

. . eescale Semiconductor

Technical Data

RF Power LDMOS Transistors

High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs

These high ruggedness devices are designed for use in high VSWR CW or pulse applications, such as HF, VHF, and low-band UHF radar and high power radio communications. They are unmatched input and output designs allowing wide frequency utilization from 1.8 to 600 MHz.

• Typical Performance: V_{DD} = 50 Vdc, I_{DQ} = 100 mA

Signal Type	P _{out} (W)	f (MHz)	G _{ps} (dB)	η _D (%)
Pulse (100 μsec, 20% Duty Cycle)	1250 Peak	230	24.0	74.0
CW	1250 CW	230	22.9	74.6

Application Circuits (1) — Typical Performance

Frequency (MHz)	Signal Type	P _{out} (W)	G _{ps} (dB)	η _D (%)
27	CW	1300	27	81
40	CW	1300	26	85
81.36	CW	1250	27	84
87.5-108	CW	1100	24	80
144-148	CW	1250	26	78
170-230	DVB-T	225	25	30
352	Pulse (200 μsec, 20% Duty Cycle)	1250	21.5	66
352	CW	1150	20.5	68
500	CW	1000	18	58

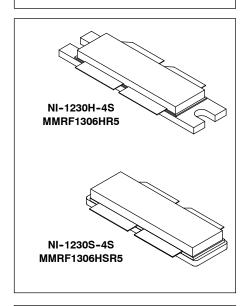
Contact your local Freescale sales office for additional information on specific circuit designs.

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{out} (W)	Test Voltage	Result
230	Pulse (100 μsec, 20% Duty Cycle)	>65:1 at all Phase Angles	1500 Peak (3 dB Overdrive)	50	No Device Degradation

Features

- Unmatched Input and Output Allowing Wide Frequency Range Utilization
- Device can be used Single-Ended or in a Push-Pull Configuration
- Qualified Up to a Maximum of 50 V_{DD} Operation
- Characterized from 30 V to 50 V for Extended Power Range
- Suitable for Linear Application with Appropriate Biasing
- Integrated ESD Protection with Greater Negative Gate-Source Voltage Range for Improved Class C Operation
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13-inch Reel.


Document Number: MMRF1306H

Rev. 1, 8/2014

VRoHS

MMRF1306HR5 MMRF1306HSR5

1.8–600 MHz, 1250 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS

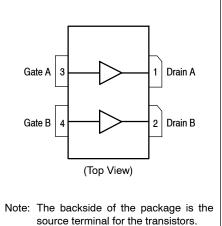


Figure 1. Pin Connections

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +133	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature	T _C	150	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1333 6.67	W W/°C
Operating Junction Temperature (1)	T _J	225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ⁽²⁾	Unit
Thermal Resistance, Junction to Case CW: Case Temperature 63°C, 1250 W CW, I _{DQ} = 100 mA, 230 MHz	$R_{ heta JC}$	0.15	°C/W
Thermal Impedance, Junction to Case Pulse: Case Temperature 66°C, 1250 W Pulse, 100 μsec Pulse Width, 20% Duty Cycle, I _{DQ} = 100 mA, 230 MHz	Z _{θJC}	0.027	°C/W

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	2, passes 3500 V
Machine Model (per EIA/JESD22-A115)	B, passes 250 V
Charge Device Model (per JESD22-C101)	IV, passes 4000 V

Table 4. Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics (3)					
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}			1	μAdc
Drain-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 100 \text{ mA})$	V _{(BR)DSS}	133	_	_	Vdc
Zero Gate Voltage Drain Leakage Current $(V_{DS} = 50 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 100 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	20	μAdc

On Characteristics

Gate Threshold Voltage ⁽³⁾ (V _{DS} = 10 Vdc, I _D = 1776 μAdc)	V _{GS(th)}	1.7	2.2	2.7	Vdc
Gate Quiescent Voltage (V _{DD} = 50 Vdc, I _D = 100 mAdc, Measured in Functional Test)	V _{GS(Q)}	1.9	2.2	2.9	Vdc
Drain-Source On-Voltage ⁽³⁾ (V _{GS} = 10 Vdc, I _D = 2 Adc)	V _{DS(on)}	_	0.15		Vdc
Forward Transconductance (V _{DS} = 10 Vdc, I _D = 30 Adc)	9fs	_	28.0	_	S

Dynamic Characteristics (3)

Reverse Transfer Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	_	2.8	_	pF
Output Capacitance (V _{DS} = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	185	_	pF
Input Capacitance (V _{DS} = 50 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	562	_	pF

- 1. Continuous use at maximum temperature will affect MTTF.
- 2. Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes AN1955.
- 3. Each side of device measured separately.

