

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

### **General Description**

The MAX4564 is a low-voltage, dual-supply, single-pole/double-throw (SPDT) analog switch designed to operate from dual  $\pm 1.8V$  to  $\pm 6V$  or single + 1.8V to + 12V supplies. The low on-resistance (R<sub>ON</sub> =  $40\Omega$  at  $\pm 5V$ ) and low power consumption (5 $\mu$ W) make this part ideal for audio, video, and battery-powered applications. This switch offers low leakage currents (1nA max) and fast switching speeds (toN = 60ns and toFF = 40ns at  $\pm 5V$ , max).

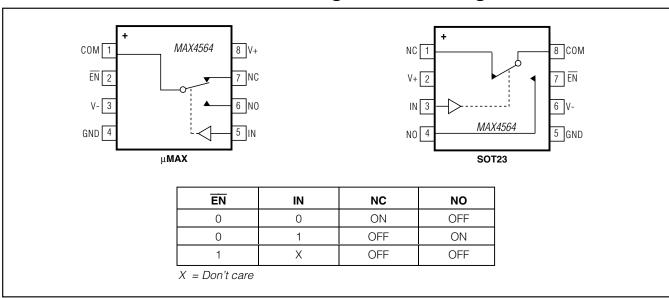
The MAX4564 is available in 8-pin SOT23 and  $\mu$ MAX<sup>®</sup> packages.

#### **Applications**

Battery-Operated Systems
Audio and Video Switching
Test Equipment
Communications Circuits
Sample-and-Hold Circuits
Communications Systems

µMAX is a registered trademark of Maxim Integrated Products, Inc.

#### **Features**


- ♦ 60 $\Omega$  max (40 $\Omega$ , typ) On-Resistance (R<sub>ON</sub>)
- ♦ 3Ω max (0.75Ω, typ) R<sub>ON</sub> Matching Between Channels
- ♦ 10Ω (max) Ron Flatness
- ♦ Low Charge Injection: 3pC (typ)
- ♦ Low ±1nA Leakage Current at +25°C
- ♦ Fast Switching toN = 60ns (max) toFF = 40ns (max)
- ♦ Guaranteed Break-Before-Make Switching
- **♦ TTL/CMOS-Logic Compatible**
- ♦ Low Crosstalk: -72dB (1MHz)
- ♦ High Off-Isolation: -77dB (1MHz)
- ♦ Bandwidth -3dB: >450MHz (typ)
- ♦ Available in an 8-Pin SOT23 Package

### Ordering Information

| PART        | TEMP RANGE     | PIN<br>PACKAGE | TOP<br>MARK |
|-------------|----------------|----------------|-------------|
| MAX4564EKA+ | -40°C to +85°C | 8 SOT23        | AAEI        |
| MAX4564EUA+ | -40°C to +85°C | 8 µMAX         | _           |

<sup>+</sup>Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

## Functional Diagrams/Pin Configurations/Truth Table



For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

#### **ABSOLUTE MAXIMUM RATINGS**

| (Voltages Referenced to GND)      |                        |
|-----------------------------------|------------------------|
| V+                                | 0.3V to +13V           |
| V                                 | 13V to +0.3V           |
| V+ to V                           | 0.3V to +13V           |
| EN, IN, COM, NC, NO (Note 1)      | (V0.3V) to $(V++0.3V)$ |
| Continuous Current (any terminal) | ±20mA                  |
| Peak Current, COM, NC, NO         |                        |
| (pulsed at 1ms, 10% duty cycle)   | ±30mA                  |
| ESD per Method 3015.7             |                        |

| Continuous Power Dissipation ( $T_A = -$ | +70°C)        |
|------------------------------------------|---------------|
| SOT23 (derate 5.6mW/°C above +           | -70°C)444.4mW |
| μMAX (derate 4.5mW/°C above +            | 70°C)362mW    |
| Operating Temperature Range              |               |
| MAX4564E_A                               | 40°C to +85°C |
| Junction Temperature                     | +150°C        |
| Storage Temperature Range                |               |
| Lead Temperature (soldering, 10s)        |               |
| Soldering Temperature (reflow)           | +260°C        |
|                                          |               |

