

January 25, 2012

QPL4C381 16-bit Cascadable Arithmetic/Logic Unit

General Description

The QPL4C381 is designed as a pin for pin replacement for the Logic Devices L4C381 device. The QPL4C381 is a high speed 16-bit ALU (Arithmetic/Logic Unit). It combines four (4) 381 4-bit ALUs, a lookahead carry generator and miscellaneous interface logic into a single 68 pin device. It supports high speed pipelined architectures and single 16-bit bus architectures. It retains full functional and performance compatibility with the Logic Devices L4C381 and even older 381 bipolar devices.

- Replacement for the Logic Devices L4C381.
- High-speed, 16-bit ALU
- Input and Output registers can be made transparent
- Cascadeable with or without carry lookahead
- Extension to the 54S381 instruction set
- Force A or B \rightarrow 0 allows two's complement, PASSA, PASSB instructions
- Internal feedback path for accumulation
- Low-power, high speed CMOS Technology
- All status and carry outputs available.

Architecture

The QPL4C381 operates on the 16-bit operands "A" and "B", and produces a single 16-bit result "F". Three select lines control the ALU and provide 3 arithmetic, 3 logical and 2 initialization functions. Full ALU status is provided, allowing the device to be cascaded to form longer word lengths. Registers are provided on both the ALU inputs and the output, and may be bypassed. An internal feedback path allows the registered ALU output to be routed to one of the ALU inputs for use in chain operations and accumulation. The A or B input to the ALU can be forced to zero allowing unary functions to be performed on either operand.

ALU Operation

Select lines S₀-S₂ determine the operation to be performed. The ALU functions and their select codes are:

S ₂	S ₁	So	Function
0	0	0	CLEAR (F = 0000 0000 0000 0000)
0	0	1	NOT (A) + B
0	1	0	A + NOT (B)
0	1	1	A + B
1	0	0	A XOR B
1	0	1	A OR B
1	1	0	A AND B
1	1	1	PRESET (F = 1111 1111 1111 1111)
			The functions B minus A, and A minus B can be achieved by setting the carry input (C_0) of the least significant slice and selecting codes 001 and 010 respectively.

ALU Status

The ALU provides Overflow and Zero status bits. Carry, Propagate and Generate outputs are provided for cascading. These outputs are defined for the three arithmetic functions only. The ALU sets the Zero output when all sixteen outputs bits are zero. The Generate, Propagate, C16 and Overflow Flags for the A + B operation are defined:

Bit Carry Generate = g _i = A _i B _i	for i = 0, 1, … , 15
Bit Carry Propagate = p _i = A _i + B _i	for i = 0, 1, … , 15
$P_0 = p_0$	for i = 1, 2, … , 15
$P_i = p_i(P_{i-1})$	
r v j	
and	
G0 = g0	
$G_i = g_i +_{pi} (G_{i-1})$	for i = 1,2,,15
$C_i = G_{i-1} + P_{i-1}(C_{i-1})$	for i = 1,2,,15
then	
$\overline{G} = NOT(G_{15})$	
$\overline{P} = NOT(P_{15})$	
$C_{16} = G_{15} + P_{15}C_{15}$	
$OVF = C_{15} XOR C_{16}$	
10 10	