(continued)

MMRF1306HR5 MMRF1306HSR5

Table 4. Electrical Characteristics $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ (continued)

Characteristic		Min	Тур	Max	Unit
Functional Tests (In Freescale Test Fixture, 50 ohm system) V_{DD} = 50 Vdc f = 230 MHz, 100 µsec Pulse Width, 20% Duty Cycle	, I _{DQ} = 100 m	A, P _{out} = 125	0 W Peak (25	50 W Avg.),	

G_{ps} Power Gain 23.0 24.0 26.0 dB Drain Efficiency 72.5 η_{D} 74.0 % Input Return Loss IRL -14 -10 dB

$\textbf{Table 5. Load Mismatch/Ruggedness} \text{ (In Freescale Test Fixture, 50 ohm system) } \textbf{I}_{DQ} = 100 \text{ mA}$

Frequency (MHz)	Signal Type	VSWR	P _{out} (W)	Test Voltage, V _{DD}	Result
230	Pulse (100 μsec, 20% Duty Cycle)	>65:1 at all Phase Angles	1500 Peak (3 dB Overdrive)	50	No Device Degradation

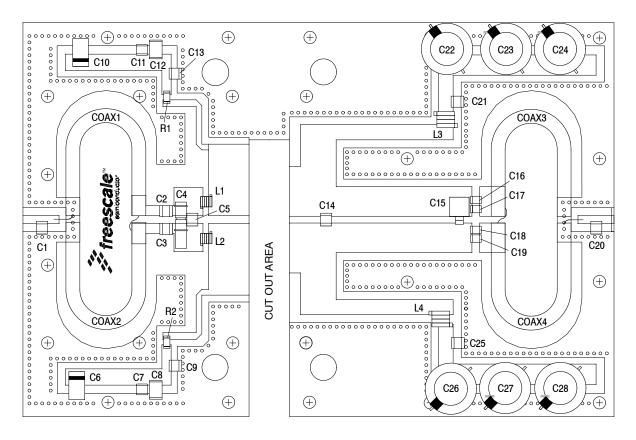


Figure 2. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Component Layout — Pulse

Table 6. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Component Designations and Values — Pulse

Part	Description	Part Number	Manufacturer
C1	20 pF Chip Capacitor	ATC100B200JT500XT	ATC
C2, C3, C5	27 pF Chip Capacitors	ATC100B270JT500XT	ATC
C4	0.8-8.0 pF Variable Capacitor, Gigatrim	27291SL	Johanson
C6, C10	22 μF, 35 V Tantalum Capacitors	T491X226K035AT	Kemet
C7, C11	0.1 μF Chip Capacitors	CDR33BX104AKYS	AVX
C8, C12	220 nF Chip Capacitors	C1812C224K5RACTU	Kemet
C9, C13, C21, C25	1000 pF Chip Capacitors	ATC100B102JT50XT	ATC
C14	43 pF Chip Capacitor	ATC100B430JT500XT	ATC
C15	75 pF Metal Mica	MIN02-002EC750J-F	CDE
C16, C17, C18, C19	240 pF Chip Capacitors	ATC100B241JT200XT	ATC
C20	6.2 pF Chip Capacitor	ATC100B6R2BT500XT	ATC
C22, C23, C24, C26, C27, C28	470 μF, 63 V Electrolytic Capacitors	MCGPR63V477M13X26-RH	Multicomp
Coax1, 2, 3, 4	25 Ω Semi Rigid Coax, 2.2" Shield Length	UT-141C-25	Micro-Coax
L1, L2	5 nH Inductors	A02TKLC	Coilcraft
L3, L4	6.6 nH Inductors GA3093-ALC		Coilcraft
R1, R2	10 Ω Chip Resistors	CRCW120610R0JNEA	Vishay
PCB	$0.030''$, $\epsilon_r = 2.55$	AD255A	Arlon