Note 1: Signals on NO, NC, COM, IN, or EN exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS—±5V Supply**

 $(V+ = +4.5V \text{ to } +6V, V- = -4.5V \text{ to } -6V, V_{IH} = +2.4V, V_{IL} = +0.8V, GND = 0, T_A = T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)$ 

| PARAMETER                    | SYMBOL                                                  | CONDITIONS                                                                                          | TA    | MIN | TYP  | MAX | UNITS |
|------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|-----|------|-----|-------|
| ANALOG SWITCH                |                                                         |                                                                                                     |       |     |      |     |       |
| Analog Signal Range          | V <sub>COM</sub> ,<br>V <sub>NO</sub> , V <sub>NC</sub> |                                                                                                     |       | V-  |      | V+  | ٧     |
| On-Resistance                | Pov                                                     | V+ = +4.5V, V- = -4.5V,                                                                             | +25°C |     | 40   | 60  | Ω     |
| On-Resistance                | Ron                                                     | $I_{COM} = 1$ mA; $V_{NO}$ , $V_{NC} = \pm 3.5$ V                                                   | Е     |     |      | 100 | 52    |
| On-Resistance Match Between  | APou                                                    | V+ = +4.5V, V- = -4.5V,                                                                             | +25°C |     | 0.75 | 3   | Ω     |
| Channels (Note 4)            | ΔRon                                                    | $I_{COM} = 1mA; V_{NO}, V_{NC} = \pm 3.5V$                                                          | Е     |     |      | 4   | 32    |
| On-Resistance Flatness       | D                                                       | V+ = +4.5V, V- = -4.5V, I <sub>COM</sub> =                                                          | +25°C |     | 6.5  | 10  | Ω     |
| (Note 5)                     | TELATION)                                               | $R_{\text{FLAT}(ON)}$ 1mA; $V_{\text{NO}}$ , $V_{\text{NC}} = -3.5V$ , $0.0$ m = 1.5V               | Е     |     |      | 13  | 32    |
| NO or NC Off-Leakage Current | I <sub>NC(OFF)</sub> or                                 | V+ = +5.5V, V- = -5.5V;<br>V <sub>COM</sub> = +4.5V, -4.5V;                                         | +25°C | -1  | 0.05 | 1   | nA    |
| NO of NC Off-Leakage Current | INO(OFF)                                                | INO(OFF) $V_{NO}, V_{NC} = -4.5, +4.5V$                                                             | Е     | -5  |      | 5   | 117 ( |
| COM Off-Leakage Current      | loowers)                                                | V+ = +5.5V, V- = -5.5V;<br>V <sub>COM</sub> = +4.5V, -4.5V;                                         | +25°C | -1  | 0.05 | 1   | nA    |
| COM On-Leakage Current       | ICOM(OFF)                                               | $V_{COM} = +4.5V, -4.5V,$<br>$V_{NO}, V_{NC} = -4.5, +4.5V$                                         | Е     | -5  |      | 5   | 11/7  |
| COM On-Leakage Current       | loon won                                                | V+ = +5.5V, V- = -5.5V, V <sub>COM</sub> = +4.5V, -4.5V; V <sub>NO</sub> , V <sub>NC</sub> = +4.5V, | +25°C | -2  | 0.05 | 2   | nA    |
|                              | ICOM(ON)                                                | $-4.5V$ , $-4.5V$ , $V_{NO}$ , $V_{NC} = +4.5V$ , $-4.5V$ , or unconnected                          | Е     | -10 |      | 10  | 11/1  |

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

## **ELECTRICAL CHARACTERISTICS—±5V Supply (continued)**

 $(V+ = +4.5V \text{ to } +6V, V- = -4.5V \text{ to } -6V, V_{IH} = +2.4V, V_{IL} = +0.8V, GND = 0, T_A = T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)$ 

