm{t} 3_{\text {min }}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$
4. $\mathrm{t} 3_{\text {min }}=\mathrm{H} T$
5. $t 4_{\text {min }}=H P W$
6. $\mathrm{t} 5_{\text {min }}=\mathrm{HPS}-1$
7. $t 6_{\text {min }}=$ HPS $-($ HDP + HDPS $\left.)+1.5\right)$, if negative add $\mathrm{t} 3_{\text {min }}$
8. $\mathrm{t} 14_{\text {min }}=$ HDPS $-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)+1$, if negative add $\mathrm{t} 3_{\text {min }}$

6.5.5 Single Color 8-Bit Panel Timing (Format 1)

Figure 6-22: Single Color 8-Bit Panel Timing (Format 1)

```
VDP = Vertical Display Period
    = (REG[34h] bits 9:0) + 1 Lines
VNDP = Vertical Non-Display Period
    = VT - VDP
    = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines
HDP = Horizontal Display Period
    = ((REG[24h] bits 6:0) + 1) x 8Ts
HNDP = Horizontal Non-Display Period
    = HT - HDP
    =(((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts )
```


A.C. Characteristics

Figure 6-23: Single Color 8-Bit Panel A.C. Timing (Format 1)

Table 6-24: Single Color 8-Bit Panel A.C. Timing (Format 1)

Symbol	Parameter	Min	Typ	Max	Units
t1	FPFRAME setup to FPLINE falling edge	note 2			Ts (note 1)
t2	FPFRAME hold from FPLINE falling edge	note 3			Ts
t3	FPLINE period	note 4			Ts
t4	FPLINE pulse width	note 5			Ts
t6a	FPSHIFT falling edge to FPLINE rising edge	note 6			Ts
t6b	FPSHIFT2 falling edge to FPLINE rising edge	note 7			Ts
t7a	FPSHIFT falling edge to FPLINE falling edge	t6a + t4			Ts
t7b	FPSHIFT2 falling edge to FPLINE falling edge	t6b + t4			Ts
t8	FPLINE falling edge to FPSHIFT rising, FPSHIFT2 falling edge	t14 + 2			Ts
t9	FPSHIFT2, FPSHIFT period	4		6	Ts
t10	FPSHIFT2, FPSHIFT pulse width low	2			Ts
t11	FPSHIFT2, FPSHIFT pulse width high	2			Ts
t12	FPDAT[7:0] setup to FPSHIFT2, FPSHIFT falling edge	1			Ts
t13	FPDAT[7:0] hold from FPSHIFT2, FPSHIFT falling edge	1			Ts
t14	FPLINE falling edge to FPSHIFT rising edge	note 8			Ts

1. Ts = pixel clock period
2. $t 1_{\text {min }}=H P S+t 4_{\text {min }}$
3. $\mathrm{t} 2_{\text {min }}=\mathrm{t} 3_{\text {min }}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$
4. $\mathrm{t} 3_{\text {min }}=\mathrm{HT}$
5. $t 4_{\text {min }}=H P W$
6. $t 6 \mathrm{a}_{\text {min }}=$ HPS $-(H D P+$ HDPS $)$, if negative add $\mathrm{t} 3_{\text {min }}$
7. $t 6 b_{\text {min }}=$ HPS $-(H D P+H D P S)+2$, if negative add $t 3_{\text {min }}$
8. $\mathrm{t} 14_{\text {min }}=\mathrm{HDPS}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$, if negative add $\mathrm{t} 3_{\text {min }}$

6.5.6 Single Color 8-Bit Panel Timing (Format 2)

Figure 6-24: Single Color 8-Bit Panel Timing (Format 2)

```
VDP = Vertical Display Period
    = (REG[34h] bits 9:0) + 1 Lines
VNDP = Vertical Non-Display Period
    = VT - VDP
    = (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines
HDP = Horizontal Display Period
    = ((REG[24h] bits 6:0) + 1) x 8Ts
HNDP = Horizontal Non-Display Period
    = HT - HDP
    =(((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)
```


A.C. Characteristics

Data Timing

Figure 6-25: Single Color 8-Bit Panel A.C. Timing (Format 2)

Table 6-25: Single Color 8-Bit Panel A.C. Timing (Format 2)

Symbol	Parameter	Min	Typ	Max
t 1	FPFRAME setup to FPLINE falling edge	note 2		
t 2	FPFRAME hold from FPLINE falling edge	note 3		
t 3	FPLINE period	note 4		
t 4	FPLINE pulse width	note 5		Ts
t 5	MOD transition to FPLINE rising edge	note 6		
t 6	FPSHIFT falling edge to FPLINE rising edge	note 7		Ts
t 7	FPSHIFT falling edge to FPLINE falling edge	$\mathrm{t6}+\mathrm{t4}$		Ts
t 8	FPLINE falling edge to FPSHIFT falling edge	$\mathrm{t} 14+2$		Ts
t 9	FPSHIFT period	2		Ts
t 10	FPSHIFT pulse width low	1		Ts
t 11	FPSHIFT pulse width high	1		Ts
t 12	FPDAT[7:0] setup to FPSHIFT falling edge	1		Ts
t13	FPDAT[7:0] hold to FPSHIFT falling edge	1		Ts
t 14	FPLINE falling edge to FPSHIFT rising edge	note 8		

1. Ts = pixel clock period
2. $t 1_{\text {min }}=H P S+t 4_{\text {min }}$
3. $\mathrm{t} 2_{\text {min }}=\mathrm{t} 3_{\text {min }}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$
4. $\mathrm{t} 3_{\text {min }}=\mathrm{HT}$
5. $t 4_{\text {min }}=$ HPW
6. $t 5_{\text {min }}=$ HPS -1
7. $t 6_{\text {min }}=$ HPS $-(H D P+H D P S)+1$, if negative add $t 3_{\text {min }}$
8. $\mathrm{t} 14_{\text {min }}=\mathrm{HDPS}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$, if negative add $\mathrm{t} 3_{\text {min }}$

6.5.7 Single Color 16-Bit Panel Timing

Notes:

- The duty cycle of FPSHIFT changes in order to process 16 pixels in 3 FPSHIFT rising clocks
- Ts = Pixel clock period (PCLK)
- Diagram drawn with 2 FPLINE vertical blank period
- Example timing for a 640×480 panel

Figure 6-26: Single Color 16-Bit Panel Timing

VDP	= Vertical Display Period $=($ REG[34h] bits 9:0) +1 Lines
VNDP	$\begin{aligned} & =\text { Vertical Non-Display Period } \\ & =\text { VT - VDP } \end{aligned}$
	$=($ REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines
HDP	$=$ Horizontal Display Period $=(($ REG $[24 \mathrm{~h}]$ bits $6: 0)+1) \times 8 \mathrm{Ts}$
HNDP	$\begin{aligned} & =\text { Horizontal Non-Display Period } \\ & =\text { HT }- \text { HDP } \\ & =(((\text { REG }[20 \mathrm{~h}] \text { bits } 6: 0)+1) \times 8 \mathrm{Ts})-(((\text { REG[24h] bits } 6: 0)+1) \times 8 \mathrm{Ts}) \end{aligned}$

A.C. Characteristics

Figure 6-27: Single Color 16-Bit Panel A.C. Timing

Table 6-26: Single Color 16-Bit Panel A.C. Timing

Symbol		Parameter	Min	Typ
Max	Units			
t 1	FPFRAME setup to FPLINE falling edge	note 2		
t 2	FPFRAME hold from FPLINE falling edge	note 3		
t 3	FPLINE period	note 4		
t 4	FPLINE pulse width	note 5		
t 5	MOD transition to FPLINE rising edge			
t 6	FPSHIFT falling edge to FPLINE rising edge	note 6		Ts
t 7	FPSHIFT falling edge to FPLINE falling edge	note 7		Ts
t 8	FPLINE falling edge to FPSHIFT falling edge	$\mathrm{t6}+\mathrm{t} 4$		Ts
t 9	FPSHIFT period	$\mathrm{t} 14+3$		Ts
t 10	FPSHIFT pulse width low	5		Ts
t 11	FPSHIFT pulse width high	2		Ts
t 12	FPDAT[15:0] setup to FPSHIFT rising edge	2		Ts
t 13	FPDAT[15:0] hold to FPSHIFT rising edge	2		Ts
t 14	FPLINE falling edge to FPSHIFT rising edge	2		

1. Ts = pixel clock period
2. $\mathrm{t} 1_{\text {min }}=\mathrm{HPS}+\mathrm{t} 4_{\text {min }}$
3. $\mathrm{t} 2_{\text {min }}=\mathrm{t} 3_{\text {min }}-\left(\mathrm{HPS}+\mathrm{t} 4_{\text {min }}\right)$
4. $\mathrm{t} 3_{\text {min }}=\mathrm{HT}$
5. $t 4_{\text {min }}=H P W$
6. $t 5_{\text {min }}=$ HPS -1
7. $t 6_{\text {min }}=$ HPS $-(H D P+$ HDPS $)+2$, if negative add $\mathrm{t} 3_{\text {min }}$
8. $\mathrm{t} 14_{\text {min }}=$ HDPS $-\left(H P S+t 4_{\text {min }}\right)$, if negative add $\mathrm{t} 3_{\text {min }}$

6.5.8 Generic TFT Panel Timing

Figure 6-28: Generic TFT Panel Timing

VT	= Vertical Total	$=[($ REG $[30 \mathrm{~h}]$ bits 9-0) +1$]$ lines
VPS	= FPFRAME Pulse Start Position	$=($ REG [3Ch] bits 9-0) lines
VPW	= FPFRAME Pulse Width	$=[($ REG $[3 C h]$ bits 18-16) +1$]$ lines
VDPS	= Vertical Display Period Start Po	$=($ REG[38h] bits 9-0) lines
VDP	= Vertical Display Period	$=[($ REG $[34 \mathrm{~h}]$ bits 9-0) +1$]$ lines
HT	= Horizontal Total	$=[((\operatorname{REG}[20 \mathrm{~h}]$ bits 6-0) + 1) $\times 8 \mathrm{8}$] pixels
HPS	= FPLINE Pulse Start Position	$=[($ REG 22 Ch$]$ bits 9-0) +1$]$ pixels
HPW	= FPLINE Pulse Width	$=[(\mathrm{REG}[2 \mathrm{Ch}]$ bits 22-16)+1] pixels
HDPS	= Horizontal Display Period Start	ion $=[($ REG [28h] bits 9-0) +5$]$ pixels
HDP	= Horizontal Display Period	$=[((\operatorname{REG}[24 \mathrm{~h}]$ bits 6-0)+1)$\times 8]$ pixels

*For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8 .
*Panel Type Bits (REG[0Ch] bits 1-0) $=01$ (TFT)
*FPLINE Pulse Polarity Bit (REG[2Ch] bit 23) = 0 (active low)
*FPFRAME Polarity Bit (REG[3Ch] bit 23) $=0$ (active low)

A.C. Characteristics

6.5.9 9/12/18-Bit TFT Panel Timing

Figure 6-29: 18-Bit TFT Panel Timing

VDP	= Vertical Display Period = VDP Lines	
VNDP	$\begin{aligned} & \text { = Vertical Non-Display Period } \\ & \text { = VNDP1 + VNDP2 } \\ & =\text { VT - VDP Lines } \end{aligned}$	
VNDP1	= Vertical Non-Display Period 1 = VNDP - VNDP2 Lines	
VNDP2	$\begin{aligned} & =\text { Vertical Non-Display Period } 2 \\ & =\text { VDPS - VPS Lines } \end{aligned}$	if negative add VT
HDP	$\begin{aligned} & =\text { Horizontal Display Period } \\ & =\text { HDP Ts } \end{aligned}$	
HNDP	$\begin{aligned} & \text { = Horizontal Non-Display Period } \\ & \text { = HNDP1 + HNDP2 } \\ & =\text { HT }- \text { HDP Ts } \end{aligned}$	
HNDP1	$\begin{aligned} & =\text { Horizontal Non-Display Period } 1 \\ & \text { = HDPS - HPS Ts } \end{aligned}$	if negative add HT
HNDP2	$\begin{aligned} & =\text { Horizontal Non-Display Period } 2 \\ & =\text { HPS }-(\text { HDP }+ \text { HDPS }) \text { Ts } \end{aligned}$	if negative add HT

A.C. Characteristics

Note: DRDY is used to indicate the first pixel

Figure 6-30: TFT A.C. Timing

A.C. Characteristics

Table 6-27: TFT A.C. Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	FPFRAME cycle time	VT			Lines
t2	FPFRAME pulse width low	VPW			Lines
t3	FPFRAME falling edge to FPLINE falling edge phase difference	HPS			Ts (note 1)
t4	FPLINE cycle time	HT			Ts
t5	FPLINE pulse width low	HPW			Ts
t6	FPLINE Falling edge to DRDY active	note 2		250	Ts
t7	DRDY pulse width	HDP			Ts
t8	DRDY falling edge to FPLINE falling edge	note 3			Ts
t9	FPSHIFT period	1			Ts
t10	FPSHIFT pulse width high	0.5			Ts
t11	FPSHIFT pulse width low	0.5			Ts
t12	FPLINE setup to FPSHIFT falling edge	0.5			Ts
t13	DRDY to FPSHIFT falling edge setup time	0.5			Ts
t14	DRDY hold from FPSHIFT falling edge	0.5			Ts
t15	Data setup to FPSHIFT falling edge	0.5			Ts
t16	Data hold from FPSHIFT falling edge	0.5			Ts

1. Ts = pixel clock period
2. t6min $=$ HDPS - HPS if negative add HT
3. t8min $=$ HPS $-(H D P+$ HDPS $)$ if negative add HT

6.5.10 Sharp HR-TFT Panel Timing

Figure 6-31: Sharp HR-TFT Panel Horizontal Timing

Table 6-28: Sharp HR-TFT Panel Horizontal Timing

Symbol		Min	Typ	Max	Units
t 1	Horizontal total period	8	note 2	1024	Ts (note 1)
t 2	FPSHIFT (DCLK) active	9	note 3	1025	Ts
t 3	Horizontal display period	8	note 4	1024	Ts
t 4	GPIO3 (SPL) pulse width		1		Ts
t5	FPLINE (LP) pulse width	1	note 5	256	Ts
t6	FPLINE (LP) falling edge to GPIO3 (SPL) rising edge	2	note 6	-	Ts
t7	GPIO1 (CLS) pulse width	0	note 7	511	Ts
t8	GPIO1 (CLS) falling edge to GPIO0 (PS1) rising edge	0	note 8	63	Ts
t9	GPIO0 (PS2) toggle width	0	note 9	127	Ts
t10	GPIO0 (PS2) first falling edge to GPIO0 (PS2) first rising edge	0	note 10	255	Ts
t11	GPIO0 (PS3) pulse width	0	note 11	127	Ts
t12	GPIO2 (REV) toggle position to FPLINE (LP) rising edge	0	note 12	31	Ts

1. Ts = pixel clock period
2. t1typ $=[($ REG $[20 h]$ bits 6-0 $)+1] * 8$
3. t2typ $=[((\operatorname{REG}[24 \mathrm{~h}]$ bits $6-0)+1) * 8]+1$
4. t3typ $=[($ REG $[24 \mathrm{~h}]$ bits $6-0)+1] * 8$

A.C. Characteristics

5. t5typ $=($ REG[2Ch] bits 22-16) +1
6. t6typ $=($ REG[28h] bits $9-0)-($ REG[2Ch] bits 22-16) +2
7. t7typ $=($ REG[A0h] bits 8-0)
8. t8typ $=($ REG[A4h] bits 5-0)
9. t9typ $=($ REG[ACh] bits 6-0)
10. t10typ $=($ REG $[A 8 \mathrm{~h}]$ bits 7-0)
11. t11typ $=($ REG $[B 0 h]$ bits $6-0)$
12. t12typ $=(R E G[B 4 h]$ bits 4-0)

Figure 6-32: Sharp HR-TFT Panel Vertical Timing

Table 6-29: Sharp HR-TFT Panel Vertical Timing

Symbol	Parameter	Min	Typ	Max	Units
t 1	FPFRAME (SPS) pulse width	1	note 3	8	Lines (note 1)
t 2	Vertical total period	1	note 4	1024	Lines
t 3	FPFRAME (SPS) rising/falling edge to FPLINE (LP) rising edge		1 $($ note 5)		Ts (note 2)
t 4	FPLINE (LP) rising edge to FPFRAME (SPS) rising/falling edge	0	note 5	1023	Ts
t5	Vertical display start position	0	note 6	1023	Lines
t6	Vertical display period	1	note 7	1024	Lines
t7	Extra driving period for GPIO0 (PS1/2)	0	note 8	7	Lines

1. Lines $=1$ Horizontal Line
2. Ts = pixel clock period
3. t1typ $=($ REG $[3 \mathrm{Ch}]$ bits $18-16)+1$
4. t2typ $=($ REG 30 h$]$ bits $9-0)+1$
5. t3typ The FPFRAME (SPS) rising/falling edge can occur before or after FPLINE (LP) rising edge depending on the value stored in the FPLINE Pulse Start Position bits (REG[2Ch] bits 9-0). To obtain the case indicated by t3, set the FPLINE Pulse Start Position bits to 0 and the FPFRAME (SPS) rising/falling edge will occur 1 Ts before the FPLINE (LP) rising edge. To obtain the case indicated by t4, set the FPLINE Pulse Start Position bits to a value between 1 and the Horizontal Total - 1. Then t4 = (Horizontal Total Period - 1) - (REG[2Ch] bits 9-0)
6. t5typ $=(R E G[38 \mathrm{~h}]$ bits 9-0)
7. t6typ $=($ REG[34h] bits $9-0)+1$
8. t7typ $=($ REG[B8h] bits 2-0)