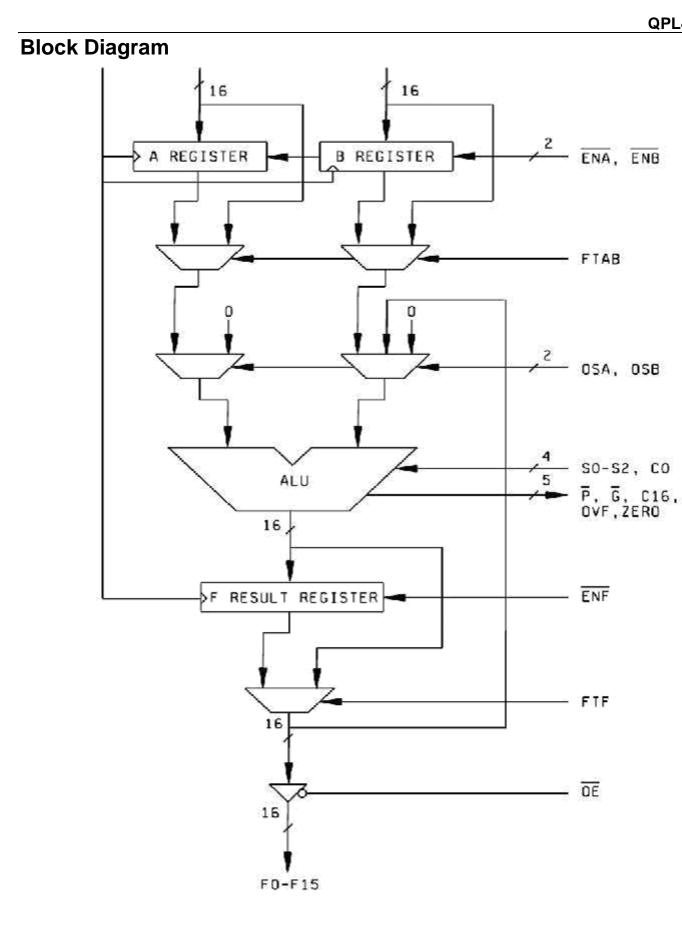
Operand Registers

The QPL4C381 has two 16-bit wide input registers for operands A and B. These are triggered by a rising edge on the common clock pin. Each register is independently enabled by control signals \overline{EN}_A and \overline{EN}_B .

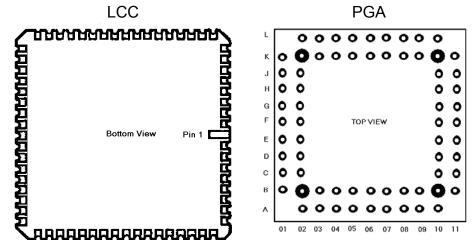
This allows the QPL4C381 to accept arguments from a single 16-bit data bus. For those applications that do not require registered inputs, both the A and B operand registers can be made transparent with the FT_{AB} control line. When FT_{AB} control is asserted, the A and B input registers are bypassed. However, they continue to function normally via the \overline{EN}_A and \overline{EN}_B controls. The contents of the input registers will be available to the ALU if the FT_{AB} control is released.

Output Register

The output of the ALU drives the input of a 16-bit register. This rising-edge triggered register is clocked by the same clock as the input registers. The output register is enabled by the \overline{EN}_{F} control signal. By disabling the output register,


intermediate results can be held while loading new input operands. Tri-state drivers controlled by the \overline{OE} input allow the QPL4C381 to be used in a single bidirectional bus system. The output register can be made transparent by asserting the FT_F control signal. When FT_F is asserted, the output register is bypassed, however, it continues to function normally via the \overline{EN}_F control signal. The contents of the output register will be available on the output pins if FT_F is released. With both FTAB and FTF true (high) the QPL4C381 is functionally identical to four cascaded 54S381 devices.

Operand Selection


The two operand selection lines OS_A/OS_B control multiplexers immediately preceding the ALU inputs. The multiplexers provide an operand force to zero function as well as provide a result feedback to the B input. Either A or B operands can be forced to zero.

OS _A	OS _B	Operand B	Operand A
0	0	F	А
0	1	0	А
1	0	В	0
1	1	В	А

When both operand select lines are zero/low, the QPL4C381 is configured as a chain calculation ALU. The registered ALU output is passed back to the B input of the ALU. This allows accumulation operations to be performed by providing new operands via the A inputs. The accumulator can be preloaded from the A input by setting OS_A as a one/high. By forcing the function select lines to the CLEAR state (000), the accumulator may be cleared. This feedback operation is not effected by the state of the FT_F control. The F outputs may be driven directly by the ALU (FT_F = one/high). The output register continues to function and provides the ALU B operand source.