| SWITCH DYNAMIC CHARACTERISTICS           Turn-On Time         ton         VNO, VNC = +3V, -3V, RL = 1KΩ, CL = 35pF         ±25°C         40         60         75           Turn-Off Time         toFF         VNO, VNC = +3V, -3V, RL = 35pF         ±25°C         28         40         60         80         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PARAMETER                    | SYMBOL                 | CONDITIONS                                       | TA    | MIN | TYP    | MAX | UNITS |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--------------------------------------------------|-------|-----|--------|-----|-------|
| Turn-On Time         Ion         RL = IRΩ, CL = 35pF         E         75           Turn-Off Time         toFF         No., VNC = +3V, -3V, -8L = 1RΩ, CL = 35pF         E         50           Transition Time         toFF         VNC, VNC = +3V, -3V, -8L = 300Ω, -8L = 1RΩ, -8L = 300Ω, -8L = 1RQ, -8L = 300Ω, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SWITCH DYNAMIC CHARACTE      | ERISTICS               |                                                  | L     |     |        |     | ı     |
| Turn-Off Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0 -                        |                        | VNO. VNC = +3V3V.                                | +25°C |     | 40     | 60  |       |
| Turn-Off Time         toFF         RL = 1kΩ, CL = 35pF         E         50           Transition Time         tTRANS         VNC = +3V, VNO = -3V, VND = +3V, VNC = +3V, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Turn-On Time                 | tON                    |                                                  | Е     |     |        | 75  | ns    |
| H <sub>L</sub> = 1KΩ, C <sub>L</sub> = 35pF   E   50   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Turn Off Time                | +0.55                  | $V_{NO}, V_{NC} = +3V, -3V,$                     | +25°C |     | 28     | 40  | 200   |
| Transition Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn-Oil Time                | IOFF                   | $R_L = 1k\Omega$ , $C_L = 35pF$                  | Е     |     |        | 50  | ns    |
| R <sub>L</sub> = 1kΩ, C <sub>L</sub> = 35pF   E   85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                        | $V_{NC} = +3V, V_{NO} = -3V,$                    | +25°C |     | 50     | 70  |       |
| Charge Injection   Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Transition Time              | ttrans                 |                                                  | Е     |     |        | 85  | ns    |
| C <sub>L</sub> = 100pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | t <sub>BBM</sub>       |                                                  | +25°C | 5   | 15     |     | ns    |
| Toda   Foda   1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Charge Injection             | Q                      |                                                  | +25°C |     | 3      |     | рС    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3dB Bandwidth               | f-3dB                  | · ·                                              | +25°C |     | 450    |     | MHz   |
| Signal Output   V- = -4.5V, f <sub>IN</sub> = 1MHz, V <sub>EN</sub> = V <sub>IH</sub>   V- = -4.5°C   Os     Crosstalk (Between Switches)   V <sub>CT</sub>   R <sub>L</sub> = 50Ω, C <sub>L</sub> = 10pF, f <sub>IN</sub> = 1MHz   +25°C   -72     Total Harmonic Distortion   THD   R <sub>L</sub> = 600kΩ, C <sub>L</sub> = 50pF, f <sub>IN</sub> = 20kHz   +25°C   0.15     Control Input Capacitance   C <sub>IN</sub>   3     NO or NC Off-Capacitance   C <sub>OFF</sub>   f <sub>IN</sub> = 1MHz   +25°C   6     COM Off-Capacitance   C <sub>COM(OFF</sub>   f <sub>IN</sub> = 1MHz   +25°C   8     COM On-Capacitance   C <sub>COM(ON</sub>   f <sub>IN</sub> = 1MHz   +25°C   14     LOGIC INPUT     Input Voltage Low   V <sub>IL</sub>   0.8     Input Voltage High   V <sub>IH</sub>   2.4     Input Leakage Current   I <sub>L</sub>   V+ = +5.5V, V- = -5.5V, V <sub>IN</sub> = V <sub>EN</sub> = 0 or +5.5V   E   -10   10     POWER SUPPLY   Power-Supply Range   V+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Off-Isolation (Note 7)       | VISO                   |                                                  | +25°C |     | -77    |     | dB    |
| Total Harmonic Distortion   THD   RL = 600κΩ, CL = 50pF, fliN = 20kHz   +25°C   0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                        | · · · · · · · · · · · · · · · · · · ·            | +25°C |     | 68     |     | mV    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Crosstalk (Between Switches) | VCT                    | · · · · · · · · · · · · · · · · · · ·            | +25°C |     | -72    |     | dB    |
| NO or NC Off-Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Harmonic Distortion    | THD                    | · ·                                              | +25°C |     | 0.15   |     | %     |