A.C. Characteristics

6.5.11 Casio TFT Panel Timing

Figure 6-33: Casio TFT Horizontal Timing

Table 6-30: Casio TFT Horizontal Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	Horizontal pulse start position	1	note 2	1024	Ts (note 1)
t2	Horizontal total	8	note 3	1024	Ts
t3	Horizontal pulse width	1	note 4	128	Ts
t4	Pixel clock period		note 5		Ts
t5	Horizontal display period start position	4	note 6	1027	Ts
t6	Horizontal display period	8	note 7	1024	Ts
t7	FPLINE (GPCK) rising edge to GPIO3 (STH) rising edge	0	note 8	63	Ts
t8	GPIO3 (STH) pulse width		1		Ts
t9	FPLINE (GPCK) rising edge to GPIO1 (GRES) falling edge	0	note 9	63	Ts
t10	GPIO1 (GRES) falling edge to FPLINE (GPCK) rising edge	1	note 10	64	Ts
t11	FPLINE (GPCK) rising edge to GPIO2 (FRP) toggle point	0	note 11	127	Ts

1. Ts = pixel clock period
2. t1typ $=[($ REG $[2 C h]$ bits $9-0)+1)$
3. t2typ $=[($ REG $[20 \mathrm{~h}]$ bits $6-0)+1) * 8$
4. t3typ $=[(\operatorname{REG}[2 C h]$ bits 22-16) +1
5. t4typ = depends on the pixel clock (PCLK)

A.C. Characteristics

6. t5typ $=($ REG 28 h$]$ bits $9-0)+4$
7. t6typ $=[(\operatorname{REG}[24 \mathrm{~h}]$ bits 6-0) +1$] * 8$
8. t7typ $=$ (REG[C0h] bits 29-24)
9. t9typ $=($ REG[C0h] bits 5-0)
10. t10typ $=($ REG[COh $]$ bits 13-8) +1
11. t11typ $=(R E G[C 0 h]$ bits 22-16)

Figure 6-34: Casio TFT Vertical Timing

Table 6-31: Casio TFT Vertical Timing

Symbol	Parameter	Min	Typ	Max	Units
t 1	Vertical total	1	note 2	1024	lines (note 1)
t 2	Vertical pulse start	0	note 3	1023	lines
t 3	Vertical pulse width	1	note 4	8	lines
t 4	Vertical display period start position	1	note 5	1024	lines
t 5	Vertical display period	1	note 6	1024	lines

1. Lines $=1$ Horizontal Line
2. t1typ $=($ REG 30 h$]$ bits $9-0)+1$
3. t2typ $=($ REG 3 Ch$]$ bits $9-0)$
4. t3typ $=($ REG $[3 \mathrm{Ch}]$ bits 18-16) +1
5. t4typ $=($ REG 38 h$]$ bits $9-0)+1$
6. t5typ $=(\operatorname{REG}[34 \mathrm{~h}]$ bits $9-0)+1$

A.C. Characteristics

6.5.12 TFT Type 2 Panel Timing

Figure 6-35: TFT Type 2 Horizontal Timing

Table 6-32: TFT Type 2 Horizontal Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	Horizontal total period	1	note 2	1024	Ts (note 1)
t2	FPLINE (STB) pulse width		5		Ts
t3	GPIO0 (VCLK) rising edge to FPLINE (STB) rising edge	7	note 3	16	Ts
t4	FPLINE (STB) rising edge to GPIO0 (VCLK) falling edge	7	note 4	16	Ts
t5	FPLINE (STB) rising edge to GPIO3 (STH) rising edge		note 5		Ts
t6	GPIO3 (STH) pulse width		1		Ts
t7	Data setup time	0.5			Ts
t8	Data hold time	0.5			Ts
t9	Horizontal display period	8	note 6	1024	Ts
t10	FPLINE (STB) rising edge to GPIO1 (AP) rising edge	40	note 7	90	Ts
t11	GPIO1 (AP) pulse width	20	note 8	270	Ts
t12	FPLINE (STB) rising edge to GPIO2 (POL) toggle position		10		Ts

S1D13A05 Hardware Functional Specification	Seiko Epson Corporation	75
Rev. 7.8		

A.C. Characteristics

1. Ts = pixel clock period
2. t1typ $=[(\operatorname{REG}[20 h]$ bits $6-0)+1] * 8$
3. t3typ $=($ REG $[B C h]$ bits 1-0)

Selected from 7, 9, 12 or 16 Ts
4. t4typ $=($ REG $[B C h]$ bits 4-3)

Selected from 7, 9, 12 or 16 Ts
5. t5typ $=($ REG $[28 \mathrm{~h}]$ bits $9-0)+3$ Ts
6. t9typ $=[(\operatorname{REG}[24 \mathrm{~h}]$ bits $6-0)+1] * 8$
7. t10typ $=($ REG $[B C h]$ bits 9-8)

Selected from 40, 52, 68 or 90 Ts
8. t11typ $=($ REG $[B C h]$ bits 13-11)

Selected from 20, 40, 80, 120, 150, 190, 240 or 270 Ts

Figure 6-36: TFT Type 2 Vertical Timing

Table 6-33: TFT Type 2 Vertical Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	Vertical total period	8		1024	Lines
t2	FPFRAME (STV) pulse width		1		Lines
t3	GPIO3 (STH) rising edge to FPFRAME (STV) rising edge		0		Ts (note 1)
t4	Vertical display start position	0	note 3	1024	Lines (note 2)
t5	Vertical display period	1	note 4	1024	Ts

1. Ts = pixel clock period
2. Lines $=1$ Horizontal Line
3. t4typ $=(R E G[38 \mathrm{~h}]$ bits $9-0)$

A.C. Characteristics

4. t5typ $=($ REG 34 h$]$ bits $9-0)$

S1D13A05 Hardware Functional Specification	Seiko Epson Corporation	77
Rev. 7.8		

A.C. Characteristics

6.5.13 TFT Type 3 Panel Timing

Figure 6-37: TFT Type 3 Horizontal Timing

A.C. Characteristics

Table 6-34: TFT Type 3 Horizontal Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	Horizontal total period	8		1024	Ts (note 1)
t2	FPLINE (LP) pulse width	1		256	Ts
t3	FPLINE (LP) rising edge to GPIO3 (EIO) rising edge				Ts
t4	GPIO3 (EIO) pulse width		1		Ts
t5	GPIO3 (EIO) rising edge to 1st data		1		Ts
t6	Data setup time	0.5			Ts
t7	Data hold time	0.5			Ts
t8	Horizontal display period	8		1024	Ts
t9	FPLINE (LP) rising edge to GPIO1 (OE) rising edge	0		512	Ts
t10	GPIO1 (OE) pulse width	0		512	Ts
t11	FPLINE (LP) rising edge to GPIO2 (POL) toggle position	0		512	Ts
t12	FPLINE (LP) rising edge to GPO1 (VCOM) toggle position	0		512	Ts
t13	FPLINE (LP) rising edge to GPIO0 (CPV) rising edge		0		Ts
t14	GPIO0 (CPV) pulse width	0		512	Ts

1. Ts = pixel clock period
2. t1typ $=[($ REG 20 h$]$ bits $6-0)+1] * 8$
3. t2typ $=($ REG[2Ch] bits $22-16)+1$
4. t3typ $=($ REG 28 h$]$ bits $9-0)+4$ Ts
5. t4typ $=$ Selected from 0, 1,2 Ts
6. t8typ $=[($ REG $[24 \mathrm{~h}]$ bits $6-0)+1] * 8$
7. t9typ $=($ REG[D8h] bits 15-8) * 2
8. t10typ $=($ REG [D8h] bits 23-16)* 2
9. t11typ $=(\text { REG [D8h] bits } 31-24)^{*} 2$
10. t 12 typ $=($ REG $[\mathrm{DCh}]$ bits $7-0) * 2$
11. t14typ $=\left(\right.$ REG $[D C h]$ bits 15-8) ${ }^{2} 2$

A.C. Characteristics

Figure 6-38: TFT Type 3 Vertical Timing

Table 6-35: TFT Type 3 Vertical Timing

Symbol	Parameter	Min	Typ	Max	Units
t 1	Vertical total period	1		1024	Lines
t2	FPFRAME (STV) pulse width		1		Lines
t3	GPIO0 (CPV) rising edge to FPFRAME (STV) rising (falling) edge		0.5		Lines
t4	Vertical display start position	1			Lines
t5	Vertical display period	1		1024	Lines
t6	GPO2 (XOEV) rising edge to GPIO0 (CPV) rising edge	0		512	Ts
t7	GPIO0 (CPV) rising edge to GPO2 (XOEV) falling edge	0		512	Ts

1. Ts = pixel clock period
2. t4typ $=($ REG 38 h$]$ bits $9-0)$
3. t5typ $=($ REG $[34 \mathrm{~h}]$ bits $9-0)+1$
4. t6typ $=($ REG [DCh] bits 23-16) *2
5. t7typ $=($ REG $[D C h]$ bits $31-24) * 2$

A.C. Characteristics

6.5.14 TFT Type 4 Panel Timing

Figure 6-39: TFT Type 4 Panel Timing

VDP	= Vertical Display Period = VDP Lines	
VNDP	$\begin{aligned} & \text { = Vertical Non-Display Period } \\ & =\text { VNDP1 + VNDP2 } \\ & =\text { VT - VDP Lines } \end{aligned}$	
VNDP1	= Vertical Non-Display Period 1 = VNDP - VNDP2 Lines	
VNDP2	$\begin{aligned} & \text { = Vertical Non-Display Period } 2 \\ & =\text { VDPS - VPS Lines } \end{aligned}$	if negative add VT
HDP	$\begin{aligned} & =\text { Horizontal Display Period } \\ & =\text { HDP Ts } \end{aligned}$	
HNDP	$\begin{aligned} & \text { = Horizontal Non-Display Period } \\ & \text { = HNDP1 + HNDP2 } \\ & =\text { HT - HDP Ts } \end{aligned}$	
HNDP1	$\begin{aligned} & =\text { Horizontal Non-Display Period } 1 \\ & =\text { HDPS }-(\text { HPS }+1)+5 \text { Ts } \end{aligned}$	if negative add HT
HNDP2	$\begin{aligned} & =\text { Horizontal Non-Display Period } 2 \\ & =(\text { HPS }+1)-(\text { HDP }+ \text { HDPS }+5) \text { Ts } \end{aligned}$	if negative add HT

Note: DRDY is used to indicate the first pixel

Figure 6-40: TFT Type 4 A.C. Timing

A.C. Characteristics

Table 6-36: TFT Type 4 A.C. Timing

Symbol	Parameter	Min	Typ	Max	Units
t1	FPFRAME cycle time	VT			Lines
t2	FPFRAME pulse width low	VPW			Lines
t3	FPFRAME falling edge to FPLINE falling edge phase difference	HPS + 1			Ts (note 1)
t4	FPLINE cycle time	HT			Ts
t5	FPLINE pulse width low	HPW			Ts
t6	FPLINE Falling edge to DRDY active	note 2		250	Ts
t7	DRDY active to data setup		8		Ts
t8	DRDY pulse width	HDP			Ts
t9	DRDY falling edge to FPLINE falling edge	note 3			Ts
t10	FPSHIFT period	1			Ts
t11	FPSHIFT pulse width high	0.5			Ts
t12	FPSHIFT pulse width low	0.5			Ts
t13	FPLINE setup to FPSHIFT falling edge	0.5			Ts
t14	DRDY to FPSHIFT falling edge setup time	0.5			Ts
t15	DRDY hold from FPSHIFT falling edge	0.5			Ts
t16	Data setup to FPSHIFT falling edge	0.5			Ts
t17	Data hold from FPSHIFT falling edge	0.5			Ts

1. Ts = pixel clock period
2. t6min $=$ HDPS $-(H P S+1)+5$ if negative add HT
3. t8min $=(H P S+1)-(H D P+$ HDPS +5) if negative add HT

6.6 USB Timing

Data Signal Rise and Fall Time

Full Speed: 4 to 20 ns at $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Figure 6-41 Data Signal Rise and Fall Time

Figure 6-42 Differential Data Jitter

Figure 6-43 Differential to EOP Transition Skew and EOP Width

S1D13A05 Hardware Functional Specification	Seiko Epson Corporation	85
Rev. 7.8		8

A.C. Characteristics

Figure 6-44 Receiver Jitter Tolerance

Table 6-37 USB Interface Timing

Symbol	Parameter	Conditions	Waveform	Min	Typ	Max	Unit
USB ${ }_{\text {FREQ }}$	USB Clock Frequency				48		MHz
$\mathrm{T}_{\text {PERIOD }}$	USB Clock Period		Figure 6-41		$\frac{1}{\mathrm{USB}_{\text {FREQ }}}$		
T_{R}	Rise \& Fall Times	$C_{\mathrm{L}}=50 \mathrm{pF}$ Notes 1,2	Figure 6-41	4		20	ns
T_{F}				4		20	
$\mathrm{T}_{\text {RFM }}$	Rise/Fall time matching	$\left(T_{R} / T_{F}\right)$	Figure 6-41	90		110	\%
$\mathrm{V}_{\text {CRS }}$	Output Signal Crossover Voltage			1.3		2.0	V
$\mathrm{Z}_{\text {DRV }}$	Driver Output Resistance	Steady State Drive		$28^{\text {Note } 5}$		44	Ω
$\mathrm{T}_{\text {DRATE }}$	Data Rate			11.97	12	12.03	Mbs
T ${ }_{\text {DDJ1 }}$	Source Differential Driver Jitter to Next Transition	Notes 3,4.	Figure 6-42	-3.5	0	3.5	ns
$\mathrm{T}_{\text {DJ, } 2}$	Source Differential Driver Jitter for Paired Transitions	Notes 3,4	Figure 6-42	-4.0	0	4.0	ns
T DEOP	Differential to EOP Transition Skew	Note 4	Figure 6-43	-2	0	5	ns
$\mathrm{T}_{\text {EOPT }}$	Source EOP Width	Note 4	Figure 6-43	160	167	175	ns
TJR1	Receiver Data Jitter Tolerance to Next Transition	Note 4	Figure 6-44	-18.5	0	18.5	ns
TJR2	Receiver Data Jitter Tolerance for Paired Transitions	Note 4	Figure 6-44	-9	0	9	ns
$\mathrm{T}_{\text {EOPR1 }}$	EOP Width at Receiver; Must reject as EOP	Note 4	Figure 6-43	40			ns
$\mathrm{T}_{\text {EOPR2 }}$	EOP Width at Receiver; Must accept as EOP	Note 4	Figure 6-43	80			ns

1 Measured from 10% to 90% of the data signal.
2 The rising and falling edges should be smoothly transitioning (monotonic).
3 Timing difference between the differential data signals.
4 Measured at crossover point of differential data signals.
520Ω is placed in series to meet this USB specification. The actual driver output impedance is 15Ω.

7 Clocks

7.1 Clock Descriptions

7.1.1 BCLK

BCLK is an internal clock derived from CLKI or CLKI2 (see REG[04h] bit 0). If CLKI is selected as the source, BCLK can be a divided version $(\div 1, \div 2)$ of CLKI. CLKI is typically derived from the host CPU bus clock.

The source clock options for BCLK may be selected as in the following table.

Table 7-1: BCLK Clock Selection

Source Clock Options	BCLK Selection
CLKI	CNF6 $=0$
CLKI $\div 2$	CNF6 $=1$

Note

For synchronous bus interfaces, it is recommended that BCLK be set the same as the CPU bus clock (not a divided version of CLKI) e.g. SH-3, SH-4.

7.1.2 MCLK

MCLK provides the internal clock required to access the embedded SRAM. The S1D13A05 is designed with efficient power saving control for clocks (clocks are turned off when not used); reducing the frequency of MCLK does not necessarily save more power. Furthermore, reducing the MCLK frequency relative to the BCLK frequency increases the CPU cycle latency and so reduces screen update performance. For a balance of power saving and performance, the MCLK should be configured to have a high enough frequency setting to provide sufficient screen refresh as well as acceptable CPU cycle latency.

Note

The maximum frequency of MCLK is $50 \mathrm{MHz}\left(30 \mathrm{MHz}\right.$ if running CORE V_{DD} at $2.0 \mathrm{~V} \pm$ $10 \%)$. As MCLK is derived from BCLK, when BCLK is greater than 50 MHz , MCLK must be divided using REG[04h] bits 5-4.

The source clock options for MCLK may be selected as in the following table.
Table 7-2: MCLK Clock Selection

Source Clock Options	MCLK Selection
BCLK	REG[04h] bits 5-4 $=00$
BCLK $\div 2$	REG[04h] bits 5-4 $=01$
BCLK $\div 3$	REG[04h] bits 5-4 $=10$
BCLK $\div 4$	REG[04h] bits 5-4 $=11$

Clocks

7.1.3 PCLK

PCLK is the internal clock used to control the panel. It should be chosen to match the optimum frame rate of the panel. See Section 10, "Frame Rate Calculation" on page 167 for details on the relationship between PCLK and frame rate.

Some flexibility is possible in the selection of PCLK. Firstly, panels typically have a range of permissible frame rates. Secondly, it may be possible to choose a higher PCLK frequency and tailor the horizontal non-display period to bring down the frame-rate to its optimal value.

The source clock options for PCLK may be selected as in the following table.
Table 7-3: PCLK Clock Selection

Source Clock Options	PCLK Selection
MCLK	REG[08h] bits $7-0=00 \mathrm{~h}$
MCLK $\div 2$	REG[08h] bits $7-0=10 \mathrm{~h}$
MCLK $\div 3$	REG[08h] bits $7-0=20 \mathrm{~h}$
MCLK $\div 4$	REG[08h] bits $7-0=30 \mathrm{~h}$
MCLK $\div 8$	REG[08h] bits $7-0=40 \mathrm{~h}$
BCLK	REG[08h] bits $7-0=01 \mathrm{~h}$
BCLK $\div 2$	REG[08h] bits $7-0=11 \mathrm{~h}$
BCLK $\div 3$	REG[08h] bits $7-0=21 \mathrm{~h}$
BCLK $\div 4$	REG[08h] bits $7-0=31 \mathrm{~h}$
BCLK $\div 8$	REG[08h] bits $7-0=41 \mathrm{~h}$
CLKI	REG[08h] bits $7-0=02 \mathrm{~h}$
CLKI $\div 2$	REG[08h] bits $7-0=12 \mathrm{~h}$
CLKI $\div 3$	REG[08h] bits $7-0=22 \mathrm{~h}$
CLKI $\div 4$	REG[08h] bits 7-0 $=32 \mathrm{~h}$
CLKI $\div 8$	REG[08h] bits 7-0 $=42 \mathrm{~h}$
CLKI2	REG[08h] bits 7-0 $=03 \mathrm{~h}$
CLKI2 $\div 2$	REG[08h] bits 7-0 $=13 \mathrm{~h}$
CLKI2 $\div 3$	REG[08h] bits 7-0 $=23 \mathrm{~h}$
CLKI2 $\div 4$	RREG[08h] bits 7-0 $=33 \mathrm{~h}$
CLKI2 $\div 8$	REG[08h] bits 7-0 $=43 \mathrm{~h}$

There is a relationship between the frequency of MCLK and PCLK that must be maintained.