FUNCTION	DIP/ LCC	PGA	FUNCTION	DIP/ LCC	PGA	FUNCTION	DIP/ LCC	PGA	FUNCTION	DIP/ LCC	PGA
Ao	1	F02	V _{CC}	18	B06	F ₈	35	F10	ĒN _A	52	K06
A ₁	2	F01	GND	19	A06	F ₇	36	F11	B ₀	53	L06
A ₂	3	E02	C ₁₆	20	B07	F ₆	37	G10	B ₁	54	K05
A ₃	4	E01	P	21	A07	F ₅	38	G11	B ₂	55	L05
A ₄	5	D02	G	22	B08	F ₄	39	H10	B ₃	56	K04
A ₅	6	D01	ZERO	23	A08	F ₃	40	H11	B ₄	57	L04
A ₆	7	C02	OVF	24	B09	F ₂	41	J10	B ₅	58	K03
A ₇	8	C01	ENF	27	A09	F ₁	42	J11	B ₆	59	L03
A ₈	9	B01	FTF	26	A10	Fo	43	K11	B ₇	60	L02
A ₉	10	B02	ŌĒ	27	B10	C ₀	44	K10	B ₈	61	K02
A ₁₀	11	A02	F ₁₅	28	B11	S ₀	45	L10	B ₉	62	K01
A ₁₁	12	B03	F ₁₄	29	C10	S ₁	46	K09	B ₁₀	63	J02
A ₁₂	13	A03	F ₁₃	30	C11	S ₂	47	L09	B ₁₁	64	J01
A ₁₃	14	B04	F ₁₂	31	D10	OSA	48	K08	B ₁₂	65	H02
A ₁₄	15	A04	F ₁₁	32	D11	OS _B	49	L08	B ₁₃	66	H01
A ₁₅	16	B05	F ₁₀	33	E10	FΤ _{AB}	50	K07	B ₁₄	67	G02
CLK	17	A05	F ₉	34	E11	ĒΝ _Β	51	L07	B ₁₅	68	G01

Pin Name	Function				
A ₀ -A ₁₅	"A" data input bus. The 16-bit "A" input data bus to the ALU.				
B ₀ -B ₁₅	'B" data input bus. The 16-bit "B" input data bus to the ALU.				
F ₀ -F ₁₅	'F" data output bus. The 16-bit "F" output data bus from the ALU.				
Co	Carry input. This input is used in arithmetic operations.				
C ₁₆	Carry out. Output flag that provides the carry propagate information from an arithmetic operation.				
P	Carry propagate output. Output flag that provides the carry propagate information from an arithmetic operation. Used in cascaded systems.				
G	Carry generate output. Output flag that provides the carry generate information from an arithmetic operation. Used in cascaded systems				

Pin Name	Function
OVF	Overflow output. Output flag tht provides ALU result overflow information from an arithmetic operation.
ZERO	Zero output. Output flag that provides ALU result overflow information from an arithmetic operation.
\overline{EN}_{A}	"A" register enable input. Control input used to either load or hold data into the "A" register.
\overline{EN}_{B}	"B" register enable input. Control input used to either load or hold data into the "B" register.
FT _{AB}	Feedthrough "AB" input. Control input used to select whether the input registers are bypassed or not.
ENF	"F" register enable output. Control input used to either load or hold data into the "F" register.
FTF	Feedthrough "F" input. Control input used to select whether the output register is bypassed or not.
OS _A , OS _B	Operand select inputs. Selects input data to the ALU on the "A" and "B" ports.
S_0-S_2	Instruction select inputs. Controls which operation the ALU will perform
ŌĒ	Output enable input. Controls the "F" output bus by enabling and disabling the outputs.
CLK	Clock input. The master clock input for all device registers.
V _{CC} , GND	Power supply.