| COM Off-Capacitance         C <sub>COM(OFF)</sub> f <sub>IN</sub> = 1MHz         +25°C         8           COM On-Capacitance         C <sub>COM(ON)</sub> f <sub>IN</sub> = 1MHz         +25°C         14           LOGIC INPUT           Input Voltage Low         V <sub>IL</sub> 0.8           Input Voltage High         V <sub>IH</sub> 2.4           Input Leakage Current         I <sub>L</sub> V+ = +5.5V, V- = -5.5V, V- = -5.5V, V- = -5.5V         +25°C         -1         0.0001         1           POWER SUPPLY         V+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control Input Capacitance    | C <sub>IN</sub>        |                                                  |       |     | 3      |     | рF    |
| COM On-Capacitance         CCOM(ON)         fIN = 1MHz         +25°C         14           LOGIC INPUT         Input Voltage Low         VIL         0.8           Input Voltage High         VIH         2.4           Input Leakage Current         IL         V+ = +5.5V, V- = -5.5V, V = -5.5V, V = -5.5V         +25°C         -1 0.0001         1           POWER SUPPLY         V+         E         -10         10           Power-Supply Range         V+         V+         -2         -6           Positive Supply Current         I+         V+ = +5.5V, V- = -5.5V,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NO or NC Off-Capacitance     | C <sub>OFF</sub>       | $f_{IN} = 1MHz$                                  | +25°C |     | 6      |     | рF    |
| Input Voltage Low   Vil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COM Off-Capacitance          | C <sub>C</sub> OM(OFF) | f <sub>IN</sub> = 1MHz                           | +25°C |     | 8      |     | рF    |
| Input Voltage Low   VIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COM On-Capacitance           | C <sub>COM</sub> (ON)  | f <sub>IN</sub> = 1MHz                           | +25°C |     | 14     |     | рF    |
| Input Voltage High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOGIC INPUT                  |                        |                                                  |       |     |        |     |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input Voltage Low            | V <sub>IL</sub>        |                                                  |       |     |        | 0.8 | V     |
| Input Leakage Current   IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input Voltage High           | VIH                    |                                                  |       | 2.4 |        |     | V     |
| POWER SUPPLY  Power-Supply Range  V+  Vin = V EN = 0 or +5.5V  E -10  10  2  6  V-  Positive Supply Current  I+  V+ = +5.5V, V- = -5.5V, V- = -5.5V, V- = -5.5V  Negative Supply Current  V+ = +5.5V, V- = -5.5V,                                                                                                                                                                                                                                                                                                                                                               | Input Leakage Current        |                        | · · · · · · · · · · · · · · · · · · ·            | +25°C | -1  | 0.0001 | 1   | μA    |
| V+       2   6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | <u>"</u>               | $V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$ | E     | -10 |        | 10  | μ, τ  |
| Power-Supply Range  V-  Positive Supply Current  I+  V+ = +5.5V, V- = -5.5V, V = -5.5V, V = -10.0001  V N = V \overline{EN} = 0 \text{ or } +5.5V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POWER SUPPLY                 | 1                      |                                                  | T     |     |        |     | 1     |
| Positive Supply Current    V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power-Supply Range           |                        |                                                  |       |     |        |     | V     |
| Positive Supply Current $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$ $E$ -10 10 Negative Supply Current $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = V_{IN} = 0 \text{ or } +5.5V$ , $V_{IN} = 0$ |                              | V-                     |                                                  |       |     |        |     |       |
| VIN = V EN = U OF +5.5V E -10 10  V+ = +5.5V, V- = -5.5V, +25°C -1 0.0001 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Positive Supply Current      | l+                     |                                                  |       |     | 0.0001 |     | μΑ    |
| Negative Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                        |                                                  | +     |     | 0.0001 |     |       |
| VIN - VEN - 0 01 75.5V   E   -10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Negative Supply Current      | I-                     |                                                  |       |     | 0.0001 |     | μΑ    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                        | VIIN - V EIN - U UI +0.5V                        | E     | -10 |        | 10  |       |

