

MUXIN

Multiprotocol，Pin－Selectable Data Interface Chipset

General Description

The MAX13171E along with the MAX13173E／ MAX13175E，form a complete pin－selectable data termi－ nal equipment（DTE）or data communication equipment （DCE）interface port that support the V． 28 （RS－232）， V．10／V． 11 （RS－449／V．36，RS－530，RS－530A，X．21），and V． 35 protocols．The MAX13171E transceivers carry the high－speed clock and data signals，while the MAX13173E transceivers carry the control signals．The MAX13171E can be terminated by the MAX13175E pin－selectable resistor termination network．The MAX13175E contains six pin－selectable，multiprotocol cable termination networks．
The MAX13171E／MAX13173E have an internal charge pump and low－dropout transmitter output stages that allow V．10－，V．11－，V．28－，and V．35－compliant operation from a single supply．The MAX13171E／MAX13173E fea－ ture a no－cable mode that reduces supply current and disables all transmitter and receiver outputs（high imped－ ance）．Short－circuit current limiting and thermal shutdown circuitry protects the receiver and transmitter outputs against excessive power dissipation．The MAX13171E／ MAX13173E have extended ESD protection for all the transmitter outputs and receivers inputs．
The MAX13171E／MAX13173E／MAX13175E operate over the +3.135 V to +5.5 V supply range and are available in $5 \mathrm{~mm} \times 7 \mathrm{~mm}$ ，38－pin TQFN packages．These devices oper－ ate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range．

Applications

Data Networking
PCI Cards
CSU and DSU

Telecommunication Equipment
Data Routers
Data Switches
－Supports V． 28 （RS－232），V． 10 （RS－423），V． 11 （RS－449／V．36，RS－530，RS－530A，X．21）and V． 35 Protocols
－Pin－Selectable Cable Termination Using the MAX13175E
－Pin－Selectable DCE／DTE Configurations
－20／40Mbps（max）Data Rate in RS－449，RS－530， RS－530A，X．21，and V． 35
－True Fail－Safe Receivers while Maintaining V． 11 and V． 35 Compatibility
－Operates Over a Wide＋3．135V to＋5．5V VCC Supply Range
－Flexible VL Logic Reference Input Allows Interfacing Down to 1.62 V
－Extended ESD Protection for All the Transmitter Outputs and Receivers Inputs to GND
－Small，5mm x 7mm，38－Pin TQFN Package
Ordering Information

PART	TEMP RANGE	PIN－ PACKAGE
MAX13171EETU＋	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	38 TQFN－EP＊
MAX13173EETU＋	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	38 TQFN－EP＊
MAX13175EETU＋	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	38 TQFN－EP＊

＋Denotes a lead（Pb）－free／RoHS－compliant package． ＊EP＝Exposed pad．

Typical Operating Circuit

For pricing，delivery，and ordering information，please contact Maxim Direct at 1－888－629－4642， or visit Maxim＇s website at www．maxim－ic．com．

Multiprotocol, Pin-Selectable Data Interface Chipset

ABSOLUTE MAXIMUM RATINGS

(All voltages to GND, unless otherwise noted.) Supply Voltages

Logic-Output Voltages
R_OUT ...-0.3V to (VL + 0.3V)
Transmitter Outputs
T_OUT_, T_OUT_/R_IN_
(no-cable, $\overline{\text { V. }} .28, ~ V .10$ modes)-15V to +15 V
Short-Circuit Duration to GND..................................Continuous Receiver Inputs
R_IN_, T_OUT_/R_IN ..-15V to +15V
R_INA to R_INB, T̄OOUTA/R3INA
to T3OUTB/R3INB ...-15V to +15 V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
38-Pin TQFN (derate $35.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 2857 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$
Soldering Temperature (reflow) $+260^{\circ} \mathrm{C}$

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $28^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance $(\theta \mathrm{JC}) \ldots1^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to $\underline{h t t p}: / / \mathbf{w w w}$.maxim-ic.com/thermal-tutorial