Absolute Maximum Ratings Stresses above the AMR may cause permanent damage, extended operation at AMR may degrade performance and affect reliability

Condition		Units	Notes
V _{CC} Supply Voltage with respect to GND	-0.5 to +7.0	Volts DC	
Input Signal with respect to GND	-0.5 to V _{CC} +0.5	V	
Signal applied to high impedance outputs	-0.5 to V _{CC} +0.5	V	
Maximum Power Dissapation (P _D)	420	mW	/1
Current into Low Outputs	25	mA	
Storage Temperature Range	-65 to +150	°C	
Operating Temperature (Ambient)	-55 to +125	°C	
Lead Temperature (soldering, 10 seconds)	+300	°C	
Junction Temperature (T _J)	+175	°C	
<u>1</u> / - Must withstand the added P_D due to I_{OS}			

Condition		Units	Notes
Supply Voltage Range (V _{CC})	4.5 to 5.5	Volts DC	
Case Operating Range (T _c)	-55C to +125	°C	/2

					QPL	4C381
_ TABL E Test	Symbol	CTRICAL PERFORMAN Conditions <u>3</u> / -55°C≤TA≤+125°C,V _{SS} =0V 4.5V ≤ V _{CC} ≤ 5.5V Unless Otherwise Specified	CE CHARACTE Device	RISTICS Min	Max	Unit
Output High Voltage	V _{OH}	V _{CC} = 4.5V, I _{OH} = -2mA	All	2.4		V
Output Low Voltage	V _{OL}	V_{CC} = 4.5V, I_{OL} = 8mA	All		0.5	V
Input High Voltage	V _{IH}		All	2.0		V
Input Low Voltage	V _{IL}		All	0		V
Input Current	I _{IX}	V _{CC} = 5.5V	All		±20	μA
Output Leakage Current	I _{OZ}	V _{CC} = 5.5V	All		±20	μA
Dynamic Supply Current	I _{CC1}	V _{CC} = 5.5V /5	All		30	mA
Quiescent Power Supply Current	I _{CC2}	V _{CC} = 5.5V /6	All		1.5	mA
Input Capacitance	C _{IN}	$V_{IN} = 0V, V_{CC} = 5.0V$ $T_A = 25^{\circ}C, f = 1MHz$	All		5	pF
		$V_{OUT} = 0V, V_{CC} = 5.0V$ $T_A = 25^{\circ}C, f = 1MHz$	All		8	pF
Clock to F ₀ -F ₁₅	1	FTAB=0, FTF=0,	QPL4C381-45		28	ns
		C_L =30pF, V_{CC} =4.5V	QPL4C381-35		26	ns
Clock to P, G	2	FTAB=0, FTF=0, C _L =30pF, V _{CC} =4.5V	QPL4C381-45 QPL4C381-35		34 28	ns
Clock to OVF, ZERO	3	FTAB=0, FTF=0,	QPL4C381-45		50	ns ns
	5	$C_{L}=30 \text{pF}, V_{CC}=4.5 \text{V}$	QPL4C381-35		34	ns
Clock to C ₁₆	4	FTAB=0, FTF=0,	QPL4C381-45		34	ns
		C _L =30pF, V _{CC} =4.5V	QPL4C381-35		28	ns
C ₀ to OVF, ZERO	5	FTAB=0, FTF=0,	QPL4C381-45		32	ns
		C_L =30pF, V_{CC} =4.5V	QPL4C381-35		22	ns
C_0 to C_{16}	6	FTAB=0, FTF=0,	QPL4C381-45		23	ns
		C_L =30pF, V_{CC} =4.5V	QPL4C381-35		22	ns
S_0 - S_2 , OS_A , OS_B to \overline{P} , \overline{G}	7	FTAB=0, FTF=0,	QPL4C381-45		38	ns
		C_L =30pF, V_{CC} =4.5V	QPL4C381-35		28	ns
S_0 - S_2 , OS_A , OS_B to	8	FTAB=0, FTF=0,	QPL4C381-45		38	ns
OVF, ZERO		C _L =30pF, V _{CC} =4.5V	QPL4C381-35		28	ns
$S_0\mathchar`-S_2,\mbox{OS}_A,\mbox{OS}_B$ to C_{16}	9	FTAB=0, FTF=0,	QPL4C381-45		38	ns
		C _L =30pF, V _{CC} =4.5V	QPL4C381-35		28	ns
Clock to F ₀ -F ₁₅	10	FTAB=0, FTF=1,	QPL4C381-45		56	ns
		C_L =30pF, V_{CC} =4.5V	QPL4C381-35		34	ns
Clock to P,G	11	FTAB=0, FTF=1,	QPL4C381-45		34	ns
		C_L =30pF, V_{CC} =4.5V	QPL4C381-35		28	ns
Clock to OVF, ZERO	12	FTAB=0, FTF=1,	QPL4C381-45		50	ns
	<u></u>	C _L =30pF, V _{CC} =4.5V	QPL4C381-35		34	ns