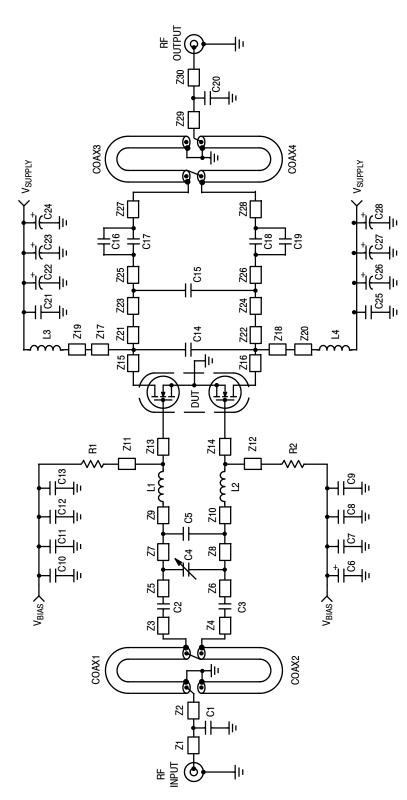
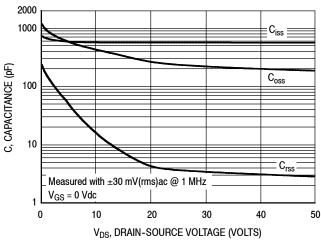


Figure 3. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Schematic — Pulse


Table 7. MMRF1306HR5(HSR5) 230 MHz Production Test Circuit Microstrips — Pulse

	372" × 0.058" Microstrip		
		723, 724	Z23, Z24 1.251" × 0.300" Microstrip
	412" × 0.726" Microstrip	Z25, Z26	Z25, Z26 0.127" × 0.300" Microstrip
	371" × 0.507" Microstrip	Z27, Z28	Z27, Z28 0.116" × 0.300" Microstrip
	466" × 0.363" Microstrip	Z29	0.186" × 0.082" Microstrip
Z7, Z8 0.116 × 0.285 Microstrip Z19°, Z20° 0.187 × 0.154	Z19*, Z20* 0.187" × 0.154" Microstrip	Z30	0.179" × 0.082" Microstrip
Z9, Z10 0.108" × 0.285" Microstrip Z21, Z22 0.104" × 0.507" Microstrip	104" × 0.507" Microstrip	* Line length	Line length includes microstrip bends

MMRF1306HR5 MMRF1306HSR5

TYPICAL CHARACTERISTICS

Note: Each side of device measured separately.