Table 7-4: Relationship between MCLK and PCLK

SwivelView Orientation	Color Depth (bpp)	MCLK to PCLK Relationship
SwiveIView 0° and 180°	16	$\mathrm{f}_{\text {MCLK }} \geq \mathrm{f}_{\text {PCLK }}$
	8	$\mathrm{f}_{\text {MCLK }} \geq \mathrm{f}_{\text {PCLK }} \div 2$
	4	$\mathrm{f}_{\text {MCLK }} \geq \mathrm{f}_{\text {PCLK }} \div 4$
	2	$\mathrm{f}_{\text {MCLK }} \geq \mathrm{f}_{\text {PCLK }} \div 8$
	1	$\mathrm{f}_{\text {MCLK }} \geq \mathrm{f}_{\text {PCLK }} \div 16$
SwivelView 90° and 270°	$16 / 8 / 4 / 2 / 1$	$\mathrm{f}_{\text {MCLK }} \geq 1.25 \mathrm{f}_{\mathrm{PCLK}}$

7.1.4 PWMCLK

PWMCLK is the internal clock used by the Pulse Width Modulator for output to the panel.
The source clock options for PWMCLK may be selected as in the following table.

Table 7-5: PWMCLK Clock Selection

Source Clock Options	PWMCLK Selection
CLKI	REG[70h] bits 2-1 $=00$
CLKI2	REG[70h] bits 2-1 $=01$
MCLK	REG[70h] bits 2-1 $=10$
PCLK	REG[70h] bits 2-1 $=11$

For further information on controlling PWMCLK, see "PWM Clock Configuration Register" on page 124..

Clocks

7.2 Clock Selection

The following diagram provides a logical representation of the S1D13A05 internal clocks used for the LCD controller.

Figure 7-1: Clock Selection

Note

${ }^{1}$ CNF6 must be set at RESET\#.

7.3 Clocks versus Functions

Table 7-6: "S1D13A05 Internal Clock Requirements", lists the internal clocks required for the following S1D13A05 functions.

Table 7-6: SID13A05 Internal Clock Requirements

Function	Bus Clock (BCLK)	Memory Clock (MCLK)	Pixel Clock (PCLK)	PWM Clock (PWMCLK)	USB Clock (USBCLK)
Register Read/Write	Required	Not Required	Not Required	Not Required 1	Not Required
Memory Read/Write	Required	Required	Not Required	Not Required 1	Not Required
Look-Up Table Register Read/Write	Required	Required	Not Required	Not Required ${ }^{1}$	Not Required
Software Power Save	Required	Not Required	Not Required	Not Required 11	Not Required
LCD Output	Required	Required	Required	Not Required ${ }^{1}$	Not Required
USB Register Read/Write	Required	Not Required	Not Required	Not Required	Required

Note

${ }^{1}$ PWMCLK is an optional clock (see Section 7.1.4, "PWMCLK" on page 89).

8 Registers

This section discusses how and where to access the S1D13A05 registers. It also provides detailed information about the layout and usage of each register.

8.1 Register Mapping

The S1D13A05 registers are memory-mapped. When the system decodes the input pins as CS\# $=0$ and $\mathrm{M} / \mathrm{R} \#=0$, the registers may be accessed. The register space is decoded by $\mathrm{AB}[17: 0]$ and is mapped as follows.

Table 8-1: S1D13A05 Register Mapping

M/R\#	Address	Size	Function
1	00000 h to 40000 h	256 K bytes	SRAM memory
0	0000 h to 00 E 3 h	227 bytes	Configuration registers
0	4000 h to 4054 h	84 bytes	USB registers
0	8000 h to 8019 h	25 bytes	2D Acceleration Registers
0	10000 h to 1 FFFEh	65536 bytes $(64 \mathrm{~K}$ bytes)	2D Accelerator Data Port

8.2 Register Set

The S1D13A05 register set is as follows.

Table 8-2: S1D13A05 Register Set

Register	Pg	Register	Pg
LCD Register Descriptions (Offset = Oh)			
Read-Only Configuration Registers			
REG[00h] Product Information Register	95		
Clock Configuration Registers			
REG[04h] Memory Clock Configuration Register	96	REG[08h] Pixel Clock Configuration Register	97
Panel Configuration Registers			
REG[0Ch] Panel Type \& MOD Rate Register	98	REG[10h] Display Settings Register	99
REG[14h] Power Save Configuration Register	102		
Look-Up Table Registers			
REG[18h] Look-Up Table Write Register	103	REG[1Ch] Look-Up Table Read Register	104
Display Mode Registers			
REG[20h] Horizontal Total Register	105	REG[24h] Horizontal Display Period Register	105
REG[28h] Horizontal Display Period Start Position Register	106	REG[2Ch] FPLINE Register	106
REG[30h] Vertical Total Register	107	REG[34h] Vertical Display Period Register	108
REG[38h] Vertical Display Period Start Position Register	108	REG[3Ch] FPFRAME Register	109
REG[40h] Main Window Display Start Address Register	110	REG[44h] Main Window Line Address Offset Register	110
REG[48h] Extended Panel Type Register	110		
Picture-in-Picture Plus (PIP ${ }^{+}$) Registers			
REG[50h] PIP ${ }^{+}$Window Display Start Address Register	112	REG[54h] PIP ${ }^{+}$Window Line Address Offset Register	112
REG[58h] PIP ${ }^{+}$Window X Positions Register	113	REG[5Ch] PIP ${ }^{+}$Window Y Positions Register	115
Miscellaneous Registers			
REG[60h] Reserved	117	REG[64h] GPIO Status and Control Register	118
REG[68h] GPO Status and Control Register	122	REG[70h] PWM Clock Configuration Register	124
REG[74h] PWMOUT Duty Cycle Register	125	REG[80h] Scratch Pad A Register	126
REG[84h] Scratch Pad B Register	126	REG[88h] Scratch Pad C Register	127
Extended Panel Registers			
REG[A0h] HR-TFT CLS Width Register	128	REG[A4h] HR-TFT PS1 Rising Edge Register	128
REG[A8h] HR-TFT PS2 Rising Edge Register	128	REG[ACh] HR-TFT PS2 Toggle Width Register	129
REG[B0h] HR-TFT PS3 Signal Width Register	129	REG[B4h] HR-TFT REV Toggle Point Register	129
REG[B8h] HR-TFT PS1/2 End Register	130	REG[BCh] Type 2 TFT Configuration Register	130
REG[C0h] Casio TFT Timing Register	133	REG[D8h] Type 3 TFT Configuration 0 Register	132
REG[DCh] Type 3 TFT Configuration 1 Register	133	REG[E0h] Type 3 TFT PCLK Divide Register	134
REG[E4h] Type 3 TFT Partial Mode Display Control Register	135	REG[E8h] Type 3 TFT Partial Area 0 Positions Register	136
REG[ECh] Type 3 TFT Partial Area 1 Positions Register	136	REG[F0h] Type 3 TFT Partial Area 2 Positions Register	137
REG[F4h] Type 3 TFT Command Store Register	137	REG[F8h] Type 3 TFT Miscellaneous Register	138

Registers

Table 8-2: S1D13A05 Register Set

Register	Pg	Register	Pg
USB Register Descriptions (Offset = 4000h)			
REG[4000h] Control Register	139	REG[4002h] Interrupt Enable Register 0	140
REG[4004h] Interrupt Status Register 0	141	REG[4006h] Interrupt Enable Register 1	141
REG[4008h] Interrupt Status Register 1	142	REG[4010h] Endpoint 1 Index Register	142
REG[4012h] Endpoint 1 Receive Mailbox Data Register	143	REG[4018h] Endpoint 2 Index Register	144
REG[401Ah] Endpoint 2 Transmit Mailbox Data Register	144	REG[401Ch] Endpoint 2 Interrupt Polling Interval Register	144
REG[4020h] Endpoint 3 Receive FIFO Data Register	144	REG[4022h] Endpoint 3 Receive FIFO Count Register	145
REG[4024h] Endpoint 3 Receive FIFO Status Register	145	REG[4026h] Endpoint 3 Maximum Packet Size Register	145
REG[4028h] Endpoint 4 Transmit FIFO Data Register	146	REG[402Ah] Endpoint 4 Transmit FIFO Count Register	146
REG[402Ch] Endpoint 4 Transmit FIFO Status Register	146	REG[402Eh] Endpoint 4 Maximum Packet Size Register	147
REG[4030h] Endpoint 4 Maximum Packet Size Register	147	REG[4032h] USB Status Register	147
REG[4034h] Frame Counter MSB Register	148	REG[4036h] Frame Counter LSB Register	148
REG[4038h] Extended Register Index	148	REG[403Ah] Extended Register Data	148
REG[403Ah], Index[00h] Vendor ID MSB	149	REG[403Ah], Index[01h] Vendor ID LSB	149
REG[403Ah], Index[02h] Product ID MSB	149	REG[403Ah], Index[03h] Product ID LSB	149
REG[403Ah], Index[04h] Release Number MSB	149	REG[403Ah], Index[05h] Release Number LSB	149
REG[403Ah], Index[06h] Receive FIFO Almost Full Threshold	150	REG[403Ah], Index[07h] Transmit FIFO Almost Empty Th	150
REG[403Ah], Index[08h] USB Control	150	REG[403Ah], Index[09h] Maximum Power Consumption	150
REG[403Ah], Index[0Ah] Packet Control	151	REG[403Ah], Index[0Bh] Reserved	151
REG[403Ah], Index[0Ch] FIFO Control	152	REG[4040h] USBFC Input Control Register	152
REG[4042h] Reserved	153	REG[4044h] Pin Input Status / Pin Output Data Register	153
REG[4046h] Interrupt Control Enable Register 0	154	REG[4048h] Interrupt Control Enable Register 1	154
REG[404Ah] Interrupt Control Status/Clear Register 0	154	REG[404Ch] Interrupt Control Status/Clear Register 1	155
REG[404Eh] Interrupt Control Masked Status Register 0	156	REG[4050h] Interrupt Control Masked Status Register 1	156
REG[4052h] USB Software Reset Register	156	REG[4054h] USB Wait State Register	157
2D Acceleration (BitBLT) Register Descriptions (Offset = 8000h)			
REG[8000h] BitBLT Control Register	158	REG[8004h] BitBLT Status Register	159
REG[8008h] BitBLT Command Register	160	REG[800Ch] BitBLT Source Start Address Register	162
REG[8010h] BitBLT Destination Start Address Register	162	REG[8014h] BitBLT Memory Address Offset Register	163
REG[8018h] BitBLT Width Register	163	REG[801Ch] BitBLT Height Register	163
REG[8020h] BitBLT Background Color Register	164	REG[8024h] BitBLT Foreground Color Register	164
2D Acceleration (BitBLT) Data Register Descriptions (Offset = 10000h)			
AB16-AB0 $=10000 \mathrm{~h}-1$ FFFEh, 2D Accelerator (BitBLT) Data Memory Mapped Region Register			165

8.3 LCD Register Descriptions (Offset = Oh)

Unless specified otherwise, all register bits are set to 0 during power-on.

8.3.1 Read-Only Configuration Registers

Product Information Register															
REG[00h] Default = 2Dxx402Dh														Read Only	
Product Code bits 5-0						$\begin{aligned} & \text { Revision Code } \\ & \text { bits 1-0 } \end{aligned}$		$\begin{aligned} & \mathrm{n} / \mathrm{a} \\ & 23 \end{aligned}$	22	CNF[6:0] Status					
31	30	29	28	27	26	25	24			21	20	19	18	17	16
Display Buffer Size bits 7-0								Product Code bits 5-0						$\begin{aligned} & \text { Revision Code } \\ & \text { bits 1-0 } \end{aligned}$	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-26
Product Code
These read-only bits indicate the product code. The product code is $001011(0 \mathrm{Bh})$.
bits 25-24 Revision Code
These are read-only bits that indicates the revision code. The revision code is 01 .
bits 22-16
bits 15-8 Display Buffer Size Bits [7:0]
This is a read-only register that indicates the size of the SRAM display buffer measured in 4 K byte increments. The S1D13A05 display buffer is 256 K bytes and therefore this register returns a value of $64(40 \mathrm{~h})$.

Value of this register $=$ display buffer size $\div 4 \mathrm{~K}$ bytes

$$
\begin{aligned}
& =256 \mathrm{~K} \text { bytes } \div 4 \mathrm{~K} \text { bytes } \\
& =64(40 \mathrm{~h})
\end{aligned}
$$

bits 7-2
Product Code
These read-only bits indicate the product code. The product code is $001011(0 \mathrm{Bh})$.
bits 1-0 Revision Code
These are read-only bits that indicates the revision code. The revision code is 01 .

8.3.2 Clock Configuration Registers

bits 5-4
MCLK Divide Select Bits [1:0]
These bits determine the divide used to generate the Memory Clock (MCLK) from the Bus Clock (BCLK).

Table 8-3: MCLK Divide Selection

MCLK Divide Select Bits	BCLK to MCLK Frequency Ratio
00	$1: 1$
01	$2: 1$
10	$3: 1$
11	$4: 1$

bit 0
BCLK Source Select
When this bit $=0$, the source of the Bus Clock (BCLK) is input pin CLKI or a divided down version of CLKI. CLKI may be divided down using the CLKI to BCLK divide select configuration pin CNF6.
When this bit = 1 , the source of the Bus Clock (BCLK) is input pin CLKI2.

Note

Changing this bit allows the BCLK source to be switched in a glitch-free manner.

bits 6-4
PCLK Divide Select Bits [1:0]
These bits determine the divide used to generate the Pixel Clock (PCLK) from the Pixel Clock Source.

Table 8-4: PCLK Divide Selection

PCLK Divide Select Bits	PCLK Source to PCLK Frequency Ratio
000	$1: 1$
001	$2: 1$
010	$3: 1$
011	$4: 1$
$1 X X$	$8: 1$

bits 1-0
PCLK Source Select Bits [1:0]
These bits determine the source of the Pixel Clock (PCLK).
Table 8-5: PCLK Source Selection

PCLK Source Select Bits	PCLK Source
00	MCLK
01	BCLK
10	CLKI
11	CLKI2

8.3.3 Panel Configuration Registers

bit 24
bits 21-16 MOD Rate Bits [5:0]
FPSHIFT Invert
This bit inverts the FPSHIFT signal used by active panels. For passive panels, this bit has no effect.
When this bit is 0 , FPSHIFT is unchanged.
When this bit is 1 , FPSHIFT is inverted.

These bits are for passive LCD panels only.
When these bits are all 0 , the MOD output signal (DRDY) toggles every FPFRAME. For a non-zero value n, the MOD output signal (DRDY) toggles every n FPLINE.
bit $8 \quad$ HR-TFT PS Mode

This bit is for HR-TFT panels only.

This bit selects the timing used for the PS signal. The alternate PS timings (PS1, PS2, PS3) result in additional power savings on the HR-TFT Panel.
When this bit $=0$, the PS signal uses PS1 timing.
When this bit $=1$, the PS signal uses PS2 timing.
bit 7
Panel Data Format Select
When this bit $=0,8$-bit single color passive LCD panel data format 1 is selected. For AC timing see Section 6.5.5, "Single Color 8-Bit Panel Timing (Format 1)" on page 61.
When this bit $=1,8$-bit single color passive LCD panel data format 2 is selected. For AC timing see Section 6.5.6, "Single Color 8-Bit Panel Timing (Format 2)" on page 63.
bit 6 Color/Mono Panel Select
When this bit $=0$, a monochrome LCD panel is selected.
When this bit $=1$, a color LCD panel is selected.
bits 5-4

Panel Data Width Bits [1:0]
These bits select the data width size of the LCD panel.

Table 8-6: Panel Data Width Selection

Panel Data Width Bits [1:0]	Passive Panel Data Width Size	Active Panel Data Width Size
00	4-bit	9-bit
01	8 -bit	12 -bit
10	16 -bit	18 -bit
11	Reserved	Reserved

bit 3	Reserved. This bit must be set to 0.
bits 1-0	Panel Type Bits[1:0] These bits select the panel type.

Table 8-7: LCD Panel Type Selection

Panel Type Bits [1:0]	Panel Type
00	STN
01	TFT
10	Reserved
11	HR-TFT

bit 25
Pixel Doubling Vertical Enable
This bit controls the pixel doubling feature for the vertical dimension or height of the panel (i.e. 160 pixel high data doubled to 320 pixel high panel).
When this bit $=1$, pixel doubling in the vertical dimension (height) is enabled.
When this bit $=0$, there is no hardware effect.

Note

Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes.
bit 24 Pixel Doubling Horizontal Enable
This bit controls the pixel doubling feature for the horizontal dimension or width of the panel (i.e. 160 pixel wide data doubled to 320 pixel wide panel)
When this bit $=1$, pixel doubling in the horizontal dimension (width) is enabled.
When this bit $=0$, there is no hardware effect.

Note

Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes.

S1D13A05 Hardware Functional Specification	
Rev. 7.8	Seiko Epson Corporation 99

bit 23 Display Blank
When this bit $=0$, the LCD display pipeline is enabled.
When this bit = 1, all applicable LCD data outputs (see Table 4-9: "LCD Interface Pin Mapping," on page 28) are forced to zero or one. The following table summarizes the changes to the signals on FPDAT[17:0] for each combination of bits.