QPL4C381 TABLE I – ELECTRICAL PERFORMANCE CHARACTERISTICS Test Symbol Device Max Unit Conditions 3/ Min -55°C≤TA≤+125°C,V_{SS}=0V $4.5V \le V_{CC} \le 5.5V$ Unless Otherwise Specified QPL4C381-45 FTAB=0, FTF=1, Clock to C₁₆ 13 34 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 28 ns FTAB=0, FTF=1, QPL4C381-45 C_0 to F_0 - F_{15} 14 32 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 26 ns FTAB=0, FTF=1, QPL4C381-45 C₀ to OVF, ZERO 15 32 ns C_L =30pF, V_{CC} =4.5V QPL4C381-35 22 ns FTAB=0, FTF=1, QPL4C381-45 C_0 to C_{16} 16 23 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 22 ns FTAB=0, FTF=1, QPL4C381-45 S₀-S₂,OS_A,OS_B to 17 46 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V $F_0 - F_{15}$ 30 ns S₀-S₂,OS_A,OS_B to FTAB=0, FTF=1, QPL4C381-45 18 38 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 P.G ns S₀-S₂,OS_A,OS_B to 19 FTAB=0, FTF=1, QPL4C381-45 38 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 OVF, ZERO ns FTAB=0, FTF=1, S_0-S_2,OS_A,OS_B to 20 QPL4C381-45 38 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 C_{16} ns FTAB=1. FTF=0. QPL4C381-45 A₀-A₁₅, B₀-B₁₅ to 21 32 ns P.G C_L=30pF, V_{CC}=4.5V QPL4C381-35 28 ns A₀-A₁₅, B₀-B₁₅ to 22 FTAB=1, FTF=0, QPL4C381-45 46 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 OVF, ZERO 28 ns FTAB=1, FTF=0, QPL4C381-45 A₀-A₁₅, B₀-B₁₅ to 23 36 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 C₁₆ ns Clock to Fo-F15 FTAB=1, FTF=0, QPL4C381-45 24 28 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 26 ns C₀ to OVF, ZERO FTAB=1, FTF=0, QPL4C381-45 25 32 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 22 ns FTAB=1, FTF=0, QPL4C381-45 23 C_0 to C_{16} 26 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 22 ns QPL4C381-45 S_0-S_2,OS_A,OS_B to 27 FTAB=1, FTF=0, 38 ns QPL4C381-35 P,G C_L=30pF, V_{CC}=4.5V 28 ns S_0-S_2,OS_A,OS_B to 28 FTAB=1, FTF=0, QPL4C381-45 38 ns C_L =30pF, V_{CC} =4.5V QPL4C381-35 28 OVF, ZERO ns S₀-S₂,OS_A,OS_B to 29 FTAB=1, FTF=0, QPL4C381-45 38 ns QPL4C381-35 C_{L} =30pF, V_{CC} =4.5V 28 C_{16} ns A₀-A₁₅, B₀-B₁₅ to FTAB=1. FTF=1. QPL4C381-45 30 45 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V F₀-F₁₅ 30 ns FTAB=1, FTF=1, QPL4C381-45 A₀-A₁₅, B₀-B₁₅ to 31 32 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 P.G 28 ns FTAB=1, FTF=1, QPL4C381-45 A₀-A₁₅, B₀-B₁₅ to 32 46 ns C_1 = 30 pF, V_{CC} = 4.5 V QPL4C381-35 OVF, ZERO 28 ns