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAX13171E ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{C}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {CC }}$ Operating Range	$V_{C C}$		3.135		5.5	V
VL Operating Range	VL		1.62		VCC	V
VL Supply Current	IL	All inputs connected to GND, all receiver outputs low, $\mathrm{V}_{\mathrm{L}}=+5.5 \mathrm{~V}$		550	800	$\mu \mathrm{A}$
VCC Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitter Outputs Static)	Icc	RS-530, RS-530A, X.21, V.36/RS-449 mode (V.11), no load		15	28	mA
		RS-530, RS-530A, X.21, V.36/RS-449 mode (V.11), full load		150	200	mA
		V. 35 mode, no load		21	38	mA
		V. 35 mode, full load		150	210	mA
		V. 28 mode, no load		15	30	mA
		V .28 mode, full load		28	42	mA
		No-cable mode		0.01	10	$\mu \mathrm{A}$
Internal Power Dissipation (DCE Mode)(Static)	PD	RS-530, RS-530A, X.21, V.36/RS-449 mode (V.11), full load		100		mW
		V .35 mode, full load		500		
		V .28 mode, full load		70		

Multiprotocol, Pin-Selectable Data Interface Chipset

MAX13171E ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} C \mathrm{C}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15$), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Positive Charge-Pump Output Voltage	$V_{D D}$	V.28, V. 35 modes, no load (Note 3)		5.93	7.1	V
		V. 28 mode, full load (Note 3)	5.6	5.86		
		V. 35 mode, full load (Note 3)	4.6	5.1		
		RS-530, RS-530A, X.21, V.36/RS-449 mode (V.11) (Note 3)	4.9	5.26	5.7	
		No-cable mode		VCC		
Negative Charge-Pump Output Voltage	VEe	V.28, V. 35 modes, no load (Note 3)		-5.89		V
		V. 28 mode, full load (Note 3)		-5.74	-5.4	
		V. 35 mode, full load, Note 3		-4.46	-3.8	
		RS-530, RS-530A, X.21, V.36/RS-449 mode (V.11) (Note 3)	-4.84	-4.47	-4.16	
		No-cable mode		0		
Charge-Pump Enable Time		Time until all $V_{D D}$ and $V_{E E}$ specifications meet		< 1		ms
Thermal Shutdown Protection	THSD			+145		${ }^{\circ} \mathrm{C}$
LOGIC INPUTS (M0, M1, M2, DCE/DTE, T1IN, T2IN, T3IN)						
Input High Voltage	V_{IH}		$0.66 \times$ VL			V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$				$33 \times \mathrm{V}_{\mathrm{L}}$	V
Logic-Input Current	IIN	T1IN, T2IN, T3IN	-1		+1	$\mu \mathrm{A}$
Pullup Resistor	Rpuin	M0, M1, M2, DCE/DTE to VL	50	100	170	$\mathrm{k} \Omega$
LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT)						
Output High Voltage	VOH	ISOURCE $=4 \mathrm{~mA}$	$0.66 \times \mathrm{V}_{\mathrm{L}}$			V
Output Low Voltage	VOL	ISINK $=4 \mathrm{~mA}$			$33 \times \mathrm{V}_{\mathrm{L}}$	V
Output Pullup Resistor	Rpuy	No-cable mode (to VL)		71.4		k ת
V.11 TRANSMITTER						
Open-Circuit Differential Output Voltage	VODO	Open circuit, $\mathrm{R}=1.95 \mathrm{k} \Omega$, Figure 1	- $\mathrm{V}_{\text {cc }}$		+ V ${ }_{\text {cc }}$	V
Loaded Differential Output Voltage	VODL	$R=50 \Omega$, Figure 1	$\begin{gathered} \hline 0.5 \times \\ \text { VODO } \\ \hline \end{gathered}$			V
		$R=50 \Omega$, Figure 1	121			
Change in Magnitude of Output Differential Voltage	${ }^{\prime} \mathrm{V}_{\text {ODI }}$	$R=50 \Omega$, Figure 1			0.2	V
Common-Mode Output Voltage	Voc	$R=50 \Omega$, Figure 1			3.0	V
Change in Magnitude of Common-Mode Output Voltage	${ }^{\prime} \mathrm{V}$ OCl	$R=50 \Omega$, Figure 1 (Note 3)			0.2	V
Short-Circuit Current	ISC	VOUT = GND			150	mA
Rise Time	tr_{r}	Figures 2, 6		4.5		ns
Fall Time	tf	Figures 2, 6		6.5		ns