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

## **ELECTRICAL CHARACTERISTICS—Single +5V Supply**

 $(V+ = +4.5V \text{ to } +6V, V- = 0, V_{IH} = +2.4V, V_{IL} = +0.8V, GND = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$  Typical values are at  $T_A = +25^{\circ}\text{C.}$ ) (Notes 2, 3)

| PARAMETER                          | SYMBOL                                                     | CONDITIONS                                               | TA    | MIN  | TYP    | MAX | UNITS |
|------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------|------|--------|-----|-------|
| ANALOG SWITCH                      |                                                            |                                                          |       |      |        |     |       |
| Analog Signal Range                | V <sub>COM</sub> ,<br>V <sub>NO</sub> , V <sub>NC</sub>    |                                                          |       | 0    |        | V+  | V     |
| On-Resistance                      | Ron                                                        | V+ = +4.5V, V- = 0,                                      | +25°C |      | 72     | 100 | Ω     |
| On-nesistance                      | HON                                                        | $I_{COM} = 1$ mA; $V_{NO}$ , $V_{NC} = +3.5$ V           | Е     |      |        | 125 | 52    |
| On-Resistance Match Between        | Resistance Match Between $\Delta R_{ON}$ $V+=+4.5V, V-=0,$ | +25°C                                                    |       | 0.75 | 5      | Ω   |       |
| Channels (Note 4)                  | ΔιιΟΝ                                                      | $I_{COM} = 1 \text{mA}; V_{NO}, V_{NC} = +3.5 \text{ V}$ | Е     |      |        | 7   | 32    |
| SWITCH DYNAMIC CHARACTE            | RISTICS                                                    |                                                          |       |      |        |     |       |
| Turn-On Time                       | ton                                                        | $V_{NO}$ , $V_{NC} = +3V$ ,                              | +25°C |      | 62     | 90  | ns    |
| Tuill on Tille                     | ιΟΙ <b>ν</b>                                               | $R_L = 1k\Omega$ , $C_L = 35pF$                          | Е     |      |        | 125 | 113   |
| Turn-Off Time                      | toff                                                       | $V_{NO}$ , $V_{NC} = +3V$ ,                              | +25°C |      | 22     | 60  | ns    |
| Turr on Time                       | UFF                                                        | $R_L = 1k\Omega$ , $C_L = 35pF$                          | Е     |      |        | 75  |       |
| Transition Time                    | ttrans                                                     | $V_{NC} = +3V, V_{NO} = 0, V_{NC} = 0, V_{NO} = +3V,$    | +25°C |      | 68     | 100 | ns    |
| Transmon fillic                    | TRANS                                                      | $R_L = 1k\Omega$ , $C_L = 35pF$                          | Е     |      |        | 130 | 110   |
| Break-Before-Make Time<br>(Note 6) | tBBM                                                       | $V_{NO}, V_{NC} = +3V,$<br>$R_L = 300\Omega, C_L = 35pF$ | Е     | 10   | 35     |     | ns    |
| LOGIC INPUT                        | •                                                          |                                                          |       |      |        |     |       |
| Input Voltage Low                  | VIL                                                        |                                                          |       |      |        | 0.8 | V     |
| Input Voltage High                 | VIH                                                        |                                                          |       | 2.4  |        |     | V     |
| Input Lookaga Current              | I.                                                         | V+ = +5.5V, V- = 0,                                      | +25°C | -1   | 0.0001 | 1   |       |
| Input Leakage Current              | ΙL                                                         | $V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$         | Е     | -10  |        | 10  | μA    |
| POWER SUPPLY                       |                                                            |                                                          |       |      |        |     |       |
| Power-Supply Range                 | V+                                                         |                                                          |       | 1.8  |        | 12  | V     |
| Dogitiva Cupply Current            | 1.                                                         | V+ = +5.5V, V- = 0,                                      | +25°C | -1   | 0.0001 | 1   |       |
| Positive Supply Current            | I+                                                         | $V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$         | Е     | -10  |        | 10  | μA    |
| Negative Supply Current            | l-                                                         | V+ = +5.5V, V- = 0,                                      | +25°C | -1   | 0.0001 | 1   | μA    |
| Trogative oupply outlont           | '                                                          | $V_{IN} = V \overline{EN} = 0 \text{ or } +5.5V$         | E     | -10  |        | 10  | μ/ τ  |