Table 8-8: Display Control Summary

Display Blank (REG[10h] bit 23)	Display Blank Polarity (REG[10h] bit 21)	Software Video Invert (REG[10h] bit 20)	Output Data Lines (FPDAT[17:0])
0	X	0	Normal
		1	Inverted
1		1	0
		1	All 1
		0	All 1
		1	All 0

bit 22

bit 21
bit 20

Dithering Disable
When this bit $=0$, dithering on the passive LCD panel is enabled, allowing a maximum of 64 K colors $\left(2^{18}\right)$ or 64 gray shades in $1 / 2 / 4 / 8 \mathrm{bpp}$ mode. In 16 bpp mode, only 64 K colors $\left(2^{16}\right)$ can also be achieved.
When this bit $=1$, dithering on the passive LCD panel is disabled, allowing a maximum of 4096 colors $\left(2^{12}\right)$ or 16 gray shades.
The dithering algorithm provides more shades of each primary color.

Note

For a summary of the results of dithering for each color depth, see Table 8-10: "LCD Bit-per-pixel Selection," on page 101.

Display Blank Polarity
When this bit $=0$, the display blank function operates normally.
When this bit $=1$, the display blank function switches polarity.
This bit works in conjunction with bit 23 and bit 20. Table 8-8: "Display Control Summary" summarizes the changes to the signals on FPDAT[17:0] for each combination of bits.

Software Video Invert
When this bit $=0$, video data is normal.
When this bit $=1$, video data is inverted.

This bit works in conjunction with bit 23 and bit 21. Table 8-8: "Display Control Summary" summarizes the changes to the signals on FPDAT[17:0] for each combination of bits.

Note
Video data is inverted after the Look-Up Table
bit 19
bit 17-16

PIP+ Window Enable
This bit enables a PIP+ window within the main window. The location of the PIP+ window within the landscape window is determined by the PIP +X Position register (REG[58h]) and PIP+ Y Position register (REG[5Ch]). The PIP+ window has its own Display Start Address register (REG[50h]) and Memory Address Offset register (REG[54h]). The PIP+ window shares the same color depth and SwivelView ${ }^{\text {TM }}$ orientation as the main window.

SwivelView Mode Select Bits [1:0]
These bits select different SwivelView ${ }^{\text {TM }}$ orientations:
Table 8-9: SwivelView ${ }^{\text {TM }}$ Mode Select Options

SwiveIView Mode Select Bits	SwiveIView Orientation
00	$0^{\circ}($ Normal $)$
01	90°
10	180°
11	270°

bits 4-0
Bit-per-pixel Select bits [4:0]
These bits select the color depth (bit-per-pixel) for the displayed data for both the main window and the PIP^{+}window (if active).

1, 2, 4 and 8 bpp modes use the 18 -bit LUT. 16 bpp mode bypasses the LUT. For further details on the LUT, refer to Section 12, "Look-Up Table Architecture" on page 169.

Table 8-10: LCD Bit-per-pixel Selection

Bit-per-pixel Select Bits [4:0]	Color Depth (bpp)	Max. No. Of Simultaneously Displayed Colors/Shades		
00000	Reserved			
00001	1 bpp	$2 / 2$		
00010	2 bpp	$4 / 4$		
00011	Reserved			
00100	4 bpp		$16 / 16$	
$00101-00111$	Reserved			
01000	8 bpp		$256 / 64$	
10000	16 bpp	Reserved		
$10001-1111$				

bit $7 \quad$ Vertical Non-Display Period Status (Read-only)
This is a read-only status bit.
When this bit $=0$, the LCD panel output is in a Vertical Display Period.
When this bit $=1$, the LCD panel output is in a Vertical Non-Display Period.
bit 6 Memory Controller Power Save Status (Read-only)
This read-only status bit indicates the power save state of the memory controller.
When this bit $=0$, the memory controller is powered up.
When this bit $=1$, the memory controller is powered down and the MCLK source can be turned off.

Note

Memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses.
bit 4
Power Save Mode Enable
When this bit $=1$, the software initiated power save mode is enabled.
When this bit $=0$, the software initiated power save mode is disabled.
At reset, this bit is set to 1 . For a summary of Power Save Mode, see Section 15, "Power
Save Mode" on page 183.

Note

Memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses.
bit 0
Reserved
This bit must be set to 0 .

8.3.4 Look-Up Table Registers

Loo REG			fa											Write Only	
LUT Write Address								LUT Red Write Data						n/a	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LUT Green Write Data						n/a		LUT Blue Write Data						n/a	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Note

The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and blue (see Section 12, "Look-Up Table Architecture" on page 169).

Note

This is a write-only register and returns 00 h if read.
bits 31-24
bits 23-18
bits $15-10$
LUT Green Write Data Bits [5:0]
These bits contains the data to be written to the green component of the Look-Up Table.
The LUT position is controlled by the LUT Write Address bits (bits 31-24).
bits 7-2
LUT Blue Write Data Bits [5:0]
These bits contains the data to be written to the blue component of the Look-Up Table.
The LUT position is controlled by the LUT Write Address bits (bits 31-24). When the
S1D13A05 is set to a host bus interface using big endian (CNF4 = 1), the RGB data is
updated to the LUT with the completion of a write to these bits.

Note

The S1D13A05 has three 256-position, 6 -bit wide LUTs, one for each of red, green, and blue (see Section 12, "Look-Up Table Architecture" on page 169).
bits 31-24
bits 23-18
bits 15-10
bits 7-2

LUT Read Address Bits [7:0] (Write Only)
This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT data. Red data is read from bits 23-18, green data from bits 15-10, and blue data from bits 7-2.

Note

If a write to the LUT Write Address Bits (REG[18h] bits 31-24) is made, the LUT Read Address bits are automatically updated with the same value.

LUT Red Read Data Bits [5:0] (Read Only)

These bits point to the data from the red component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.

LUT Green Read Data Bits [5:0] (Read Only)

These bits point to the data from the green component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.

LUT Blue Read Data Bits [5:0] (Read Only)

These bits point to the data from the blue component of the Look-Up Table. The LUT position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.

8.3.5 Display Mode Registers

bits 6-0
Horizontal Total Bits [6:0]
These bits specify the LCD panel Horizontal Total period, in 8 pixel resolution. The Horizontal Total is the sum of the Horizontal Display period and the Horizontal Non-Display period. Since the maximum Horizontal Total is 1024 pixels, the maximum panel resolution supported is 800×600.

REG[20h] bits $6: 0=($ Horizontal Total in number of pixels $\div 8)-1$

Note

${ }^{1}$ For all panels this register must be programmed such that:
HDPS + HDP < HT HT - HDP ≥ 8 MCLK
${ }^{2}$ For passive panels, this register must be programmed such that: HPS + HPW < HT
${ }^{3}$ See Section 6.5, "Display Interface" on page 53.

bits 6-0
Horizontal Display Period Bits [6:0]
These bits specify the LCD panel Horizontal Display period, in 8 pixel resolution. The Horizontal Display period should be less than the Horizontal Total to allow for a sufficient Horizontal Non-Display period.

REG[24h] bits 6:0 $=($ Horizontal Display Period in number of pixels $\div 8)-1$

Note

For passive panels, HDP must be a minimum of 32 pixels and must be increased by multiples of 16 .

For TFT panels, HDP must be a minimum of 8 pixels and must be increased by multiples of 8 .

Note

See Section 6.5, "Display Interface" on page 53.

Horizontal Display Period Start Position Bits [9:0]
These bits specify a value used in the calculation of the Horizontal Display Period Start
Position (in 1 pixel resolution) for TFT and HR-TFT panels.
For passive LCD panels these bits must be set to 00 h which will result in HDPS $=22$. HDPS $=($ REG[28h] bits 9-0 $)+22$

For TFT panels, HDPS is calculated using the following formula.

$$
\text { HDPS }=(\text { REG[28h] bits 9-0 })+5
$$

Note

This register must be programmed such that the following formula is valid.
HDPS + HDP $<$ HT

bit 23
bits 22-16

FPLINE Pulse Polarity
This bit selects the polarity of the horizontal sync signal. For passive panels, this bit must be set to 1 . For active panels, this bit is set according to the horizontal sync signal of the panel (typically FPLINE or LP). This bit has no effect for TFT Type 2 and TFT Type 3 panels.
When this bit $=0$, the horizontal sync signal is active low.
When this bit $=1$, the horizontal sync signal is active high.
FPLINE Pulse Width Bits [6:0]
These bits specify the width of the panel horizontal sync signal, in 1 pixel resolution. The horizontal sync signal is typically FPLINE or LP, depending on the panel type.

REG[2Ch] bits 22:16 = FPLINE Pulse Width in number of pixels - 1

Note

For passive panels, these bits must be programmed such that the following formula is valid.
HPW + HPS < HT

Note

See Section 6.5, "Display Interface" on page 53.
bits 9-0
FPLINE Pulse Start Position Bits [9:0]
These bits specify the start position of the horizontal sync signal, in 1 pixel resolution.
FPLINE Pulse Start Position in pixels $=($ REG[2Ch $]$ bits $9-0)+1$

Note

For passive panels, these bits must be programmed such that the following formula is valid.

$$
\mathrm{HPW}+\mathrm{HPS}<\mathrm{HT}
$$

Note

See Section 6.5, "Display Interface" on page 53.

bits 9-0
Vertical Total Bits [9:0]
These bits specify the LCD panel Vertical Total period, in 1 line resolution. The Vertical
Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. The maximum Vertical Total is 1024 lines.

REG[30h] bits 9:0 = Vertical Total in number of lines - 1

Note

${ }^{1}$ This register must be programmed such that the following formula is valid.
VT > VDPS + VDP
${ }^{2}$ If an HR-TFT panel is selected, the following formula must also apply.
VT $>($ REG $[B 8 \mathrm{~h}]$ bits 2-0 $)+\mathrm{VDP}+\mathrm{VPS}+1$
${ }^{3}$ See Section 6.5, "Display Interface" on page 53.

	Di														
REG			ef		00									ea	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
										isp	riod				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0
Vertical Display Period Bits [9:0]
These bits specify the LCD panel Vertical Display period, in 1 line resolution. The
Vertical Display period should be less than the Vertical Total to allow for a sufficient
Vertical Non-Display period.
REG[34h] bits 9:0 = Vertical Display Period in number of lines - 1

Note

${ }^{1}$ This register must be programmed such that the following formula is valid.

> VT > VDPS + VDP
${ }^{2}$ If an HR-TFT panel is selected, the following formula must also apply.
$\mathrm{VT}>(\operatorname{REG}[\mathrm{B} 8 \mathrm{~h}]$ bits 2-0$)+\mathrm{VDP}+\mathrm{VPS}+1$
${ }^{3}$ See Section 6.5, "Display Interface" on page 53.

Vertical Dis														
REG[38h]		Defa	= 0	00									ea	
		28		26										
31-30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15 \|14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 9-0
Vertical Display Period Start Position Bits [9:0]
These bits specify the Vertical Display Period Start Position for TFT and HR-TFT panels in 1 line resolution. For passive LCD panels these bits must be set to 00 h .

For passive LCD panels these bits must be set to 00 h .
For TFT panels, VDPS is calculated using the following formula.
VDPS $=$ REG[38h] bits 9-0

Note

${ }^{1}$ This register must be programmed such that the following formula is valid.

VT > VDPS + VDP

${ }^{2}$ If an HR-TFT panel is selected, the following formula must also apply.
VT $>($ REG[B8h] bits 2-0 $)+\mathrm{VDP}+\mathrm{VPS}+1$
${ }^{3}$ See Section 6.5, "Display Interface" on page 53.

bit 23
bits 18-16
FPFRAME Pulse Polarity
This bit selects the polarity of the vertical sync signal. For passive panels, this bit must be set to 1 . For TFT panels, this bit is set according to the horizontal sync signal of the panel (typically FPFRAME, SPS). This bit has no effect for TFT Type 2 panels.
When this bit $=0$, the vertical sync signal is active low.
When this bit $=1$, the vertical sync signal is active high.
FPFRAME Pulse Width Bits [2:0]
These bits specify the width of the panel vertical sync signal, in 1 line resolution. The vertical sync signal is typically FPFRAME, or SPS, depending on the panel type.
REG[3Ch] bits 2:0 = FPFRAME Pulse Width in number of lines - 1

Note

See Section 6.5, "Display Interface" on page 53.
bits 9-0
FPFRAME Pulse Start Position Bits [9:0]
These bits specify the start position of the vertical sync signal, in 1 line resolution.
For passive panels, these bits must be set to 00 h .
For TFT panels, VDPS is calculated using the following formula.
VPS $=$ REG[3Ch] bits 9-0
Note
See Section 6.5, "Display Interface" on page 53.

Mai	d	is	St	Ad											
REG			efa	= 0	00									ea	Srite
							n/a								bit 16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Win	Displa	A	bits						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Main Window Display Start Address Bits [16:0]
This register specifies the starting address, in DWORDS, for the LCD image in the display buffer for the main window.

Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on. Calculate the Display Start Address as follows:

REG[40h] bits $16: 0=$ image address $\div 4$ (valid only for SwivelView 0°)

Note

For information on setting this register for other SwivelView orientations, see Section 13 , "SwivelView ${ }^{\text {TM } " ~ o n ~ p a g e ~} 175$.

bits 9-0
Main Window Line Address Offset Bits [9:0]
This register specifies the offset, in DWORDS, from the beginning of one display line to the beginning of the next display line in the main window. Note that this is a 32-bit
address increment. Calculate the Line Address Offset as follows:
REG[44h] bits 9:0 $=$ display width in pixels $\div(32 \div$ bpp $)$

Note

A virtual display can be created by programming this register with a value greater than the formula requires. When a virtual display is created the image width is larger than the display width and the displayed image becomes a window into the larger virtual image.

bit 8
Data Compare Invert Enable
This bit can be used to lower power consumption for TFT Type 2 and TFT Type 3 Inter-
faces. The Data Compare and Invert function reduces the amount of data toggled by counting the number of bits that are changed (1 to 0 or 0 to 1) from the previous pixel data. If more than half of the bits are changed the data is inverted and the lesser amount of bits are toggled. For all other panel interfaces it has no effect.
When this bit $=0$, the Data Compare and Invert functions are disabled.
When this bit $=1$, the Data Compare and Invert functions are enabled.
bits 3-0 Extended Panel Type Bits [3:0]
These bits override the setting in REG[0Ch] bits 1-0 and allow selection of the alternate TFT panel types.

Table 8-11: Extended Panel Type Selection

REG[48h] Bits [3:0]	Panel Type
0000	no effect from REG[0Ch] bits 1-0
0001	TFT Type 2
0010	TFT Type 3
0011	TFT Type 4
0100	Casio TFT
$0101-1111$	Reserved

8.3.6 Picture-in-Picture Plus (PIP $^{+}$) Registers

bits 16-0
PIP ${ }^{+}$Display Start Address Bits [16:0]
These bits form the 17-bit address for the starting double-word of the
PIP+ window.
Note that this is a double-word (32-bit) address. An entry of 00000h into these registers represents the first double-word of display memory, an entry of 00001h represents the second double-word of the display memory, and so on.

Note

These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit 19).

bits 9-0
PIP ${ }^{+}$Window Line Address Offset Bits [9:0]
These bits are the LCD display's 10-bit address offset from the starting double-word of line " n " to the starting double-word of line " $n+1$ " for the PIP $^{+}$window. Note that this is a 32-bit address increment.

Note
These bits have no effect unless the PIP $^{+}$Window Enable bit is set to 1 (REG[10h] bit 19).

Note

The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written and at the next vertical non-display period.
bits 25-16
PIP ${ }^{+}$Window X End Position Bits [9:0]
These bits determine the X end position of the PIP^{+}window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the X end position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X End Position register, see
Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.
The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X end position is incremented by x pixels where x is relative to the current color depth.

Table 8-12: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (x)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

For 90° and 270° SwivelView the X end position is incremented in 1 line increments.
Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels.

Note

These bits have no effect unless the PIP ${ }^{+}$Window Enable bit is set to 1 (REG[10h] bit 19).

PIP ${ }^{+}$Window X Start Position Bits [9:0]
These bits determine the X start position of the PIP^{+}window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the X start position may not be a horizontal position value (only true in 0° and 180° SwivelView). For further information on defining the value of the X Start Position register, see
Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.
The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the X start position is incremented by x pixels where x is relative to the current color depth.

Table 8-13: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (x)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

For 90° and 270° SwivelView the X start position is incremented in 1 line increments.
Depending on the color depth, some of the higher bits in this register are unused because the maximum horizontal display width is 1024 pixels.

Note

These bits have no effect unless the PIP $^{+}$Window Enable bit is set to 1 (REG[10h] bit 19).

Note

${ }^{1}$ The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written and at the next vertical non-display period.
${ }^{2}$ For host bus interfaces using little endian $(\mathrm{CNF} 4=0)$, a write to bits 31-24 causes the PIP ${ }^{+}$Window Y End Position to take effect.
For host bus interfaces using big endian $(\mathrm{CNF} 4=1)$, a write to bits 7-0 causes the PIP^{+} Window Y End Position to take effect.
bits 25-16
PIP ${ }^{+}$Window Y End Position Bits [9:0]
These bits determine the Y end position of the PIP^{+}window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the Y end position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y End Position register, see
Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.
The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and 270° SwivelView the Y end position is incremented by y pixels where y is relative to the current color depth.

Table 8-14: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels.

Note

These bits have no effect unless the PIP ${ }^{+}$Window Enable bit is set to 1 (REG[10h] bit 19).

PIP ${ }^{+}$Window Y Start Position Bits [9:0]
These bits determine the Y start position of the PIP^{+}window in relation to the origin of the panel. Due to the S1D13A05 SwivelView feature, the Y start position may not be a vertical position value (only true in 0° and 180° SwivelView). For further information on defining the value of the Y Start Position register, see
Section 14, "Picture-in-Picture Plus (PIP+)" on page 180.

The register is also incremented differently based on the SwivelView orientation. For 0° and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and 270° SwivelView the Y start position is incremented by y pixels where y is relative to the current color depth.

Table 8-15: 32-bit Address Increments for Color Depth

Color Depth	Pixel Increment (y)
1 bpp	32
2 bpp	16
4 bpp	8
8 bpp	4
16 bpp	2

Depending on the color depth, some of the higher bits in this register are unused because the maximum vertical display height is 1024 pixels.

Note

These bits have no effect unless the PIP ${ }^{+}$Window Enable bit is set to 1 (REG[10h] bit 19).