Multiprotocol, Pin-Selectable
 Data Interface Chipset

MAX13171E ELECTRICAL CHARACTERISTICS (continued)
$\left(V_{C C}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Transmitter Input to Output Propagation Delay (Figures 2, 6)	tPHL, tPLH	Figures 2, 6	22	28	ns
		$\mathrm{V}_{\mathrm{L}} \geq+3 \mathrm{~V}$, Figures 2, 6	20	25	
Data Skew	ItPHL-tPLH	Figures 2, 6 (Note 3)		2	ns
Channel-to-Channel Skew	tSKEW	Figures 2, 6 (Notes 3, 4)		3	ns

V. 11 RECEIVER

Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	-200	-50	mV	
Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	15		mV	
Receiver Input Current	IIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq+10 \mathrm{~V}$	-0.66	+0.66	mA	
Receiver Input Resistance	RIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq+10 \mathrm{~V}$	15	30	$\mathrm{k} \Omega$	
Rise or Fall Time	tr, tf	Figures 2, 7		3	ns	
Receiver Input to Output Delay	tphL, tpLH	Figures 2, 7		2.5	ns	
Data Skew	\|tPHL-tPLH		Figures 2, 7 (Note 3)		3	ns
Channel-to-Channel Skew	tSKEWR	Figures 2, 7 (Notes 3, 4)		3	ns	

V. 35 TRANSMITTER

Differential Output Voltage	Vod	Full load, $-4 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<+4 \mathrm{~V}$, Figure 3	± 0.44	± 0.55	± 0.66	V
Output High Current	IOH	$\mathrm{V}_{\mathrm{A}, \mathrm{B}}=0 \mathrm{~V}$	-13	-11	-9	mA
Output Low Current	IOL	$\mathrm{V}_{\mathrm{A}, \mathrm{B}}=0 \mathrm{~V}$	9	11	13	mA
Output Leakage Current	Iz	$-0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+0.25 \mathrm{~V}$, power off or no-cable mode		± 0.05	± 5	$\mu \mathrm{A}$
Rise or Fall Time	$\mathrm{tr}, ~ t f ~_{\text {t }}$	Figures 3, 6		5		ns
Transmitter Input to Output Delay	tPLH, tPHL	Figures 3, 6		19	35	ns
Data Skew	ItPLH - tphLI	Figures 3, 6 (Note 3)			3	ns
Channel-to-Channel Skew	tSKEWR	Figures 3, 6 (Notes 3, 4)			3	ns

V. 35 RECEIVER

Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+2 \mathrm{~V}$	-200	-50	mV
Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+2 \mathrm{~V}$	15		mV
Receiver Input Current	IIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq+10 \mathrm{~V}$	-0.66	+0.66	mA
Receiver Input Resistance	RIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq+10 \mathrm{~V}$	15	30	$\mathrm{k} \Omega$
Rise or Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f}}$	Figures 3, 7		3	ns
Receiver Input to Output Delay	tPHL, tPLH	Figures 3, 7		25	ns
Data Skew	\|tphL- tpLH ${ }^{\text {l }}$	Figures 3, 7 (Note 3)		3	ns
Channel-to-Channel Skew	tSKEWR	Figures 3, 7 (Notes 3, 4)		3	ns

V. 28 TRANSMITTER

Output-Voltage Swing	IVODI	Open circuit		7.1	V
		$R \mathrm{~L}=3 \mathrm{k} \Omega$	5	6	
Short-Circuit Current	IOH			85	mA