QPL4C381 TABLE I – ELECTRICAL PERFORMANCE CHARACTERISTICS Test Symbol Conditions 3/ Device Max Unit Min -55°C≤TA≤+125°C,V_{SS}=0V $4.5V \le V_{CC} \le 5.5V$ Unless Otherwise Specified FTAB=1, FTF=1, QPL4C381-45 A₀-A₁₅, B₀-B₁₅ to 33 36 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V C_{16} 28 ns Co to Fo-F15 FTAB=1, FTF=1, QPL4C381-45 34 32 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 26 ns FTAB=1, FTF=1, QPL4C381-45 C₀ to OVF, ZERO 35 32 ns C_L =30pF, V_{CC} =4.5V QPL4C381-35 22 ns FTAB=1, FTF=1, QPL4C381-45 C_0 to C_{16} 23 36 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 22 ns FTAB=1, FTF=0, QPL4C381-45 S₀-S₂,OS_A,OS_B to 37 46 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V $F_0 - F_{15}$ 30 ns S₀-S₂,OS_A,OS_B to FTAB=1, FTF=1, QPL4C381-45 38 38 ns P,G QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 ns FTAB=1, FTF=1, S₀-S₂,OS_A,OS_B to 39 QPL4C381-45 38 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 OVF, ZERO ns S₀-S₂,OS_A,OS_B to FTAB=1, FTF=1, QPL4C381-45 40 38 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 28 C_{16} ns Clock (OS_A,OS_B=0) to FTAB=0. FTF=0. QPL4C381-45 65 56 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 34 $F_0 - F_{15}$ ns Clock (OS_A,OS_B=0) to 41 FTAB=0, FTF=0, QPL4C381-45 34 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 P.G 28 ns Clock $(OS_A, OS_B=0)$ to 42 FTAB=0 FTF=0, QPL4C381-45 50 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 34 OVF, ZERO ns FTAB=0 FTF=0, Clock $(OS_A, OS_B=0)$ to 43 QPL4C381-45 34 ns QPL4C381-35 C_L =30pF, V_{CC} =4.5V 28 C_{16} ns FTAB=0 QPL4C381-45 A₀-A₁₅, B₀-B₁₅ 44 8 ns QPL4C381-35 C_L =30pF, V_{CC} =4.5V Setup Time 8 ns FTAB=0 QPL4C381-45 3 A₀-A₁₅, B₀-B₁₅ 45 ns QPL4C381-35 Hold Time C_L =30pF, V_{CC} =4.5V 3 ns FTAB=1 QPL4C381-45 A₀-A₁₅, B₀-B₁₅ 46 33 ns QPL4C381-35 C_L=30pF, V_{CC}=4.5V 20 Setup Time ns A₀-A₁₅, B₀-B₁₅ 47 FTAB=1 QPL4C381-45 3 ns C_L =30pF, V_{CC} =4.5V QPL4C381-35 3 Hold Time ns $\overline{\mathsf{EN}}_{\mathsf{A}}$. $\overline{\mathsf{EN}}_{\mathsf{B}}$ FTAB=0 QPL4C381-45 48 10 ns QPL4C381-35 Setup Time C_L=30pF, V_{CC}=4.5V 10 ns $\overline{EN}_A, \overline{EN}_B$ FTAB=0 QPL4C381-45 49 2 ns C_L =30pF, V_{CC} =4.5V QPL4C381-35 2 Hold Time ns QPL4C381-45 ENF 50 10 ns C_L=30pF, V_{CC}=4.5V QPL4C381-35 Setup Time 10 ns ENF QPL4C381-45 51 2 ns QPL4C381-35 2 C_L=30pF, V_{CC}=4.5V Hold Time ns