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

### **ELECTRICAL CHARACTERISTICS—Single +3V Supply**

 $(V+=+2.7V \text{ to } +3.3V, V-=0, V_{IH}=+2.4V, V_{IL}=+0.8V, GND=0, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$  Typical values are at  $T_A=+25^{\circ}C.$ ) (Notes 2, 3)

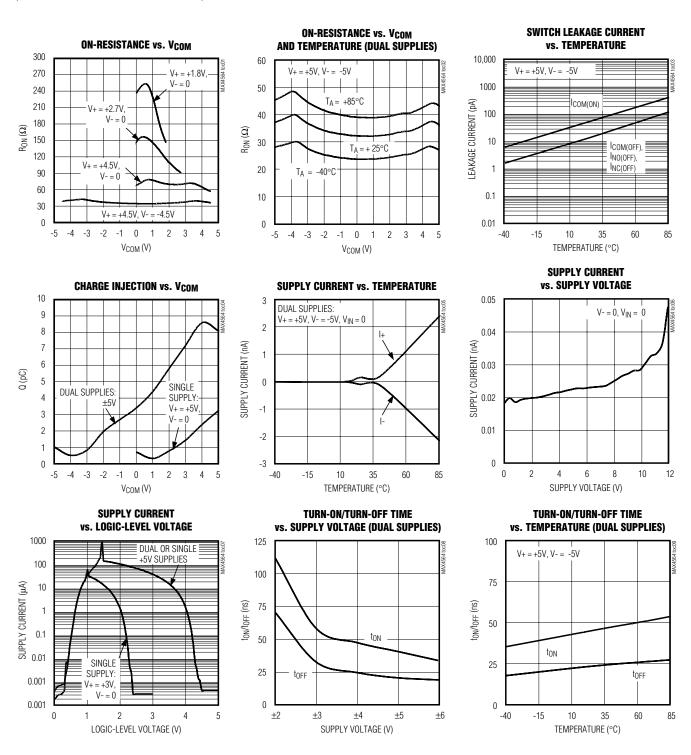
| PARAMETER                          | SYMBOL                                                  | CONDITIONS                                                              | TA    | MIN | TYP    | MAX | UNITS |
|------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|-------|-----|--------|-----|-------|
| ANALOG SWITCH                      | 1                                                       |                                                                         | •     |     |        |     | •     |
| Analog Signal Range                | V <sub>COM</sub> ,<br>V <sub>NO</sub> , V <sub>NC</sub> |                                                                         |       | 0   |        | V+  | V     |
| On-Resistance                      | Pou                                                     | V+ = +2.7V, V- = 0,                                                     | +25°C |     | 160    | 275 | Ω     |
| On-nesistance                      | Ron                                                     | $I_{COM} = 1 \text{mA}$ ; $V_{NO}$ , $V_{NC} = +1.5 \text{V}$           | Е     |     |        | 300 | \$2   |
| On-Resistance Match Between        | A.D                                                     | V+ = +2.7V, V- = 0,                                                     | +25°C |     | 1.5    | 10  |       |
| Channels (Note 4)                  | ΔHON                                                    | $\Delta R_{ON}$ $I_{COM} = 1 \text{mA}; V_{NO}, V_{NC} = +1.5 \text{V}$ | Е     |     |        | 12  | Ω     |
| SWITCH DYNAMIC CHARACTE            | RISTICS                                                 |                                                                         |       |     |        |     |       |
| Turn-On Time                       | tou                                                     | $V_{NO}, V_{NC} = +1.5V,$                                               | +25°C |     | 120    | 250 | 200   |
| Turn-On Time                       | t <sub>ON</sub> R <sub>I</sub>                          | $R_L = 2k\Omega$ , $C_L = 35pF$                                         | Е     |     |        | 275 | ns    |
| T 0" T                             |                                                         | $V_{NO}, V_{NC} = +1.5V,$                                               | +25°C |     | 40     | 110 |       |
| Turn-Off Time                      | tOFF                                                    | $R_L = 2k\Omega$ , $C_L = 35pF$                                         | Е     |     |        | 125 | ns    |
| Break-Before-Make Time<br>(Note 6) | tBBM                                                    | $V_{NO}, V_{NC} = +1.5V,$<br>$R_L = 2k\Omega, C_L = 35pF$               | Е     | 10  |        |     | ns    |
| LOGIC INPUT                        |                                                         |                                                                         |       |     |        |     |       |
| Input Voltage Low                  | VIL                                                     |                                                                         |       |     |        | 0.8 | V     |
| Input Voltage High                 | VIH                                                     |                                                                         | _     | 2.4 |        |     | V     |
| Input Lookaga Current              | 1.                                                      | V+ = +3.3V, V- = 0,                                                     | +25°C | -1  | 0.0001 | 1   |       |
| Input Leakage Current              | ΙL                                                      | $V_{IN} = V_{\overline{EN}} = 0 \text{ or } +3.3V$                      | Е     | -10 |        | 10  | μΑ    |