Multiprotocol, Pin-Selectable Data Interface Chipset

MAX13171E ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} C \mathrm{C}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15$), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Leakage Current	Iz	$-0.25 \mathrm{~V} \leq$ Vout $\leq+0.25 \mathrm{~V}$, power off or no-cable mode		± 0.05	± 5	$\mu \mathrm{A}$
Output Slew Rate	SRR/F	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF} \text { (swing in } \pm 3 \mathrm{~V} \text {), }$ Figures 4, 10	4		30	V/us
Transmitter Input to Output Delay	tPHL, tPLH	$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, C_{L}=2500 \mathrm{pF}$, Figures 4, 10		1	2	$\mu \mathrm{s}$
V. 28 RECEIVER						
Input Threshold Low	VIL		0.8	1.2		V
Input Threshold High	V_{IH}			1.2	2	V
Input Hysteresis	$\mathrm{V}_{\text {HYST }}$			0.25		V
Input Resistance	RIN	$-15 \mathrm{~V} \leq \mathrm{VIN} \leq+15 \mathrm{~V}$	3	5	7	k Ω
Rise or Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f }}$	Figures 5, 11		3		ns
Receiver Input to Output Delay	tPHL, tPLH	Figures 5, 11			150	ns
ESD PROTECTION						
T_OUT, T3OUT_/R1IN_, R_IN to GND		Human Body Model		± 15		kV
		Air Gap Discharge IEC 61000-4-2		± 12		
		Contact Discharge IEC 61000-4-2		± 8		

MAX13173E ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V} C \mathrm{C}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
VCC Operating Range	VCC		3.135		5.5	V
VL Operating Range	VL		1.62		VCC	V
VL Supply Current	IL	All inputs connected to GND, all receiver outputs low, $\mathrm{V}_{\mathrm{L}}=+5.5 \mathrm{~V}$		680	1100	$\mu \mathrm{A}$
VCC Supply Current	Icc	RS-530A, no load		11	21	mA
		RS-530, X.21, V.36/RS-449, DCE mode, INVERT = low, full load, transmitter outputs static, digital inputs $=$ GND or V_{L}		41	210	mA
		V. 28 mode, no load		21	38	mA
		V .28 mode, full load		42	65	mA
		No-cable mode		0.01	10	$\mu \mathrm{A}$
Internal Power Dissipation	PD	RS-530, X.21, V.36/RS-449; DCE mode, INVERT = low, full load		120		mW
Positive Charge-Pump Output Voltage	$V_{D D}$	V. 28 mode, no load (Note 3)		5.9	7.1	V
		V. 28 mode with full load (Note 3)	5.6	5.79		
		RS-530 mode, full load (Note 3)	4.84	5.15	5.5	
		RS-530A mode, full load		5.15		
		No-cable mode		VCC		

