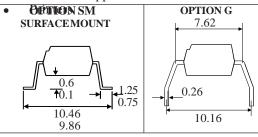
MOC3060, MOC3061, MOC3062, MOC3063 MOC3060X, MOC3061X, MOC3062X, MOC3063X

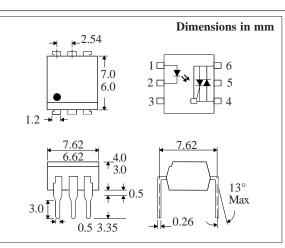
OPTICALLY COUPLED BILATERAL SWITCH LIGHT ACTIVATED ZERO VOLTAGE CROSSING TRIAC

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form : -- STD
 - G form
- SMD approved to CECC 00802
- -UL recognised File No. E91231 Package system " TT "

DESCRIPTION


The MOC306_Series are optically coupled isolators consisting of a Gallium Arsenide infrared emitting diode coupled with a monolithic silicon detector performing the functions of a zero crossing bilateral triac mounted in a standard 6 pin dual-in-line package.


FEATURES

- Options :-10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Isolation Voltage, 5.3kV_{RMS}
- Zero Voltage Crossing
- 600V Peak Blocking Voltage
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- CRTs
- Power Triac Driver
- Motors
- Consumer appliances

ABSOLUTE MAXIMUM RATINGS (25 °C unless otherwise noted)

Storage Temperature55°C-+150°C	
Operating Temperature40°C -+100°C	
Lead Soldering Temperature 260°C	
(1.6mm from case for 10 seconds)	

INPUT DIODE

Forward Current	50mA
Reverse Voltage	6V
Power Dissipation	120mW
(derate linearly 1.41mW/°C above 25°	⁰ C)

OUTPUT PHOTO TRIAC

Off-State Output Terminal Voltage	600V
Forward Current (Peak)	1A
Power Dissipation	150mW
(derate linearly $1.76 \overline{\text{mW}/^{\circ}\text{C}}$ above $25^{\circ}\overline{\text{C}}$)	

POWER DISSIPATION

Total Power Dissipation ______ 250mW (derate linearly 2.94mW/⁰C above 25⁰C)

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1UD England Tel: (01429)863609 Fax: (01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com

17/7/08

DB91051

	PARAMETER	MIN	ТҮР	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Current (I_R)		1.2 0.05	1.4 10	V μΑ	I _F =20mA V _R =6V
Output	Peak Off-state Current (I_{DRM}) Peak Blocking Voltage (V_{DRM}) On-state Voltage (V_{TM})	600		500 3.0	nA V V	$V_{DRM} = 600V \text{ (note 1)}$ $I_{DRM} = 500nA$ $I_{TM} = 100mA \text{ (peak)}$
	Critical rate of rise of off-state Voltage (dv/dt)	600	1500		V/µs	
Coupled	Input Current to Trigger (I _{FT})(note 2) MOC3060 MOC3061 MOC3062 MOC3063			30 15 10 5	mA mA mA mA	$V_{TM} = 3V (note 2)$
	Holding Current , either direction (I_H) Input to Output Isolation Voltage V_{ISO}	5300	400		μΑ V _{RMS}	See note 3
Zero Crossing Charact- -eristic	Inhibit Voltage (V _{IH})			20	V	I _F =Rated I _{FT} MT1-MT2 Voltage above which device
	Leakage in Inhibited State ($\rm I_S$)			500	μΑ	will not trigger $I_F = Rated I_{FT}$ $V_{DRM} = 600V \text{ off-state}$

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ Unless otherwise noted)

Note 1. Test voltage must be applied within dv/dt rating. Note 2. Guaranteed to trigger at an I_F value less than or equal to max. I_{FT}, recommended I_F lies between Rated I_{FT} and absolute max. I_F. Note 3. Measured with input leads shorted together and output leads shorted together.