8.3.7 Miscellaneous Registers

GPIO Status and Control Registe															
REG[64h]			Default $=20000000 \mathrm{~h}$											Read/Write	
GPIO7 Input Enable 31	GPIO6 Input Enable 30	GPIO5 Input Enable 29	GPIO4 Input Enable 28	GPIO3 Input Enable 27	GPIO2 Input Enable 26	GPIO1 Input Enable 25	GPIOO Input Enable 24	GPIO7 Config 23 23	GPIO6 Config 22	GPIO5 Config 21	GPIO4 Config 20	GPIO3 Config 19	GPIO2 Config 18	GPIO1 Config 17	GPIOO Config 16
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16

The S1D13A05 GPIO pins default to inputs, however they can be individually configured to outputs or inputs using the GPIO[7:0] Config bits (bits 23-16). If a GPIO pin is configured as an input, the input functionality must be enabled using the corresponding GPIO[7:0] Input Enable pin (see bits 31-24). Once the GPIO pin has been configured, it can be controlled/read using the GPIO[7:0] Control/Status bits (bits 7-0). See the individual bit descriptions for further details.

Some GPIOs must be configured as outputs after every RESET for use with some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.). See Table 4-9: "LCD Interface Pin Mapping," on page 28 and the individual bit descriptions for bits 7-0 for specific information on each GPIO pin.
bits 31-24 GPIO[7:0] Input Enable bits
These bits individually enable the input function for each GPIO pin (GPIO[7:0]). After power-on/reset, each bit must be set to a 1 to enable the input function of each GPIO pin (default is 0 except for GPIO5 which is 1). If the GPIO pin is configured as an output the GPIO[7:0] Input Enable bit has no effect.

Note

At power-on/reset, the GPIO5 Input Enable bit (bit 29) defaults to 1.
bits 23-16
GPIO[7:0] IO Configuration
At power-on/reset, the GPIO[7:0] pins default to inputs. These bits individually configure each GPIO pin as either an output or input.
When these bits $=0$, the associated GPIO pin is configured as an input.
When these bits $=1$, the associated GPIO pin is configured as an output.
This may be required for some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.) or USB. See Table 4-9: "LCD Interface Pin Mapping," on page 28 and the individual bit descriptions for bits 7-0 for specific information on each GPIO pin.

Note

If a GPIO pin is configured as an input, the input function of the GPIO pin must be enabled using the corresponding GPIOx Input Enable bit (bits 31-24) before the input configuration takes effect.
bit $7 \quad$ GPIO7 IO Control/Status
The following table shows the multiple uses of GPIO7.
Table 8-16: GPIO7 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO7	GPIO7 driven low	GPIO7 driven high	GPIO7 status returned
USB	not available (used by USBDP)	not available (used by USBDP)	not available (used by USBDP)

bit $6 \quad$ GPIO6 IO Control/Status
The following table shows the multiple uses of GPIO6.
Table 8-17: GPIO6 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO6	GPIO6 driven low	GPIO6 driven high	GPIO6 status returned
USB	not available (used by USBDM)	not available (used by USBDM)	not available (used by USBDM)

bit 5
GPIO5 IO Control/Status
The following table shows the multiple uses of GPIO5.
Table 8-18: GPIO5 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO5	GPIO5 driven low	GPIO5 driven high	GPIO5 status returned
USB	not available (used by USBDETECT)	not available (used by USBDETECT)	not available (used by USBDETECT)

bit 4
GPIO4 IO Control/Status
The following table shows the multiple uses of GPIO4.
Table 8-19: GPIO4 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO4	GPIO4 driven low	GPIO4 driven high	GPIO4 status returned
USB	not available (used by USBPUP)	not available (used by USBPUP)	not available (used by USBPUP)

| S1D13A05 Hardware Functional Specification | Seiko Epson Corporation |
| :--- | :--- | :--- |
| Rev. 7.8 | |

GPIO3 IO Control/Status
The following table shows the multiple uses of GPIO3.
Table 8-20: GPIO3 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO3	GPIO3 driven low	GPIO3 driven high	GPIO3 status returned
Sharp HR-TFT	not available (used by SPL)	not available (used by SPL)	not available (used by SPL)
Casio TFT	not available (used by STH)	not available (used by STH)	not available (used by STH)
TFT Type 2	not available (used by STH)	not available (used by STH)	not available (used by STH)
TFT Type 3	not available (used by EIO)	not available (used by EIO)	not available (used by EIO)

GPIO2 IO Control/Status
The following table shows the multiple uses of GPIO2.
Table 8-21: GPIO2 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO2	GPIO2 driven low	GPIO2 driven high	GPIO2 status returned
Sharp HR-TFT	not available (used by REV)	not available (used by REV)	not available (used by REV)
Casio TFT	not available (used by FRP)	not available (used by FRP)	not available (used by FRP)
TFT Type 2	not available (used by POL)	not available (used by POL)	not available (used by POL)
TFT Type 3	not available (used by POL)	not available (used by POL)	not available (used by POL)

bit 1
GPIO1 IO Control/Status
The following table shows the multiple uses of GPIO1.
Table 8-22: GPIO1 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO1	GPIO1 driven low	GPIO1 driven high	GPIO1 status returned
Sharp HR-TFT	not available (used by CLS)	not available (used by CLS)	not available (used by CLS)
Casio TFT	GRES forced low	GRES enabled	GRES status returned
TFT Type 2	not available (used by AP)	not available (used by AP)	not available (used by AP)
TFT Type 3	OE forced low	OE enabled	OE status returned

bit $0 \quad$ GPIO0 IO Control/Status
The following table shows the multiple uses of GPIO0.
Table 8-23: GPIO0 Usage

Pin Usage	Function		
	Output		Input
	Write 0	Write 1	Read
GPIO0	GPIO0 driven low	GPIO0 driven high	GPIO0 status returned
Sharp HR-TFT	not available (used by PS)	not available (used by PS)	not available (used by PS)
Casio TFT	not available (used by POL)	not available (used by POL)	not available (used by POL)
TFT Type 2	not available (used by VCLK)	not available (used by VCLK)	not available (used by VCLK)
TFT Type 3	not available (used by CPV)	not available (used by CPV)	not available (used by CPV)

bit $8 \quad$ GPO8 Control
bit 10
bit 9
bit 7

GPO10 Control
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO10 high and writing a 0 to this bit drives GPO10 low. A read from this bit returns the status of GPO10.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 $=0010$), writing a 1 to this bit sets PDME $=1$ and writing a 0 sets $\mathrm{PDME}=0$.

GPO9 Control
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO9 high and writing a 0 to this bit drives GPO9 low. A read from this bit returns the status of GPO9.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 $=0010$), writing a 1 to this bit sets XSTBY $=1$ and writing a 0 sets $\mathrm{XSTBY}=0$.

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO8 high and writing a 0 to this bit drives GPO8 low. A read from this bit returns the status of GPO8.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1 to this bit sets $\mathrm{XOHV}=1$ and writing a 0 sets $\mathrm{XOHV}=0$.
bit $6 \quad$ GPO6 Control
GPO7 Control
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO7 high and writing a 0 to this bit drives GPO7 low. A read from this bit returns the status of GPO7.

When the Type 3 TFT LCD interface is selected (REG[48h] bits $3: 0=0010$), writing a 1 to this bit sets XRESV $=1$ and writing a 0 sets $\mathrm{XRESV}=0$.

When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO6 high and writing a 0 to this bit drives GPO6 low. A read from this bit returns the status of GPO6.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 $=0010$), writing a 1 to this bit sets XRESH $=1$ and writing a 0 sets $\mathrm{XRESH}=0$.
bit 5
bit 4
bit 3
bit 2
bit 0

GPO5 Control
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to this bit drives GPO5 high and writing a 0 to this bit drives GPO5 low. A read from this bit returns the status of GPO5.

When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 $=0010$), writing a 1 to this bit enables PCLK2 and writing a 0 forces PCLK2 low.

PWM Clock Configuration Register

Figure 8-1: PWM Clock Block Diagram

Note

For further information on PWMCLK, see Section 7.1.4, "PWMCLK" on page 89.
bits 7-4
PWM Clock Divide Select Bits [3:0]
The value of these bits represents the power of 2 by which the selected PWM clock source is divided.

Table 8-24: PWM Clock Divide Select Options

PWM Clock Divide Select Bits [3:0]	PWM Clock Divide Amount
0h	1
1 h	2
2 h	4
3 h	8
4 h	16
5 h	32
6 h	64
7 h	128
8 h	256
9 h	512
Ah	1024
Bh	2048
Ch	4096
Dh	8192
Eh	16384
Fh	32768

Note

This divided clock is further divided by 256 before it is output at PWMOUT.
bit 3
bits 2-1
bit 0

PWM Clock Force High
When this bit $=0$, the PWMOUT pin function is controlled by the PWM Clock enable bit. When this bit $=1$, the PWMOUT pin is forced to high.

PWMCLK Source Select Bits [1:0]
These bits determine the source of PWMCLK.

Table 8-25: PWMCLK Source Selection

REG[70h] bits 2-1	PWMCLK Source
00	CLKI
01	CLKI2
10	BCLK
11	PCLK

Note

For further information on the PWMCLK source select, see Section 7.2, "Clock Selection" on page 90.

PWM Clock Enable
When this bit $=0$, PWMOUT output acts as a general purpose output pin controllable by bit 3 of REG[70h].
When this bit = 1 , the PWM Clock circuitry is enabled.

Note

The PWM Clock circuitry is disabled when Power Save Mode is enabled.

PWMOUT Duty Cycle Register														
REG[74h]	Default $=00000000 \mathrm{~h}$											Read/Write		
n/a														
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a							PWMOUT Duty Cycle bits 7-0							
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 7-0
PWMOUT Duty Cycle Bits [7:0]
This register determines the duty cycle of the PWMOUT output.

Table 8-26: PWMOUT Duty Cycle Select Options

PWMOUT Duty Cycle [7:0]	PWMOUT Duty Cycle
00 h	Always Low
01 h	High for 1 out of 256 clock periods
02 h	High for 2 out of 256 clock periods
\ldots	\ldots
FFh	High for 255 out of 256 clock periods

S1D13A05 Hardware Functional Specification	Seiko Epson Corporation	125
Rev. 7.8		

bits 31-0
Scratch Pad A Bits [31:0]
This register contains general purpose read/write bits. These bits have no effect on hardware.

Note
The contents of the Scratch Pad A register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A05 is reset, as long as the chip is not powered off.

Scratch Pad B Register															
REG[84h] Default = not applicable													Read/Write		
Scratch Pad B bits 31-24															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Scratch Pad B bits 15-0															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-0
Scratch Pad B Bits [31:0]
This register contains general purpose read/write bits. These bits have no effect on hardware.

Note
The contents of the Scratch Pad B register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A05 is reset, as long as the chip is not powered off.

bits 31-0
Scratch Pad C Bits [31:0]
This register contains general purpose read/write bits. These bits have no effect on hardware.

Note

The contents of the Scratch Pad C register defaults to an un-defined state after initial power-up. Any data written to this register remains intact when the S1D13A04 is reset, as long as the chip is not powered off.

8.3.8 Extended Panel Registers

HR-TFT CLS Width Register															
n/a															
31 30	29	28	27	26	25	24	23	22	21	20	19	18	17		16
n/a						CLS Pulse Width bits 8-0									
15 14	13	12	11	10	9	8	7	6	5	4	3	2	1		0

bits 8-0
CLS Pulse Width Bits [8:0]
This register determines the width of the CLS signal in PCLKs.

Note

This register must be programmed such that the following formula is valid.
(REG[A0h] bits 8-0) >0

bits 5-0
PS1 Rising Edge Bits [5:0]
This register determines the number of PCLKs between the CLS falling edge and the PS1 rising edge.

bits 7-0
PS2 Rising Edge Bits [7:0]
This register determines the number of PCLKs between the LP falling edge and the first PS2 rising edge.

Note

This register must be programmed such that the following formula is valid.
(REG[A8h] bits 7-0) >0

HR-TFT PS2 Toggle Width Register															
n/a															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a									PS2 Toggle Width bits 6-0						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 6-0
PS2 Toggle Width Bits [6:0]
This register determines the width of the PS2 signal before toggling (in number of PCLKs).

Note

This register must be programmed such that the following formula is valid.
$($ REG[ACh] bits 6-0) >0

bits 6-0
PS3 Signal Width Bits [6:0]
This register determines the width of the PS3 signal in PCLKs.
Note
This register must be programmed such that the following formula is valid.
$($ REG[B0h] bits 6-0) >0

bits 4-0
REV Toggle Bits [4:0]
This register determines the width in PCLKs to toggle the REV signal prior to LP rising edge.

bits 2-0
PS1/2 End Bits [2:0]
This register allows the PS signal to continue into the vertical non-display period (in lines).

Note
This register must be programmed such that the following formula is valid.
$\mathrm{VT}>(\operatorname{REG}[\mathrm{B} 8 \mathrm{~h}]$ bits 2-0$)+\mathrm{VDP}+\mathrm{VPS}+1$

Type 2 TFT Configuration Register															
REG[BCh]		Default $=00000000 \mathrm{~h}$											Read/Write		
n/a															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
$\begin{aligned} & \hline \text { POL } \\ & \text { Type } \end{aligned}$	n/a	AP Pulse Widthbits 2-0			n/a	AP Rising Positionbits 1-0		n/a			VCLK Hold bits 1-0		n/a	VCLK Setup bits 1-0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bit 15 POL Type
This bit selects how often the POL signal is toggled. The S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 2 Interface. For all other panel interfaces this bit has no effect.
When this bit $=0$, the POL signal is toggled every line.
When this bit = 1 , the POL signal is toggled every frame.
bits 13-11
AP Pulse Width Bits [2:0]
These bits specify the AP Pulse Width used for the TFT Type 2 Interface. The S1D13A05 GPIO1 pin controls the AP signal for the TFT Type 2 Interface. For all other panel interfaces it has no effect.

Table 8-27: AP Pulse Width

REG[4Ch] bits 13-11	AP Pulse Width (in PCLKs)
000	20
001	40
010	80
011	120
100	150
101	190
110	240
111	270

bits 9-8
bits 4-3

AP Rising Position Bits [1:0]
These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the rising edge of GPIO1 (AP). The parameter is selected as follows. For all other panel interfaces it has no effect.

Table 8-28: AP Rising Position

REG[4Ch] bits 9-8	AP Rising Position (in PCLKs)
00	40
01	52
10	68
11	90

VCLK Hold Bits [1:0]
These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE (STB) to the falling edge of GPIO0 (VCLK). The parameter is selected as follows. For all other panel interfaces it has no effect.

Table 8-29: VCLK Hold

REG[4Ch] bits 4-3	VCLK Hold (in PCLKs)
00	7
01	9
10	12
11	16

bits 1-0
VCLK Setup Bits [1:0]
These bits specify the TFT Type 2 AC timing parameter from the rising edge of GPIO0 (VCLK) to the rising edge of FPLINE (STB). The parameter is selected as follows. For all other panel interfaces it has no effect.

Table 8-30: VCLK Setup

REG[4Ch] bits 1-0	VCLK Setup (in PCLKs)
00	7
01	9
10	12
11	16

Casio TFT Timing Register															
EG		Default $=09180 \mathrm{E} 09 \mathrm{~h}$											Read/Write		
n/a		GPCK Rising Edge to STH Pulse bits 5-0						n/a23	GRES Falling Edge to FRP Toggle Point bits 6-0						
31	30	29	28	27	26	25	24		22	21	20	19	18	17	16
n/a		GRES Falling Edge to GPCK Rising Edge bits 4-0						n/a		GPCK Rising Edge to GRES Rising Edge bits 5-0					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 29-24 GPCK Rising Edge to STH Pulse Bits[5:0]
These bits determine the number of PCLKs from GPCK rising edge to STH pulse.
bits 22-16 GRES Falling Edge to FRP Toggle Point Bits[6:0]
These bits determine the number of PCLKs from GRES falling edge to FRP Toggle point.
bits 13-8 GRES Falling Edge to GPCK Rising Edge Bits[5:0]
These bits determine the number of PCLKs from GRES falling edge to GPCK rising edge.
bits 5-0 GPCK Rising Edge to GRES Rising Edge Bits[5:0]
These bits determine the number of PCLKs from GPCK rising edge to GRES rising edge.