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Note 3: SOT-packaged products are 100% tested at +25°C and guaranteed by design at the full-rated temperature.

**Note 4:**  $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$ 

**Note 5:** Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

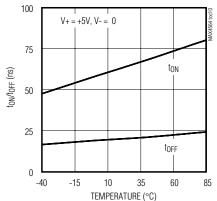

Note 6: Guaranteed by design.

**Note 7:** Off-Isolation =  $20\log_{10} (V_{COM} / V_{NO})$ ,  $V_{NO}$  = input to off switch.

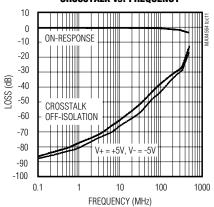
# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

## **Typical Operating Characteristics**

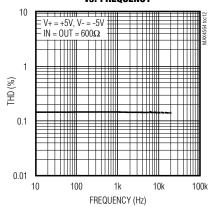
 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 



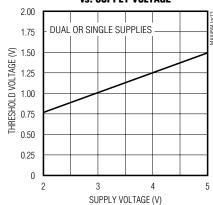

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable


Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ 


TURN-ON/TURN-OFF TIME vs. Temperature (Single Supply)




ON-RESPONSE, OFF-ISOLATION, CROSSTALK vs. FREQUENCY



## TOTAL HARMONIC DISTORTION vs. FREQUENCY



# LOGIC-LEVEL THRESHOLD VOLTAGE vs. SUPPLY VOLTAGE



# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

### **Pin Description**

| μ <b>МАХ</b> | SOT23 | NAME | FUNCTION                                                                                                                                              |
|--------------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | 8     | COM  | Analog Switch Common                                                                                                                                  |
| 2            | 7     | ĒN   | Device Enable. Drive $\overline{\text{EN}}$ low for normal SPDT switch operation. If $\overline{\text{EN}}$ is high, both NO and NC are disconnected. |
| 3            | 6     | V-   | Negative Supply Voltage                                                                                                                               |
| 4            | 5     | GND  | Ground                                                                                                                                                |
| 5            | 3     | IN   | Digital Control Input                                                                                                                                 |
| 6            | 4     | NO   | Analog Switch Normally Open                                                                                                                           |
| 7            | 1     | NC   | Analog Switch Normally Closed                                                                                                                         |
| 8            | 2     | V+   | Positive Supply Voltage                                                                                                                               |

### **Detailed Description**

The MAX4564 is a dual-supply SPDT CMOS analog switch. The MAX4564 has break-before-make switching. The CMOS switch construction provides Rail-to-Rail® signal handling while consuming virtually no power. Each of the two switches is independently controlled by a TTL/CMOS-level-compatible digital input.

## \_Applications Information

#### **Overvoltage Protection**

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device. Proper power-supply sequencing is recommended for all CMOS devices. Always sequence V+ on first, then V-, followed by the logic inputs NO, NC, or COM. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with supply pins. Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the device's low switch resistance and low leakage characteristics.