Figure 4. Capacitance versus Drain-Source Voltage

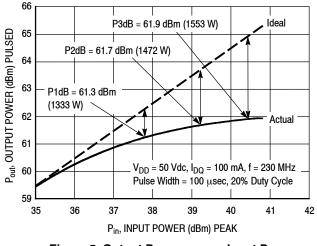


Figure 5. Output Power versus Input Power

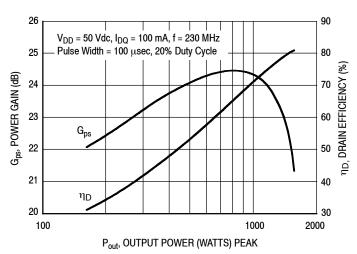


Figure 6. Power Gain and Drain Efficiency versus Output Power

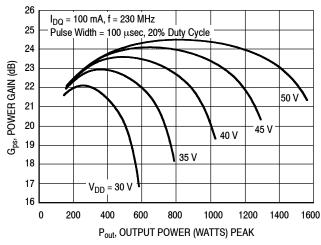


Figure 7. Power Gain versus Output Power

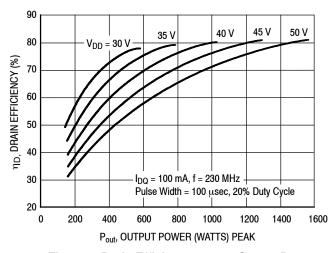


Figure 8. Drain Efficiency versus Output Power

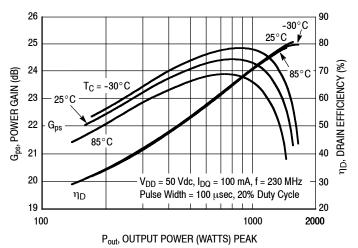
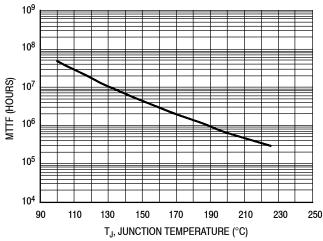
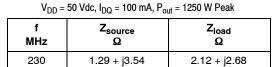



Figure 9. Power Gain and Drain Efficiency versus
Output Power


TYPICAL CHARACTERISTICS

This above graph displays calculated MTTF in hours when the device is operated at V_{DD} = 50 Vdc, P_{out} = 1250 W CW, and η_D = 74.6%.

MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product.

Figure 10. MTTF versus Junction Temperature — CW

Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

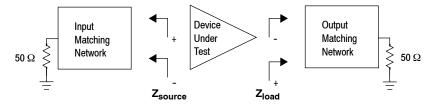


Figure 11. Series Equivalent Test Circuit Source and Load Impedance — 230 MHz Pulse

f (MHz)	Z _{source} (Ω)	Z _{load} (Ω)
1.8 (1)	34.4 + j192.0 ⁽¹⁾	5.00 - j4.00 (1)
27	12.5 + j7.00	7.00 + j0.70
40	5.75 + j5.06	5.39 + j2.62
81.36	4.04 + j5.93	4.89 + j2.95
88	2.20 + j6.70	4.90 + j2.90
98	2.30 + j6.90	4.10 + j2.50
108	2.30 + j7.00	4.40 + j3.60
144	1.60 + j5.00	3.90 + j1.50
175	1.33 + j3.90	3.50 + j2.50
230	1.29 + j3.54	2.12 + j2.68
352	0.98 + j1.45	1.82 + j2.05
500	0.29 + j1.47	1.79 + j1.80

1. Simulated data.

 Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

Z_{load} = Test circuit impedance as measured from drain to drain, balanced configuration.

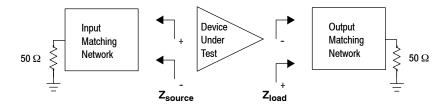
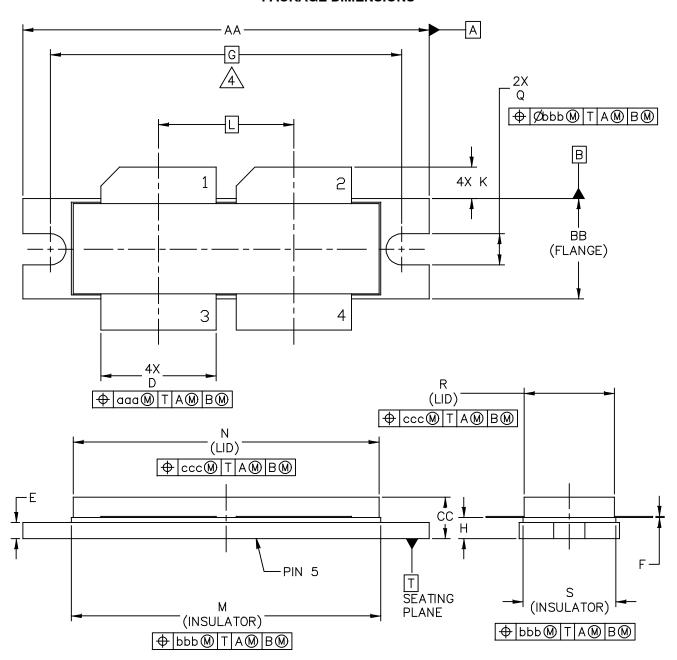
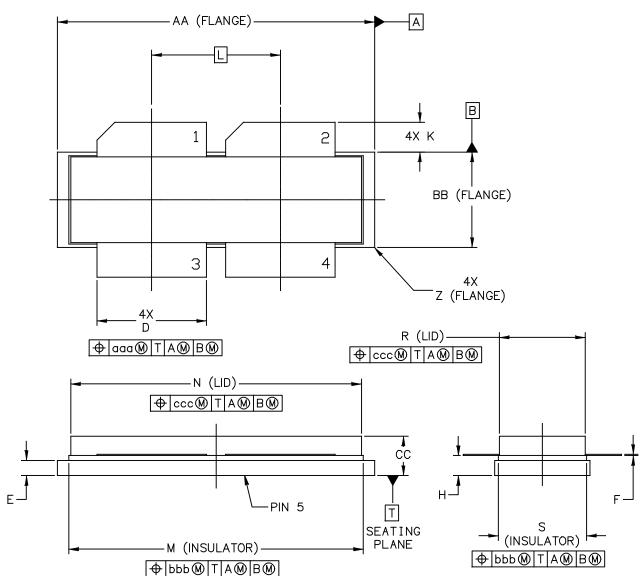