Type 3 TFT Configuration Register 0 REG[D8h] Default $=00000000 \mathrm{~h}$															
														Read/Write	
POL Toggle Position bits 7-0											uls	bit			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OE Rising Edge Position bits 7-0								n/a							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-24
bits 23-16
OE Pulse Width Bits [7:0]
These bits specify the pulse width of the OE signal in 2 pixel resolution. The S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

OE Pulse Width in pixels $=($ REG[D8h $]$ bits 23-16 $) \times 2$
bits 15-8
POL Toggle Position Bits [7:0]
These bits specify the toggle position of the POL signal in 2 pixel resolution. The S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

POL Toggle Position in pixels $=($ REG[D8h $]$ bits $31-24) \times 2$

OE Rising Edge Position Bits [7:0]

These bits specify the rising edge position of the OE signal in 2 pixel resolution. The S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

OE Rising Edge Position in pixels $=(\operatorname{REG}[D 8 \mathrm{~h}]$ bits $15-8) \times 2$

REG[DCh] ${ }^{\text {default }=00000000 \mathrm{~h}}$															
														Read/Write	
XOEV End Position bits 7-0											Star	on			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CPV Pulse Width bits 6-0								VCOM Toggle Position bits 7-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 31-24 XOEV End Position Bits [7:0]
These bits specify the falling/rising edge position of the XOEV signal in 2 pixel resolution (depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05 GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

XOEV Falling Edge Position in pixels $=($ REG[DCh $]$ bits 31-24 $) \times 2$

Note

If this register is set to 0 , no pulse is generated.
bits 23-16 XOEV Start Position Bits [7:0]
These bits specify the rising/falling edge position of the XOEV signal in 2 pixel resolution (depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05 GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

XOEV Rising Edge Position in pixels $=($ REG[DCh $]$ bits 23-16 $) \times 2$

Note

If this register is set to 0 , no pulse is generated.
bits 15-8 CPV Pulse Width Bits [7:0]
These bits specify the pulse width of the CPV signal in 2 pixel resolution. The S1D13A05 GPIO0 pin controls the CPV signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

CPV Pulse Width in pixels $=($ REG[DCh $]$ bits $15-8) \times 2$
bits 7-0 VCOM Toggle Position Bits [7:0]
These bits specify the toggle position of the VCOM signal in 2 pixel resolution. The S1D13A05 GPO1 pin controls the VCOM signal used for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

VCOM Toggle Position in pixels $=($ REG $[D C h]$ bits 7-0 $) \times 2$

bit 5-4
PCLK2 Divide Rate Bits [1:0]
These bits specify the divide rate for PCLK2. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Table 8-31: PCLK2 Divide Rate

REG[C8h] bits 5-4	PCLK2 Divide Rate
00	64
01	128
10	256
11	512

bits 3-0
PCLK1 Divide Rate Bits [3:0]
These bits specify the divide rate for PCLK1. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Table 8-32: PCLK1 Divide Rate

REG[C8h] bits 3-0	PCLK1 Divide Rate
0000	2
0001	4
0010	8
0011	16
0100	32
0101	64
0110	128
0111	256
1000	512
1001	1024
1010	2048
1011	4096
1100	8192
1101	16384
1110	32768
1111	65536

Type 3 TFT Partial Mode Display Area Control Register														
n/a														
31	30	29	28	27	26	25	23	22	21	20	19	18	17	16
n/a		Partial Mode Display Refresh Cycle bits 5-0					n/a			Partial Mode Display Enable	$\begin{aligned} & \text { Partial } \\ & \text { Mode } \\ & \text { Display } \\ & \text { Type } \end{aligned}$	Area 2 Display Enable	Area 1 Display Enable	Area 0 Display Enable
15	14	13	12	11	10	9	7	6	5	4	3	2	1	0

bits 13-8
Partial Mode Display Refresh Cycle Bits [5:0]
These bits specify the refresh cycle for the Partial Mode Display. The refresh cycle can be a value from 0 to 63 . This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bit $4 \quad$ Partial Mode Display Enable
This bit enables/disables the Partial Mode Display for the TFT Type 3 and has no effect for all other panel interfaces.
When this bit = 1 , Partial Mode Display is enabled.
When this bit $=0$, Partial Mode Display is disabled.
bit 3
Partial Mode Display Type Select
This bit selects the type of partial mode display.
When this bit $=0$, the Stripe type of partial mode display is selected. If Stripe is enabled only the Y Position registers are used in calculating the partial display.
When this bit $=1$, type Block type of partial mode display is selected. If Block is enabled both the X and Y Position registers are used in calculating the partial display.
bit 2 Area 2 Display Enable
This bit enables/disables the Area 2 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces.
When this bit $=1$, Area 2 is enabled.
When this bit $=0$, Area 2 is disabled.
bit 1
Area 1 Display Enable
This bit enables/disables the Area 1 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces.
When this bit $=1$, Area 1 is enabled.
When this bit $=0$, Area 1 is disabled.
bit $0 \quad$ Area 0 Display Enable
This bit enables/disables the Area 0 for Partial Mode Display on the TFT Type 3 and has no effect for all other panel interfaces.
When this bit $=1$, Area 0 is enabled.
When this bit $=0$, Area 0 is disabled.

Type 3 TFT Partial Area 0 Positions Register															
EG			ef	= 00	000									ea	
		Partial Area 0 Y End Position bits 5-0						n/a		Partial Area $0 \times$ End Position bits 5-0					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a		Partial Area 0 Y Start Position bits 5-0						n/a		Partial Area $0 \times$ Start Position bits 5-0					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Partial Area 0 Y End Position Bits [5:0]
These bits specify the Y End Position of Partial Area 0 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bits 21-16 Partial Area 0 X End Position Bits [5:0]
These bits specify the X End Position of Partial Area 0 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bits 13-8 Partial Area 0 Y Start Position Bits [5:0]
These bits specify the Y Start Position of Partial Area 0 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bits 5-0
Partial Area 0 X Start Position Bits [5:0]
These bits specify the X Start Position of Partial Area 0 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

bits 21-16 Partial Area 1 X End Position Bits [5:0]
bits 13-8 Partial Area 1 Y Start Position Bits [5:0]
bits 29-24
bits 5-0

Partial Area 1 Y End Position Bits [5:0]
These bits specify the Y End Position of Partial Area 1 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

These bits specify the X End Position of Partial Area 1 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

These bits specify the Y Start Position of Partial Area 1 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Partial Area 1 X Start Position Bits [5:0]
These bits specify the X Start Position of Partial Area 1 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Type 3 TFT Partial Area 2 Positions Register															
EG		Default $=00000000 \mathrm{~h}$											Read/Write		
			artia	2 Y	osi	5		n/a		Partial Area 2 X End Position bits 5-0					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a		Partial Area 2 Y Start Position bits 5-0						n/a		Partial Area $2 \times$ Start Position bits 5-0					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Partial Area 2 Y End Position Bits [5:0]
These bits specify the Y End Position of Partial Area 2 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bits 21-16 Partial Area 2 X End Position Bits [5:0]
These bits specify the X End Position of Partial Area 2 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bits 13-8 Partial Area 2 Y Start Position Bits [5:0]
These bits specify the Y Start Position of Partial Area 2 in 8 line resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.
bits 5-0
Partial Area 2 X Start Position Bits [5:0]
These bits specify the X Start Position of Partial Area 2 in 8 pixel resolution. This register is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.

Type	TFT	mm	d S	Re	ter											
REG			Defa	= 0	000									ea		
									and	re bits						
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17		6
									nd	de bit						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		

bits 27-16
Command 1 Store Bits [11:0]
These bits store command 1 for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.
bits 11-0 Command 0 Store Bits [11:0]
These bits store command 0 for the TFT Type 3 Interface. This register has no effect for all other panel interfaces.

bits 9-8
Source Driver IC Number Bits [1:0]
These bits contain the number of Source Driver ICs.

Table 8-33: Number of Source Driver ICs

REG[EOh] bits 1-0	Source Driver ICs
00	1
01	2
10	3
11	4

bit 0
Command Send Request
After the CPU sets this bit, the S1D13A05 sends the command in the next non-display period and clears this bit automatically. This register has no effect for all other panel interfaces.

8.4 USB Registers (Offset $=$ 4000h $)$

The S1D13A05 USB device occupies a 48 byte local register space which can be accessed by the CPU on the local host interface.

To access the USB registers:

1. A valid USBCLK must be provided.
2. The USBClk Enable bit (REG[4000h] bit 7) must be set to 1 and the USB Setup bit (REG[4000h] bit 2) must be set to 1 . Both bits should be set together.

If any of the above conditions are not true, the USB registers must not be accessed.

USBClk Enable.
This bit allows the USBClk to be enabled/disabled allowing the S1D13A05 to save power when the USBClk is not required. The USBClk Enable bit operates independently of the Power Save Mode Enable bit (REG[14h] bit 4). For example, enabling power save mode does not disable the USB section of the S1D13A05. It must be disabled using the USBClk enable bit.

This bit should initially be set with the USB Setup bit. However, it can be disabled/reenabled individually.
When this bit $=1$, the USBClk is enabled.
When this bit $=0$, the USBClk is disabled.
Note
The USB Registers must not be accessed when this bit is 0 .

Software EOT
This bit determines the response to an IN request to Endpoint 4 when the transmit FIFO is empty. If this bit is asserted, the S1D13A05 responds to an IN request to Endpoint 4 with an ACK and a zero length packet if the FIFO is empty. If this bit is not asserted, the S1D13A05 responds to an IN request from Endpoint 4 with an NAK if the FIFO is empty, indicating that it expects to transmit more data. This bit is automatically cleared when the S1D13A05 responds to the host with a zero length packet when the FIFO is empty.

USB Enable
Any device or configuration descriptor reads from the host will be acknowledged with a NAK until this bit is set. This allows time for the local CPU to set up the interrupt polling register, maximum packet size registers, and other configuration registers (e.g. Product ID and Vendor ID) before the host reads the descriptors.

Note

As the device and configuration descriptors cannot be read by the host until the USB Enable bit is set, the device enumeration process will not complete and the device will not be recognized on the USB.
bit 4
bit 3
bit 2
Endpoint 4 Stall.
If this bit is set, host bulk reads from the transmit FIFO will result in a STALL acknowledge by the S1D13A05. No data will be returned to the USB host.

Endpoint 3 Stall.
If this bit is set, host bulk writes to the receive FIFO will result in a STALL acknowledge by the S1D13A05. Receive data will be discarded.

USB Setup
This bit is used by software to select between GPIO and USB functions for multifunction GPIO pins (GPIO[7:4]). This bit should be set at the same time as the USBClk Enable bit. When this bit = 1 , the USB function is selected.
When this bit $=0$, the GPIO function is selected.

Note

The USB Registers must not be accessed when this bit is 0 .
bit 1 Reserved.
This bit must be set to 0 .
Reserved.
This bit must be set to 0 .

$\begin{aligned} & \text { Interrupt Enable Register 0 } \\ & \text { REG[4002h] } \\ & \hline \end{aligned}$							Read/Write
n/a							
15	14	13	12	11	10	9	8
Suspend Request Interrupt Enable	$\underset{\substack{\text { Sof Interibupt }}}{\text { Ent }}$	Reserved	$\begin{gathered} \text { Endpoint 4 } \\ \text { Interrupt Enable } \end{gathered}$	$\begin{gathered} \text { Endpoint 3 } \\ \text { Interrupt Enable } \end{gathered}$	Endpoint 2 Interrupt Enable	$\begin{gathered} \text { Endpoint } 1 \\ 1 \end{gathered}$	n/a
7	6	5	4	3	2	1	0

bit 7
bit 6 SOF Interrupt Enable.
When set, this bit enables an interrupt to occur when a start-of-frame packet is received by the S1D13A05.
bit 5 Reserved.
This bit must be set to 0 .
bit $4 \quad$ Endpoint 4 Interrupt Enable.
When set, this bit enables an interrupt to occur when a USB Endpoint 4 Data Packet has been sent by the S1D13A05.
bit 3 Endpoint 3 Interrupt Enable.
When set, this bit enables an interrupt to occur when a USB Endpoint 3 Data Packet has been received by the S1D13A05.
bit 2 Endpoint 2 Interrupt Enable.
When set, this bit enables an interrupt to occur when the USB Endpoint 2 Transmit Mailbox registers have been read by the USB host.
bit 1
Endpoint 1 Interrupt Enable.
When set, this bit enables an interrupt to occur when the USB Endpoint 1 Receive Mailbox registers have been written to by the USB host.

bit 7
bit 6 SOF Interrupt Status.
This bit indicates when a start-of-frame packet has been received by the S1D13A05. Writing a 1 clears this bit.
bit 5
Reserved.
This bit must be set to 0 .
bit 4 Endpoint 4 Interrupt Status.
This bit indicates when a USB Endpoint 4 Data packet has been sent by the S1D13A05.
Writing a 1 clears this bit.
bit 3 Endpoint 3 Interrupt Status (Receive FIFO Valid).
This bit indicates when a USB Endpoint 3 Data packet has been received by the
S1D13A05. No more packets to endpoint 3 will be accepted until this bit is cleared. Writing a 1 clears this bit.
bit 2 Endpoint 2 Interrupt Status.
This bit indicates when the USB Endpoint 2 Mailbox registers have been read by the USB host. Writing a 1 clears this bit.
bit 1 Endpoint 1 Interrupt Status (Receive Mailbox Valid).
This bit indicates when the USB Endpoint 1 Mailbox registers have been written to by the USB host. Writing a 1 clears this bit.
bit $0 \quad$ Upper Interrupt Active (read only).
At least one interrupt status bit is set in register REG[4008h].

Interrupt Enable Register 1							Read/Write
REG[4006h]	Default = 00h						
15	14	13	12	11	10	9	8
n/a						Transmit FIFO Almost Empty Interrupt Enable	Receive FIFO Almost Full Interrupt Enable

[^0]| Interrupt Enable Register 1 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REG[4006h] | | | | | | | Read/Write |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

bit 1 Transmit FIFO Almost Empty Interrupt Enable.
When set, this bit enables an interrupt to be generated when the Transmit FIFO Almost
Empty status bit is set.

Note

The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO count must drop below the threshold to cause an interrupt.
bit $0 \quad$ Receive FIFO Almost Full Interrupt Enable.
When set, this bit enables an interrupt to be generated when the Receive FIFO Almost Full status bit is set.

Note

The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count must rise above the threshold to cause an interrupt.

Interrupt Status Register 1							
REG[4008h]	Default $=00 \mathrm{~h}$					Read/Write	
n/a							
15	14	13	12	11	10	9	8
						Transmit FIFO Almost Empty Status	Receive FIFO Almost Full Status
$7 \quad 1$	6	5	4	3	2	1	0

bit 1
bit 0

Transmit FIFO Almost Empty Status.
This bit is set when the number of bytes in the Transmit FIFO is equal to the Transmit FIFO Almost Empty Threshold, and another byte is sent to the USB bus from the FIFO. Writing a 1 clears this bit.

Receive FIFO Almost Full Status.
This bit is set when the number of bytes in the Receive FIFO is equal to the Receive FIFO
Almost Full Threshold, and another byte is received from the USB bus into the FIFO.
Writing a 1 clears this bit.

Endpoint 1 Index Register							
REG[4010h]	Default $=00 \mathrm{~h}$						
n/a							
15	14	13	12	11	10	9	8
n/a					Endpoint 1 Index bits 2-0 (RO)		
7	6	5	4	3	2	1	0

bits 2-0
Endpoint 1 Index Register Bits [2:0].
This register determines which Endpoint 1 Receive Mailbox is accessed when the Endpoint 1 Receive Mailbox Data register is read. This register is automatically incremented after the Endpoint 1 Receive Mailbox Data register is read. This index register wraps around to zero when it reaches the maximum count (7).

bits 7-0
Endpoint 1 Receive Mailbox Data Bits [7:0].
This register is used to read data from one of the receive mailbox registers. Data is returned from the register selected by the Endpoint 1 Index Register. The eight receive mailbox registers are written by a USB bulk transfer to endpoint 1 , and can be used to pass messages from the USB host to the local CPU. The format and content of the messages are user defined. If enabled, USB writes to this register can generate an interrupt.

Endpoint 2 Index Register Bits [2:0].
This register determines which Endpoint 2 Transmit Mailbox is accessed when the Endpoint 2 Transmit Mailbox Data register is read or written. This register is automatically incremented after the Endpoint 2 Transmit Mailbox Data port is read or written. This index register wraps around to zero when it reaches the maximum count (7).

bits 7-0
Endpoint 2 Transmit Mailbox Data Bits [7:0].
This register is used to read or write one of the transmit mailbox registers. The register being accessed is selected by the Endpoint 2 Index register. The eight Transmit Mailbox registers are written by the local CPU and are read by a USB transfer from endpoint 2. The format and content of the messages are user defined. If enabled, USB reads from this register can generate an interrupt.

Endpoint 2 In REG[401Ch]							d/
15	14	13	12	11	10	9	8
			,	bits			
7	6	5	4	3	2	1	0

bits 7-0
Interrupt Polling Interval Bits [7:0].
This register specifies the Endpoint 2 interrupt polling interval in milliseconds. It can be read by the host through the endpoint 2 descriptor.

bits7-0

Endpoint 3 Receive FIFO Data Bits [7:0].
This register is used by the local CPU to read USB receive FIFO data. The FIFO data is written by the USB host using bulk or isochronous transfers to endpoint 3 .

Endpoint 3 Receive FIFO Count Register							
REG[4022h]	Default $=00 \mathrm{~h}$						d Only
n/a							
eceive FIFO Count bits 7-0							
7	6	5	4	3	2	1	

bits 7-0
Receive FIFO Count Bits [7:0].
This register returns the number of receive FIFO entries containing valid entries. Values range from 0 (empty) to 64 (full). This register is automatically decremented after every read of the of the Receive FIFO Data Register (REG[4020h]).

bit 4 Receive FIFO Flush.
Writing to this bit causes the receive FIFO to be flushed. Reading this bit always returns a 0.
bit 3 Receive FIFO Overflow.
If set, this bit indicates that an attempt was made by the USB host to write to the receive FIFO when the receive FIFO was full. Writing a 1 clears this bit.
bit 2 Receive FIFO Underflow.
If set, this bit indicates that an attempt was made to read the receive FIFO when the receive FIFO was empty. Writing a 1 clears this bit.
bit 1 Receive FIFO Full.
If set, this bit indicates that the receive FIFO is full.
bit 0 Receive FIFO Empty.
If set, this bit indicates that the receive FIFO is empty.

bits 7-0
Endpoint 3 Max Packet Size Bits [7:0].
This register specifies the maximum packet size for endpoint 3 in units of 8 bytes (default $=64$ bytes). It can be read by the host through the endpoint 3 descriptor.

Endpoint 4 Transmit FIFO Data Register								
REG[4028h]	Default $=00 \mathrm{~h}$					Write Only		
15	14	13	12	11	10	9	8	
Transmit FIFO Data bits 7 -0								
7	6	5	4	3	2	1	0	

bits 7-0
Transmit FIFO Data Bits [7:0].
This register is used by the local CPU to write data to the transmit FIFO. The FIFO data is read by the USB host using bulk or isochronous transfers from endpoint 4.

Endpoint 4 Transmit FIFO Count Register								
REG[402Ah]	Default $=00 \mathrm{~h}$					Read Only		
n/a								
15	14	13	12	11	10	9	8	
Transmit FIFO Count bits 7-0								
7	6	5	4	3	2	1	0	

bits 7-0
Transmit FIFO Count Bits [7:0].
This register returns the number of transmit FIFO entries containing valid entries. Values range from 0 (empty) to 64 (full).

Endpoint 4 Transmit FIFO Status Register							
REG[402Ch]	Default $=01 \mathrm{~h}$					Read/Write	
n/a							
15	14	13	12	11	10	9	8
n/a		Transmit FIFO Valid	Transmit FIFO Flush	Transmit FIFO Overflow	Reserved	Transmit FIFO Full (read only)	Transmit FIFO Empty (read only)
7	6	5	4	3	2	1	0

bit 4 Transmit FIFO Flush.
bit 3 Transmit FIFO Overflow.
bit 1 Transmit FIFO Full (read only).
bit 5
bit 2
bit 0

Transmit FIFO Valid.
If set, this bit allows the data in the Transmit FIFO to be read by the next read from the
host. This bit is automatically cleared by a host read. This bit is only used if bit 0 in USB[403Ah] Index [0Ch] is set.