### Test Circuits/ Timing Diagrams

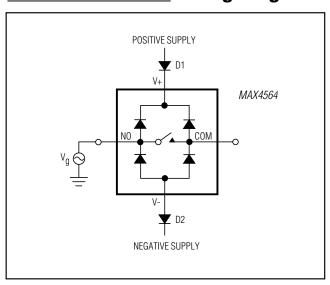



Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

## Test Circuits/Timing Diagrams (continued)

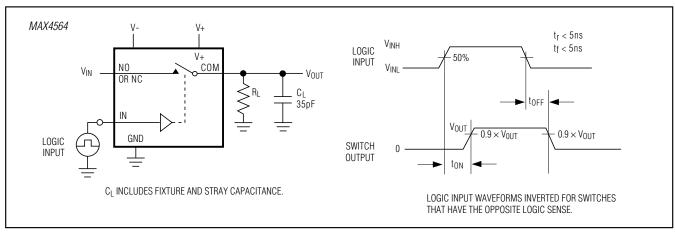



Figure 2. Switching Time

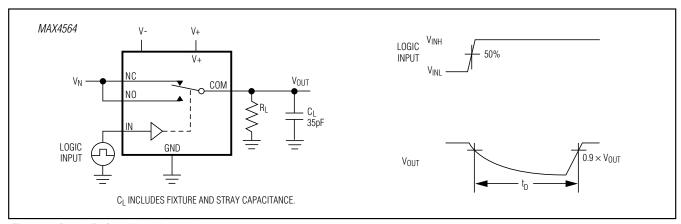



Figure 3. Break-Before-Make Interval

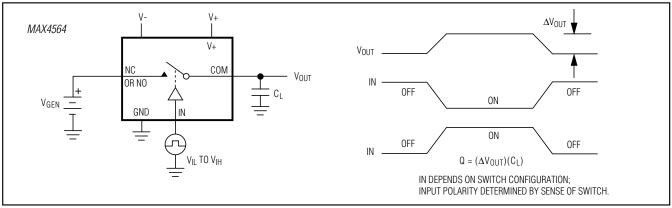



Figure 4. Charge Injection

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

### **Test Circuits/Timing Diagrams (continued)**

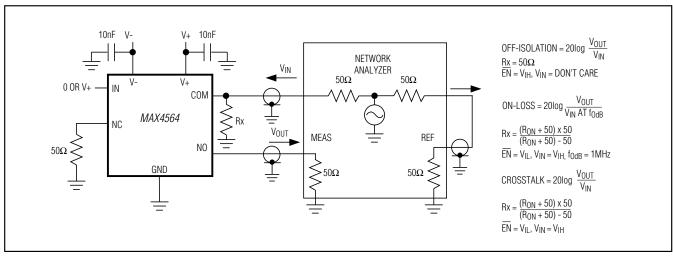



Figure 5. On-Loss, Off-Isolation, and Crosstalk

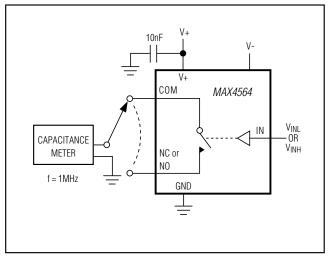



Figure 6. Channel Off/On-Capacitance

\_\_\_\_\_Chip Information

PROCESS: CMOS

### Package Information

For the latest package outline information and land patterns (footprints), go to <a href="www.maximintegrated.com/packages">www.maximintegrated.com/packages</a>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE<br>TYPE | PACKAGE<br>CODE | OUTLINE NO.    | LAND<br>PATTERN NO. |
|-----------------|-----------------|----------------|---------------------|
| 8 SOT23         | K8SN+1          | <u>21-0078</u> | 90-0176             |
| 8 SO            | U8+1            | 21-0036        | 90-0092             |

# Low-Voltage, Dual-Supply, SPDT Analog Switch with Enable

### **Revision History**

| REVISION | REVISION | DESCRIPTION                                                                 | PAGES   |
|----------|----------|-----------------------------------------------------------------------------|---------|
| NUMBER   | DATE     |                                                                             | CHANGED |
| 2        | 10/12    | Added lead-free designation to the part numbers in the Ordering Information | 1       |



Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000