					QPL4	4C381
TABLE	E I – ELE(CTRICAL PERFORMAN	CE CHARACTE	RISTICS		
Test	Symbol	Conditions $\underline{3}/$ -55°C≤TA≤+125°C,V _{SS} =0V 4.5V ≤ V _{CC} ≤ 5.5V Unless Otherwise Specified	Device	Min	Max	Unit
C ₀	52	FTAB=0	QPL4C381-45	20		ns
Setup Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	12		ns
C ₀	53	FTAB=0	QPL4C381-45	0		ns
Hold Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	0		ns
C ₀	54	FTAB=1	QPL4C381-45	20		ns
Setup Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	12		ns
C ₀	55	FTAB=1	QPL4C381-45	0		ns
Hold Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	0		ns
S ₀ -S ₂ ,OS _A ,OS _B	56	FTAB=0	QPL4C381-45	36		ns
Setup Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	20		ns
S ₀ -S ₂ ,OS _A ,OS _B	57	FTAB=0	QPL4C381-45	0		ns
Hold Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	0		ns
S ₀ -S ₂ ,OS _A ,OS _B	58	FTAB=1	QPL4C381-45	36		ns
Setup Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	20		ns
S ₀ -S ₂ ,OS _A ,OS _B	59	FTAB=1	QPL4C381-45	0		ns
Hold Time		C_L =30pF, V_{CC} =4.5V	QPL4C381-35	0		ns
Minimum Cycle Time	60	C_L =30pF, V_{CC} =4.5V	QPL4C381-45	38		ns
			QPL4C381-35	26		ns
High Going Pulse	61	C_L =30pF, V_{CC} =4.5V	QPL4C381-45	15		ns
			QPL4C381-35	12		ns
Low Going Pulse	62	C_L =30pF, V_{CC} =4.5V	QPL4C381-45	15		ns
			QPL4C381-35	12		ns
Tri-State Enable Time	63	C_L =30pF, V_{CC} =4.5V	QPL4C381-45		20	ns
			QPL4C381-35		18	ns
Tri-State Disable Time	64	C _L =30pF, V _{CC} =4.5V	QPL4C381-45		20	ns

NOTES

3/ Test Conditions assume signal transition times of 5ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified I_{OH}, I_{OL} and 30pF. Input voltages should be adjusted to compensate for inductive ground and V_{CC} noise to maintain required device input levels relative to device supply pins. All tests must be performed using worst-case test conditions, unless otherwise specified.

QPL4C381-35

- 4/ For test purposes, not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. Guaranteed if not tested.
- 5/ Tested with all outputs changing every cycle and no load at a 5MHz clock rate.
- $\underline{6}$ / Tested with all inputs within 0.1V of V_{CC} or GND, no load.

/7

- <u>7</u>/ Tested with I_{OL} = 10mA, I_{OH} = 10mA.
- $\underline{\underline{8}}$ / Tested only for initial qualification and after process or design changes which may effect capacitance.

Ordering Information

18

ns

		QFL40301
Part Number	Package (Mil-Std-1835)	Generic
QPL4C381KMB45-MIL (Similar to: 5962-8995901YA)	CQCC1-N68	QPL4C381KMB45
QPL4C381GMB45-MIL (Similar to: 5962-8995901ZC)	CMGA3-P68	QPL4C381GMB45
QPL4C381KMB30-MIL (Similar to: 5962-8995902YA)	CQCC1-N68	QPL4C381KMB30
QPL4C381GMB30-MIL (Similar to: 5962-8995902ZA)	CMGA3-P68	QPL4C381GMB30

QP Semiconductor supports Source Control Drawing (SCD), and custom package development for this product family.

Notes:

Package outline information and specifications are defined by Mil-Std-1835 package dimension requirements.

"-MIL" products manufactured by QP Semiconductor are compliant to the assembly, burn-in, test and quality conformance requirements of Test Methods 5004 & 5005 of Mil-Std-883 for Class B devices. This datasheet defines the electrical test requirements for the device(s).

The listed drawings, Mil-PRF-38535, Mil-Std-883 and Mil-Std-1835 are available online at http://www.dscc.dla.mil/

Additional information is available at our website <u>http://www.qpsemi.com</u>