Writing to this bit causes the transmit FIFO to be flushed. Reading this bit always returns a 0 .

If set, this bit indicates that an attempt was made by the local CPU to write to the transmit FIFO when the transmit FIFO was full. Writing a 1 clears this bit.
bit 2 Reserved.

If set, this bit indicates that the transmit FIFO is full.
Transmit FIFO Empty (read only).
If set, this bit indicates that the transmit FIFO is empty.

bits 7-0
Endpoint 4 Max Packet Size Bits [7:0].
This register specifies the maximum packet size for endpoint 4 in units of 8 bytes (default $=64$ bytes). It can be read by the host through the endpoint 4 descriptor.

bits 7-0
Chip Revision Bits [7:0].
This register returns current silicon revision number of the USB client.

USB Status Register							
REG[4032h]	Default $=00 \mathrm{~h}$						Read/Write
n/a							
15	14	13	12	11	10	9	8
Suspend Control	USB Endpoint 4 STALL	USB Endpoint 4 NAK	USB Endpoint 4 ACK	USB Endpoint 3 STALL	USB Endpoint 3 NAK	USB Endpoint 3 ACK	Endpoint 2 Valid
7	6	5	4	3	2	1	0

bit 6 USB Endpoint 4 STALL
bit $5 \quad$ USB Endpoint 4 NAK
bit $4 \quad$ USB Endpoint 4 ACK
bit 7
bit 3
bit 2

Suspend Control
If set, this bit indicates that there is a pending suspend request. Writing a 1 clears this bit and causes the S1D13A05 USB device to enter suspended mode.

The last USB IN token could not be serviced because the endpoint was stalled (REG[4000h] bit 4 set), and was acknowledged with a STALL. Writing a 1 clears this bit.

The last USB packet transmitted (IN packet) encountered a FIFO underrun condition, and was acknowledged with a NAK. Writing a 1 clears this bit.

The last USB packet transmitted (IN packet) was successfully acknowledged with an ACK from the USB host. Writing a 1 clears this bit.

USB Endpoint 3 STALL
The last USB packet received (OUT packet) could not be accepted because the endpoint was stalled (REG[4000h] bit 3 set), and was acknowledged with a STALL. Writing a 1 clears this bit.

USB Endpoint 3 NAK
The last USB packet received (OUT packet) could not be accepted, and was acknowledged with a NAK. Writing a 1 clears this bit.
bit 1 USB Endpoint 3 ACK.
The last USB packet received (OUT packet) was successfully acknowledged with an ACK. Writing a 1 clears this bit.
bit $0 \quad$ Endpoint 2 Valid.
When this bit is set, the 8 -byte endpoint 2 mailbox registers have been written by the local CPU, but not yet read by the USB host. The local CPU should not write into these registers while this bit is set.

Frame Counter MSB Register								
15	14	13	12	11	10	9		8
n/a					Frame Counter bits 10-8			
7	6	5	4	3	2	1		0

Frame Coun							
REG[4036h]							d
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0

bits 10-0
Frame Counter Bits [10:0]
This register contains the frame counter from the most recent start-of-frame packet.

bits 7-0
Extended Register Index Bits [7:0]
This register selects which extended data register is accessed when the REG[403Ah] is read or written.

Extended Register Data							
REG[403Ah]	Default $=04 \mathrm{~h}$					Read/Write	
15	14	13	12	11	10	9	
Extended Data bits 7-0							
7	6	5	4	3	2	1	

bits 7-0
Extended Data Bits [7:0]
This port provides access to one of the extended data registers. The index of the current register is held in REG[4038h].

Registers

| Vendor ID LSB
 REG[403Ah], Index[01h] | Default = B8h | | Read/Write | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 5 | 4 | 3 | | |

bits 15-0 Vendor ID Bits [15:0]
These registers determine the Vendor ID returned in a "Get Device Descriptor" request.

bits 15-0
Product ID Bits [15:0]
These registers determine the Product ID returned in a "Get Device Descriptor" request.

bits 15-0
Release Number Bits [15:0]
These registers determine the device release number returned in a "Get Device Descriptor" request.

bits 5-0 Receive FIFO Almost Full Threshold Bits [5:0]
This register determines the threshold at which the receive FIFO almost full status bit is
set.
Note
The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count must rise above the threshold to cause an interrupt.

bits 5-0
Transmit FIFO Almost Empty Threshold Bits [5:0].
This register determines the threshold at which the transmit FIFO almost empty status bit is set.

Note

The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO count must drop below the threshold to cause an interrupt.

USB Control REG[403Ah], Index[08h]	Default $=01 \mathrm{~h}$					Read/Write
		n/a				USB String Enable
$7 \quad 6$	5	4	3	2	1	0

bit 0
USB String Enable.
When set, this bit allows the default Vendor and Product ID String Descriptors to be returned to the host. When this bit is cleared, the string index values in the Device Descriptor are set to zero.

bits 7-0 Maximum Current Bits [7:0].
The amount of current drawn by the peripheral from the USB port in increments of 2 mA .
The S1D13A05 reports this value to the host controller in the configuration descriptor.
The default and maximum value is 500 mA ($\mathrm{FAh} * 2 \mathrm{~mA}$).
In order to comply with the USB specification the following formula must apply:
REG[403Ah] index $[09 \mathrm{~h}] \leq$ FAh.

Packet Control							
EP4 Data Toggle	EP3 Data Toggle	EP2 Data Toggle	EP1 Data Toggle	Reserved	Reserved	n/a	Reserved
7	6	5	4	3	2	1	0

bit $7 \quad$ EP4 Data Toggle Bit.
Contains the value of the Data Toggle bit to be sent in response to the next IN token to endpoint 4 from the USB host.

Note
When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.
bit $6 \quad$ EP3 Data Toggle Bit.
Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 3 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.
bit 5
EP2 Data Toggle Bit.
Contains the value of the Data Toggle bit to be sent in response to the next IN token to endpoint 2 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.
bit 4
EP1 Data Toggle Bit.
Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 1 from the USB host.

Note

When a write is made to this bit, the value cannot be read back before a minimum of 12 USBCLK.
bit 3
Reserved.
This bit must be set to 0 .
bit 2 Reserved.
This bit must be set to 0 .
bit $0 \quad$ Reserved.
This bit must be set to 0 .

Reserved REG[403Ah], Index[0Bh]	Default $=00 \mathrm{~h}$					Read/Write
7	5	n/a	3	2	1	Reserved 0

bit $0 \quad$ Reserved.
This bit must be set to 0 .

bit $0 \quad$ Transmit FIFO Valid Mode.
When set, this bit causes a NAK response to a host read request from the transmit FIFO (EP4) unless the FIFO Valid bit (in register EP4STAT) is set. When this bit is cleared, any data waiting in the transmit FIFO will be sent in response to a host read request, and the FIFO Valid bit is ignored.

These bits control inputs to the USB module.
bit 2 WAKEUP
bit 6
bits 5
bits 4
bit 3
bit 1
bit 0

USCMPEN
This bit controls the USB differential input receiver.
$0=$ differential input receiver disabled
1 = differential input receiver enabled
Reserved.
This bit must be set to 0 .
Reserved.
This bit must be set to 0 .
ISO
This bits selects between isochronous and bulk transfer modes for the FIFOs (Endpoint 3 and Endpoint 4).
$0=$ Isochronous transfer mode
1 = Bulk transfer mode

This active low bit initiates a USB remote wake-up.
0 = initiate USB remote wake-up
1 = no action
Reserved.
This bit must be set to 0 .
Reserved.
This bit must be set to 0 .

$\begin{aligned} & \text { Reserved } \\ & \text { REG[4042h] } \end{aligned}$							
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0

Pin Input Status / Pin Output Data Register							
REG[4044h]	Default = depends on USB input pin state						Read/Write
15	14	13	12	11	10	9	8
						USBDETECT Input Pin Status (read only)	$\underset{\substack{\text { Pin Status }}}{\text { USBPUP Output }}$
7	6	5	4	3	2	1	0

These bits can generate interrupts.
bit 1
USBDETECT Input Pin Status
This read-only bit indicates the status of the USBDETECT input pin after a steady-state period of 0.5 seconds.

USBPUP Output Pin Status
This bit controls the state of the USBPUP output pin.
This bit must be set to 1 to enable the USB interface and USB registers. See the S1D13A05 Programming Notes and Examples, document number X40-A-G-003-xx for further information on this bit.

Interrupt Control Enable Register 0 REG[4046h] Default $=$ 00h							
15	14	13	12	11			
Read/Write							
n/a	USB Host Connected 7	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved
6	5	4	3	2	10	0	

These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear Register 0 .
$0=$ corresponding interrupt bit disabled (masked).
$1=$ corresponding interrupt bit enabled.

Interrupt Control Enable Register 1							
n/a							Read/Write
15	14	13	12	11	10	9	8
n/a	USB Host Disconnect	Reserved	Device Configured	Reserved	Reserved	Reserved	INT
7	6	5		3	2	1	0

These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear Register 1.
$0=$ corresponding interrupt bit disabled (masked).
$1=$ corresponding interrupt bit enabled.

Interrupt Control Status/Clear Register 0							
n/a							
15	14	13	12	11	10	9	8
n/a	USB Host Connected	Reserved	Reserved	Reserved	Reserved	usbreset	Reserved
7	6	5	4	3	2	1	0

On reads, these bits represent the interrupt status for interrupts caused by low-to-high transitions on the corresponding signals.
$0($ read $)=$ no low-to-high event detected on the corresponding signal.
$1(\mathrm{read})=$ low-to-high event detected on the corresponding signal.
On writes, these bits clear the corresponding interrupt status bit.
0 (write) $=$ corresponding interrupt status bit unchanged.
1 (write) $=$ corresponding interrupt status bit cleared to zero.

These bits must always be cleared via a write to this register before first use. This will ensure that any changes on input pins during system initialization do not generate erroneous interrupts. The interrupt bits are used as follows.
bit 6
bit 5
bit 4
bit 3
bit 2
Must be set to 0 .
bit 1
USBRESET
Indicates the USB device is reset using the RESET\# pin or using the USB port reset.
bit $0 \quad$ Reserved.
Must be set to 0 .

| Interrupt Control Status/Clear Register 1
 REG[404Ch] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Default = 00h |

On reads, these bits represent the interrupt status for interrupts caused by high-to-low transitions on the corresponding signals.
$0(\mathrm{read})=$ no high-to-low event detected on the corresponding signal.
$1($ read $)=$ high-to-low event detected on the corresponding signal.
On writes, these bits clear the corresponding interrupt status bit.
0 (write) = corresponding interrupt status bit unchanged.
1 (write) = corresponding interrupt status bit cleared to zero.
These bits must always be cleared via a write to this register before first use. This will ensure that any changes on input pins during system initialization do not generate erroneous interrupts. The interrupt bits are used as follows.
bit 6 USB Host Disconnected
Indicates the USB device is disconnected from a USB host.
bit 5 Reserved.
Must be set to 0 .
bit 4
Device Configured.
Indicates the USB device has been configured by the USB host.
bit 3 Reserved.
Must be set to 0 .

bit 2	Reserved.
	Must be set to 0.

bit 1 Reserved.
Must be set to 0 .
bit $0 \quad$ INT
Indicates an interrupt request originating from within the USB registers (REG[4000h] to REG[403Ah]).

Interrupt Control Masked Status Register 0							
n/a							
15	14	13	12	11	10	9	8
n/a	USB Host	Reserved	Reserved	Reserved	Reserved	USBRESET	Reserved
7	6	5	4	3	2	1	0

These read-only bits represent the logical AND of the corresponding Interrupt Control Status/Clear Register 0 (REG[404Ah])and the Interrupt Control Enable Register 0 (REG[4046h]).

These read-only bits represent the logical AND of the corresponding Interrupt Control Status/Clear Register 1 (REG[404Ch]) and the Interrupt Control Enable Register 1 (REG[4048h]).

bits 7-0
USB Software Reset Bits [7:0] (Write Only)
When the specific code of 10100100 b is written to these bits the USB module of the
S1D13A05 is reset. Use of the above code avoids the possibility of accidently resetting the USB.

USB Wait State Register										
REG[4054h]	Default $=00 \mathrm{~h}$					Read/Write				
n/a										
15				14	13	12	11	10	USB Wait State bits 1-0	
n/a										
7	6	5	4	3	2	1	0			

bits 1-0
USB Wait State Bits [1:0]
This register controls the number of wait states the S1D13A05 uses for its internal USB support. For all bus interfaces supported by the S1D13A05 these bits must be set to 01 .

8.5 2D Acceleration (BitBLT) Registers (Offset $=8000 \mathrm{~h}$)

These registers control the S1D13A05 2D Acceleration engine. For detailed BitBLT programming instructions, see the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx.

bit 18
bit 17
bit 16
bit 0

BitBLT Color Format Select
This bit selects the color format that the 2D operation is applied to.
When this bit $=0,8 \mathrm{bpp}$ (256 color) format is selected.
When this bit $=1,16 \mathrm{bpp}$ (64 K color) format is selected.
BitBLT Destination Linear Select
When this bit $=1$, the Destination BitBLT is stored as a contiguous linear block of memory.
When this bit $=0$, the Destination BitBLT is stored as a rectangular region of memory.
The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset from the start of one line to the next line.
BitBLT Source Linear Select
When this bit $=1$, the Source BitBLT is stored as a contiguous linear block of memory.
When this bit $=0$, the Source BitBLT is stored as a rectangular region of memory.
The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset from the start of one line to the next line.

BitBLT Enable
This bit is write only.
Setting this bit to 1 begins the 2D BitBLT operation. This bit must not be set to 0 while a BitBLT operation is in progress.

Note
To determine the status of a BitBLT operation use the BitBLT Busy Status bit (REG[8004h] bit 0).

bits 28-24
bits 20-16
bit 6

Number of Used FIFO Entries Bits [4:0]
These bits indicate the minimum number of FIFO entries currently in use (there may be more values in internal pipeline stages).

Number of Free FIFO Entries Bits [4:0]
These bits indicate the number of empty FIFO entries available. If these bits return a 0 , the FIFO is full.

BitBLT FIFO Not-Empty Status
This is a read-only status bit.
When this bit $=0$, the BitBLT FIFO is empty.
When this bit $=1$, the BitBLT FiFO has at least one data.
To reduce system memory read latency, software can monitor this bit prior to a BitBLT read burst operation.
The following table shows the number of words available in BitBLT FIFO under different status conditions.

Table 8-34: BitBLT FIFO Words Available

BitBLT FIFO Full Status (REG[8004h] Bit 4)	BitBLT FIFO Half Full Status REG[8004h] Bit 5)	BitBLT FIFO Not Empty Status (REG[8004h] Bit 6)	Number of Words available in BitBLT FIFO
0	0	0	0
0	0	1	1 to 6
0	1	1	7 to 14
1	1	1	15 to 16

bit $5 \quad$ BitBLT FIFO Half Full Status
This is a read-only status bit.
When this bit $=1$, the BitBLT FIFO is half full or greater than half full.
When this bit $=0$, the BitBLT FIFO is less than half full.
bit 4 BitBLT FIFO Full Status
This is a read-only status bit.
When this bit $=1$, the BitBLT FIFO is full.
When this bit $=0$, the BitBLT FIFO is not full.

BitBLT Busy Status
This bit is a read-only status bit.
When this bit $=1$, the BitBLT operation is in progress.
When this bit $=0$, the BitBLT operation is complete.

Note

During a BitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO full. If the FIFO becomes full, the BitBLT operation stops temporarily as data is read out of the FIFO. The BitBLT will restart only when less than 14 values remain in the FIFO.

bits 19-16
BitBLT Raster Operation Code/Color Expansion Bits [3:0]
ROP Code for Write BitBLT and Move BitBLT. Bits 2-0 also specify the start bit position for Color Expansion.

Table 8-35 : BitBLT ROP Code/Color Expansion Function Selection

BitBLT ROP Code Bits [3:0]	Boolean Function for Write BitBLT and Move BitBLT	Boolean Function for Pattern Fill	Start Bit Position for Color Expansion
0000	0 (Blackness)	0 (Blackness)	bit 0
0001	$\sim S . \sim D$ or $\sim(S+D)$	\sim P . \sim D or $\sim(P+D)$	bit 1
0010	$\sim S . D$	\sim P. D	bit 2
0011	\sim S	$\sim P$	bit 3
0100	S . ~D	P. ~D	bit 4
0101	\sim D	\sim D	bit 5
0110	$S^{\wedge} \mathrm{D}$	$\mathrm{P}^{\wedge} \mathrm{D}$	bit 6
0111	$\sim S+\sim D$ or $\sim(S . D)$	$\sim P+\sim D$ or $\sim(P . D)$	bit 7
1000	S. D	P. D	bit 0
1001	$\sim\left(S^{\wedge} \mathrm{D}\right)$	$\sim\left(P^{\wedge} \mathrm{D}\right)$	bit 1
1010	D	D	bit 2
1011	$\sim S+D$	$\sim P+D$	bit 3
1100	S	P	bit 4
1101	$S+\sim D$	$P+\sim D$	bit 5
1110	S + D	P + D	bit 6
1111	1 (Whiteness)	1 (Whiteness)	bit 7

Note

$\mathrm{S}=$ Source, $\mathrm{D}=$ Destination, $\mathrm{P}=$ Pattern.
$\sim=$ NOT,.$=$ Logical AND, $+=$ Logical OR,$\wedge=$ Logical XOR
bits 3-0 BitBLT Operation Bits [3:0]
Specifies the 2D Operation to be carried out based on the following table.
Table 8-36: BitBLT Operation Selection

BitBLT Operation Bits [3:0]	BitBLT Operation
0000	Write BitBLT with ROP.
0001	Read BitBLT.
0010	Move BitBLT in positive direction with ROP.
0011	Move BitBLT in negative direction with ROP.
0100	Transparent Write BitBLT.
0101	Transparent Move BitBLT in positive direction.
0110	Pattern Fill with ROP.
0111	Pattern Fill with transparency.
1000	Color Expansion.
1001	Color Expansion with transparency.
1010	Move BitBLT with Color Expansion.
1011	Move BitBLT with Color Expansion and transparency.
1100	Solid Fill.
Other combinations	Reserved

S1D13A05 Hardware Functional Specification Rev. 7.8	Seiko Epson Corporation	161

bits 20-0 BitBLT Source Start Address Bits [20:0]
A 21-bit register that specifies the source start address for the BitBLT operation.
If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16 -bit word and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start Address is defined by the following equation.