Figure 12. Source and Load Impedances Optimized for IRL, Power and Efficiency — Push-Pull

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE:		DOCUME	NT NO: 98ASB16977C	REV: F
NI-1230-4H		STANDAF	RD: NON-JEDEC	
				28 FEB 2013

MMRF1306HR5 MMRF1306HSR5


NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0.762 MM) AWAY FROM PACKAGE BODY.

RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	INCH MILLIMETER		LIMETER			INCH	MILLII	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
AA	1.615	1.625	41.02	41.28	N	1.218	1.242	30.94	31.55
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30
CC	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53
Е	.062	.066	1.57	1.68					
F	.004	.007	0.10	0.18					
G	1.400	BSC	35	.56 BSC	aaa	.013		0.	.33
Н	.082	.090	2.08	2.29	bbb		.010	О.	.25
K	.117	.137	2.97	3.48	ccc		.020	О (.51
L	.540	BSC	13	.72 BSC					
М	1.219	1.241	30.96	31.52					
© 1	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL			L 0U1	LINE	PRINT VERS	SION NOT T	O SCALE	
TITLE:	TITLE:					DOCUMEN	NT NO: 98ASB1	6977C	REV: F
NI-1230-4H						STANDAF	RD: NON-JEDE	2	
								28	FEB 2013

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OU	TLINE	PRINT VERSION NOT TO SCALE
TITLE:		DOCUMEN	NT NO: 98ARB18247C REV: G
NI-1230-4S		STANDAF	RD: NON-JEDEC
			01 MAR 2013

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED .030 INCH (0.762 MM) AWAY FROM PACKAGE BODY

	l	HES		LIMETERS	DIM		I I		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.265	1.275	32.13	32.39	R	.355	.365	9.02	9.27	
ВВ	.395	.405	10.03	10.29	S	.365	.375	9.27	9.53	
cc	.170	.190	4.32	4.83	Z	R.000	R.040	R0.00	R1.02	
D	.455	.465	11.56	11.81						
E	.062	.066	1.57	1.68	aaa		.013	О.	.33	
F	.004	.007	0.10	0.18	bbb		.010	О.	.25	
Н	.082	.090	2.08	2.29	ccc		.020	0	.51	
K	.117	.137	2.97	3.48						
L	.540	BSC	13	.72 BSC						
М	1.219	1.241	30.96	31.52						
N	1.218	1.242	30.94	31.55						
© F	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			MECHANICA	L OUT	LINE	PRINT VER	RSION NOT	TO SCALE	
TITLE:						DOCUME	NT NO: 98ARE	18247C	REV: G	
				STANDAF	RD: NON-JEDE	ic				
								01	MAR 2013	

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

• AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Dec. 2013	Initial Release of Data Sheet
1	Aug. 2014	Application circuit table added and band of operation updated to 1.8–600 MHz to reflect performance of device, p. 1

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2013–2014 Freescale Semiconductor, Inc.