Value programmed to the Source Start Address Register $=$
Pattern Base Address + Pattern Line Offset + Pixel Offset.

The following table shows how Source Start Address Register is defined for 8 and 16 bpp color depths.

Table 8-37: BitBLT Source Start Address Selection

Color Format	Pattern Base Address[20:0]	Pattern Line Offset[2:0]	Pixel Offset[3:0]
8 bpp	BitBLT Source Start Address[20:6]	BitBLT Source Start Address[5:3]	BitBLT Source Start Address[2:0]
16 bpp	BitBLT Source Start Address[20:7]	BitBLT Source Start Address[6:4]	BitBLT Source Start Address[3:0]

Note

For further information on the BitBLT Source Start Address register, see the S1D13A05
Programming Notes and Examples, document number X40A-G-003-xx.

bits 20-0
BitBLT Destination Start Address Bits [20:0]
A 21-bit register that specifies the destination start address for the BitBLT operation.

BitB REG	4h]		ef	$\begin{gathered} \text { set } \\ =00 \end{gathered}$										ad	
n/a															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
n/a					BitBLT Memory Address Offset bits 10-0										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

bits 10-0 BitBLT Memory Address Offset Bits [10:0]
These bits are the display's 11 -bit address offset from the starting word of line n to the starting word of line $n+1$. They are used only for address calculation when the BitBLT is configured as a rectangular region of memory. They are not used for the displays.

bits 9-0
BitBLT Width Bits [9:0]
A 10-bit register that specifies the BitBLT width in pixels -1 .
BitBLT width in pixels $=(\operatorname{REG}[8018 \mathrm{~h}]$ bits 9-0 $)+1$

bits 9-0
BitBLT Height Bits [9:0]
A 10-bit register that specifies the BitBLT height in lines - 1 .
BitBLT height in lines $=(\operatorname{REG}[801 \mathrm{Ch}]$ bits $9-0)+1$

bits 15-0
BitBLT Background Color Bits [15:0]
This register specifies the BitBLT background color for Color Expansion or key color for
Transparent BitBLT. For 16 bpp color depths (REG[8000h] bit $18=1$), bits 15-0 are used.
For 8 bpp color depths (REG[8000h] bit $18=0$), bits 7-0 are used.

[^1]
8.6 2D Accelerator (BitBLT) Data Register Descriptions

The 2D Accelerator (BitBLT) data registers decode $\mathrm{AB} 15-\mathrm{AB} 0$ and require $\mathrm{AB} 16=1$. The BitBLT data registers are 32-bit wide. Byte access to the BitBLT data registers is not allowed.

bits 15-0
BitBLT Data Bits [15:0]
This register specifies the BitBLT data. This register is loosely decoded from 10000h to 1FFFEh.

9 2D Accelerator (BitBLT) Engine

9.1 Overview

The S1D13A05 is designed with a built-in 2D BitBLT engine which increases the performance of Bit Block Transfers (BitBLT). It supports 8 and 16 bit-per-pixel color depths.

The BitBLT engine supports rectangular and linear addressing modes for source and destination in a positive direction for all BitBLT operations except the move BitBLT which also supports in a negative direction.

The BitBLT operations support byte alignment of all types. The BitBLT engine has a dedicated BitBLT IO access space. This allows the BitBLT engine to support simultaneous BitBLT and host side operations.

9.2 BitBLT Operations

The S1D13A05 2D BitBLT engine supports the following BitBLTs. For detailed information on using the individual BitBLT operations, refer to the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx.

- Write BitBLT.
- Move BitBLT.
- Solid Fill BitBLT.
- Pattern Fill BitBLT.
- Transparent Write BitBLT.
- Transparent Move BitBLT.
- Read BitBLT.
- Color Expansion BitBLT.
- Move BitBLT with Color Expansion.

Note

For details on the BitBLT registers, see Section 8.5, "2D Acceleration (BitBLT) Registers (Offset $=8000 \mathrm{~h})$ " on page 158 .

10 Frame Rate Calculation

The following formula is used to calculate the display frame rate.

$$
\text { FrameRate }=\frac{\mathrm{f}_{\text {PCLK }}}{(\mathrm{HT}) \times(\mathrm{VT})}
$$

Where:

$$
\begin{aligned}
\mathrm{f}_{\text {PCLK }} & =\text { PClk frequency }(\mathrm{Hz}) \\
& \\
\mathrm{HT} & =\text { Horizontal Total } \\
& =((\operatorname{REG}[20 \mathrm{~h}] \text { bits } 6-0)+1) \times 8 \text { Pixels } \\
\mathrm{VT} & =\text { Vertical Total } \\
& =((\operatorname{REG}[30 \mathrm{~h}] \text { bits } 9-0)+1) \text { Lines }
\end{aligned}
$$

11 Display Data Formats

The following diagrams show the display mode data formats for a little-endian system.

Figure 11-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization

Note

1. The Host-to-Display mapping shown here is for a little endian system.
2. For 16 bpp format, $\mathrm{R}_{\mathrm{n}}, \mathrm{G}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ represent the red, green, and blue color components.

12 Look-Up Table Architecture

The following figures are intended to show the display data output path only.

Note

When Video Data Invert is enabled the video data is inverted after the Look-Up Table.

12.1 Monochrome Modes

The green Look-Up Table (LUT) is used for all monochrome modes.

1 Bit-per-pixel Monochrome Mode

Figure 12-1: 1 Bit-per-pixel Monochrome Mode Data Output Path
2 Bit-per-pixel Monochrome Mode

Figure 12-2: 2 Bit-per-pixel Monochrome Mode Data Output Path

Look-Up Table Architecture

4 Bit-per-pixel Monochrome Mode

Figure 12-3: 4 Bit-per-pixel Monochrome Mode Data Output Path

8 Bit-per-pixel Monochrome Mode

Figure 12-4: 8 Bit-per-pixel Monochrome Mode Data Output Path

16 Bit-Per-Pixel Monochrome Mode

The LUT is bypassed and the green data is directly mapped for this color depth- "Display Data Formats" on page 168..

12.2 Color Modes

1 Bit-Per-Pixel Color

Figure 12-5: 1 Bit-Per-Pixel Color Mode Data Output Path

Look-Up Table Architecture

2 Bit-Per-Pixel Color

Figure 12-6: 2 Bit-Per-Pixel Color Mode Data Output Path

4 Bit-Per-Pixel Color

Figure 12-7: 4 Bit-Per-Pixel Color Mode Data Output Path

Look-Up Table Architecture

8 Bit-per-pixel Color Mode

Figure 12-8: 8 Bit-per-pixel Color Mode Data Output Path

16 Bit-Per-Pixel Color Mode

The LUT is bypassed and the color data is directly mapped for this color depth- "Display Data Formats" on page 168.

13 SwivelView ${ }^{\text {TM }}$

13.1 Concept

Most computer displays are refreshed in landscape orientation - from left to right and top to bottom. Computer images are stored in the same manner. SwivelView ${ }^{\text {TM }}$ is designed to rotate the displayed image on an LCD by $90^{\circ}, 180^{\circ}$, or 270° in a counter-clockwise direction. The rotation is done in hardware and is transparent to the user for all display buffer reads and writes. By processing the rotation in hardware, SwivelView ${ }^{\text {TM }}$ offers a performance advantage over software rotation of the displayed image.

The image is not actually rotated in the display buffer since there is no address translation during CPU read/write. The image is rotated during display refresh.

13.290° SwivelView ${ }^{\text {TM }}$

90° SwivelView ${ }^{\text {TM }}$ requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK ≥ 1.25 PCLK.

The following figure shows how the programmer sees a 320×480 portrait image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A-B-C-D. The display is refreshed by the S1D13A05 in the following sense: B-D-A-C.

Figure 13-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView.

13.2.1 Register Programming

Enable 90° SwivelView ${ }^{\text {TM }}$ Mode

Set SwivelView ${ }^{\text {TM }}$ Mode Select bits (REG[10h] bits 17:16) to 01.

Display Start Address

The display refresh circuitry starts at pixel "B", therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel " B ". To calculate the value of the address of pixel "B" use the following formula (assumes 8 bpp color depth).

$$
\begin{aligned}
\text { REG[40h] bits 16:0 } & =((\text { image address }+(\text { panel height } x \text { bpp } \div 8)) \div 4)-1 \\
& =((0+(320 \text { pixels x } 8 \mathrm{bpp} \div 8)) \div 4)-1 \\
& =79(4 \mathrm{Fh})
\end{aligned}
$$

Line Address Offset

The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula.

$$
\begin{aligned}
\text { REG }[44 \mathrm{~h}] \text { bits } 9: 0 & =\text { display width in pixels } \div(32 \div \mathrm{bpp}) \\
& =320 \text { pixels } \div 32 \div 8 \mathrm{bpp} \\
& =80(50 \mathrm{~h})
\end{aligned}
$$

13.3180° SwivelView $^{\text {TM }}$

The following figure shows how the programmer sees a 480×320 landscape image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$. The display is refreshed by the S1D13A05 in the following sense: D-C-B-A.

Figure 13-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView.

13.3.1 Register Programming

Enable $\mathbf{1 8 0}^{\circ}$ SwivelView $^{\text {TM }}$ Mode

Set SwivelView ${ }^{\text {TM }}$ Mode Select bits (REG[10h] bits 17:16) to 10.

Display Start Address

The display refresh circuitry starts at pixel "D", therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel "D". To calculate the value of the address of pixel "D" use the following formula (assumes 8 bpp color depth).

REG[40h] bits 16:0

$$
\begin{aligned}
& =((\text { image address }+(\text { offset } x(\text { panel height }-1)+\text { panel width }) \times \text { bpp } \div 8) \div 4)-1 \\
& =((0+(480 \text { pixels x } 319 \text { pixels }+480 \text { pixels }) \times 8 \text { bpp } \div 8) \div 4)-1 \\
& =38399(95 \mathrm{FFh})
\end{aligned}
$$

Line Address Offset

The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula.
$\operatorname{REG}[44 \mathrm{~h}]$ bits $9: 0 \quad=$ display width in pixels $\div(32 \div \mathrm{bpp})$

$$
=480 \text { pixels } \div 32 \div 8 \mathrm{bpp}
$$

$$
=120(78 \mathrm{~h})
$$

13.4270° SwivelView $^{\text {TM }}$

270° SwivelView ${ }^{\text {TM }}$ requires the Memory Clock (MCLK) to be at least 1.25 times the frequency of the Pixel Clock (PCLK), i.e. MCLK ≥ 1.25 PCLK.

The following figure shows how the programmer sees a 320×480 portrait image and how the image is being displayed. The application image is written to the S1D13A05 in the following sense: A-B-C-D. The display is refreshed by the S1D13A05 in the following sense: C-A-D-B.

Figure 13-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView.

13.4.1 Register Programming

Enable 270 ${ }^{\circ}$ SwivelView ${ }^{\text {TM }}$ Mode

Set SwivelView ${ }^{\text {TM }}$ Mode Select bits (REG[10h] bits 17:16) to 11 .

Display Start Address

The display refresh circuitry starts at pixel "C", therefore the Main Window Display Start Address register (REG[40h]) must be programmed with the address of pixel "C". To calculate the value of the address of pixel "C" use the following formula (assumes 8 bpp color depth).

$$
\begin{aligned}
\text { REG }[40 \mathrm{~h}] \text { bits } 16: 0 & =(\text { image address }+((\text { panel width }-1) \times \text { offset } \times \mathrm{bpp} \div 8) \div 4) \\
& =(0+((480 \text { pixels }-1) \times 320 \text { pixels } \times 8 \mathrm{bpp} \div 8) \div 4) \\
& =38320(95 \mathrm{~B} 0 \mathrm{~h})
\end{aligned}
$$

Line Address Offset

The Main Window Line Address Offset register (REG[44h]) is based on the display width and programmed using the following formula.
$\operatorname{REG}[44 \mathrm{~h}]$ bits 9:0 = display width in pixels $\div(32 \div \mathrm{bpp})$
$=320$ pixels $\div 32 \div 8 \mathrm{bpp}$
$=80(50 \mathrm{~h})$

14 Picture-in-Picture Plus (PIP^{+})

14.1 Concept

Picture-in-Picture Plus (PIP^{+}) enables a secondary window (or PIP^{+}window) within the main display window. The PIP^{+}window may be positioned anywhere within the virtual display and is controlled through the PIP^{+}Window control registers (REG[50h] through REG[5Ch]). The PIP ${ }^{+}$window retains the same color depth and SwivelView orientation as the main window.

The following diagram shows an example of a PIP $^{+}$window within a main window and the registers used to position it.

Figure 14-1: Picture-in-Picture Plus with SwivelView disabled

14.2 With SwiveIView Enabled

14.2.1 SwiveIView 90°

Figure 14-2: Picture-in-Picture Plus with SwivelView 90° enabled

14.2.2 SwiveIView 180°

Figure 14-3: Picture-in-Picture Plus with SwivelView 180° enabled

Picture-in-Picture Plus (PIP+)

14.2.3 SwiveIView 270°

Figure 14-4: Picture-in-Picture Plus with SwivelView 270° enabled

15 Power Save Mode

A software initiated Power Save Mode is incorporated into the S1D13A05 to accommodate the need for power reduction in the hand-held devices market. This mode is enable via the Power Save Mode Enable bit (REG[14h] bit 4).

Software Power Save Mode saves power by powering down the control signals and stopping display refresh accesses to the display buffer. For programming information on disabling the clocks, see the S1D13A05 Programming Notes and Examples, document number X40A-G-003-xx.

Table 15-1: Power Save Mode Function Summary

	Software Power Save	Normal
IO Access Possible?	Yes	Yes
Memory Access Possible?	Yes 1	Yes
Look-Up Table Registers Access Possible?	Yes	Yes
Display Active?	No	Yes
LCD I/F Outputs	Forced Low	Active
PWMCLK	Stopped	Active
GPIO Pins configured as GPIOs; Access Possible?	Yes 2	Yes
USB Running?	Yes 3	Yes

Note

${ }^{1}$ When power save mode is enabled, the memory controller is powered down and the status of the memory controller is indicated by the Memory Controller Power Save Status bit (REG[14h] bit 6). However, memory reads/writes are possible during power save mode because the S1D13A05 dynamically enables the memory controller for display buffer accesses.
${ }^{2}$ GPIOs can be accessed and if configured as outputs can be changed.
${ }^{3}$ The power-down state of the USB section is controlled by the USBClk Enable bit (REG[4000h] bit 7).

After reset, the S1D13A05 is always in Power Save Mode. Software must initialize the chip (i.e. programs all registers) and then clear the Power Save Mode Enable bit.

16 USB Considerations

16.1 USB Oscillator Circuit

The following circuit provides an example implementation for using an external oscillator to drive USBCLK.

Figure 16-1: USB Oscillator Example Circuit
The following values are recommended for a 48 MHz fundamental mode oscillator. If an oscillator of a different value is used, the capacitive and resistive values must be adjusted accordingly.

Table 16-1: Resistance and Capacitance Values for Example Circuit

Symbol	Value
R_{f}	$1 \mathrm{M} \Omega$
R_{d}	470Ω
C_{g}	12 pF
C_{d}	12 pF

17 Mechanical Data

Figure 17-1: Mechanical Data PFBGA 121-pin Package

18 Change Record

X40A-A-001-07	Revision 7.8- Issued: March 14, 2018
	• updated Sales and Technical Support Section
	• updated some formatting
X40A-A-001-07	Revision 7.7- Issued: February 27, 2012
	• globally remove QFP5-128 package
	- section 2.9, remove QFP package to features
	- section 4.1.2, remove QFP package pin diagram
	- section 4.2, remove QFP package pin descriptions
	- section 18, remove QFP package mechanical drawing
	Revision 7.6 - Issued: December 18, 2008

- REG[04h] bit 0 - remove reference to CNF7
- section 19 Sales and Technical Support - update the addresses for North America and Singapore

X40A-A-001-07	Revision 7, Released: July 7, 2006
	- all changes from the previous revision are in Red
	- add section 6.2 RESET\# Timing
X40A-A-001-06	Revision 6.01
	- section 3.1, figure 3-1, changed System Diagram for Generic \#1 so that BS\# pin is connected to IOVDD instead of VSS (GND)
	- section 4.2.1, table 4-2, changed BS\# pin description for Generic \#1 so that BS\# pin is connected to IOVDD instead of VSS (GND)
	- REG[10h] bits 4-0, updated the Bits-Per-Pixel bit description and clarified the color depth table
X40A-A-001-06	Revision 6.0
	- released as revision 6.0
X40A-A-001-05	Revision 5.01
	- section 2.9, added QFP package to features
	- section 4.1.2, added QFP package pin diagram
	- section 4.2, added QFP package pin descriptions
	- section 18, added QFP package mechanical drawing
X40A-A-001-05	Revision 5.0
	- released as revision 5.0
X40A-A-001-04	Revision 4.01
	- section 4.2.2, for DRDY pin description, removed description for HR-TFT (not used)

19 Sales and Technical Support

For more information on Epson Display Controllers, visit the Epson Global website.
https://global.epson.com/products_and_drivers/semicon/products/display_controllers/

For Sales and Technical Support, contact the Epson representative for your region.
https://global.epson.com/products_and_drivers/semicon/information/support.html

[^0]: S1D13A05 Hardware Functional Specification

[^1]: bits 15-0
 BitBLT Foreground Color Bits [15:0]
 This register specifies the BitBLT foreground color for Color Expansion or Solid Fill. For 16 bpp color depths (REG[8000h] bit $18=1$), bits $15-0$ are used. For 8 bpp color depths (REG[8000h] bit $18=0$), bits 7-0 are used.