Multiprotocol, Pin-Selectable
 Data Interface Chipset

MAX13173E ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15$), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Negative Charge-Pump Output Voltage	VEe	V. 28 mode, no load (Note 3)		-5.83		V	
		V. 28 mode with full load (Note 3)		-5.55	-5.3		
		RS-530 mode, full load (Note 3)	-4.71	-4.44	-4.17		
		RS-530A mode, full load		-4.44			
		No-cable mode		0			
Thermal Shutdown Protection	THSD			+145		${ }^{\circ} \mathrm{C}$	
Charge-Pump Enable Time		Time until all $V_{D D}$ and $V_{E E}$ specifications meet		<1		ms	
LOGIC INPUTS (M0, M1, M2, DCE/DTE, INVERT, T1IN, T2IN, T3IN, T4IN, T5IN/R5OUT)							
Input High Voltage	V_{IH}		$0.66 \times$ VL			V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		$0.33 \times \mathrm{V}_{\text {L }}$			V	
Logic-Input Current	IIN	T1IN, T2IN, T3IN, T4IN	-1		+1	$\mu \mathrm{A}$	
Pullup Resistor	Rpuin	M0, M1, M2, DCE/DTE, INVERT to VL	50	100	170	k Ω	
LOGIC OUTPUTS (R10UT, R2OUT, R3OUT, R40UT, T5IN/R50UT)							
Output High Voltage	VOH	ISOURCE $=4 \mathrm{~mA}$	$0.66 \times$ VL			V	
Output Low Voltage	VOL	ISINK $=4 \mathrm{~mA}$			$33 \times V_{\text {L }}$	V	
Output Pullup Resistor	Rpuy	No-cable mode (to VL)		71.4		k Ω	
V. 11 TRANSMITTER (T1, T2, T3)							
Open-Circuit Differential Output Voltage	VODO	Open circuit, $\mathrm{R}=1.95 \mathrm{k} \Omega$, Figure 1	-VCC		$+\mathrm{V}_{\text {cc }}$	V	
Loaded Differential Output Voltage	VODL	$R=50 \Omega$, Figure 1	$\begin{gathered} 0.5 \times \\ \mathrm{V}_{\mathrm{ODO}} \\ \hline \end{gathered}$			V	
		$R=50 \Omega$, Figure 1	121				
Change in Magnitude of Output Differential Voltage	${ }^{\prime} \mathrm{V}_{\text {OD }} \mathrm{l}$	$R=50 \Omega$, Figure 1			0.2	V	
Common-Mode Output Voltage	Voc	$R=50 \Omega$, Figure 1			3.0	V	
Change in Magnitude of Common-Mode Output Voltage	${ }^{\prime} \mathrm{V}$ VOCl	$R=50 \Omega$, Figure 1 (Note 3)			0.2	V	
Short-Circuit Current	ISC	VOUT = GND			150	mA	
Output Leakage Current	Iz	$-0.25 \mathrm{~V} \leq$ VOUT $\leq+0.25 \mathrm{~V}$, power-off or nocable mode		± 0.05	± 5	$\mu \mathrm{A}$	
Rise Time	tr_{r}	Figures 2, 6		4	10	ns	
Fall Time	tf	Figures 2, 6		6	10	ns	
Transmitter Input to Output Prop Delay	tPHL, tPLH	Figures 2, 6		20	28	ns	
		Figures 2, 6, $\mathrm{V}_{\mathrm{L}} \geq+3 \mathrm{~V}$			25	ns	
Data Skew	\|tPHL- tPLH		Figures 2, 6 (Note 3)			2	ns
Channel-to-Channel Skew	tSkEW	Figures 2, 6 (Notes 3, 4)			3	ns	

Multiprotocol, Pin-Selectable Data Interface Chipset

MAX13173E ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ (Figure 15$), \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
V. 11 RECEIVER (R1, R2, R3)						
Differential Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$	-200		-50	mV
Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$	$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$		15		mV
Receiver Input Current	IIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq+10 \mathrm{~V}$	-0.66		+0.66	mA
Receiver Input Resistance	RIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}, \mathrm{B}} \leq+10 \mathrm{~V}$	15	30		k Ω
Rise or Fall Time	tr, tf	Figures 2, 7		3		ns
Receiver Input to Output Delay	tPHL, tPLH	Figures 2, 7			27	ns
Data Skew	\|tphL- tpLH	Figures 2, 7 (Note 3)			3	ns
Channel-to-Channel Skew	tSKEWR	Figures 2, 7 (Notes 3, 4)			3	ns
V. 10 TRANSMITTER (T2, T4, T5)						
Open-Circuit Output Voltage Swing	Vo	$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$ (out high)	4		6	V
		$\mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$ (out low)	-6		-4	
Output-Voltage Swing	V_{T}	$\mathrm{R}_{\mathrm{L}}=450 \Omega$ (out high)	3.6			V
		$R_{L}=450 \Omega$ (out low)			-3.6	
		$R_{L}=450 \Omega$	$\begin{aligned} & 0.9 \mathrm{x} \\ & \mathrm{IVol} \end{aligned}$			
Short-Circuit Current	ISC	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$	-55		+55	mA
Output Leakage Current	Iz	$-0.25 \mathrm{~V} \leq$ VOUT $\leq+0.25 \mathrm{~V}$, power-off or no-cable mode		± 0.05	+5	$\mu \mathrm{A}$
Rise or Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$R_{L}=450 \Omega, C_{L}=100 p F$, Figure 8		2		$\mu \mathrm{s}$
Transmitter Input to Output Delay	tPLH, tPHL	$R_{L}=450 \Omega, C_{L}=100 p F$, Figure 8		1		$\mu \mathrm{s}$
V.10 RECEIVER (R2, R4, R5)						
Input Threshold Voltage	$\mathrm{V}_{\text {TH }}$		50		250	mV
Input Hysteresis	$\Delta \mathrm{V}_{\text {TH }}$			25		mV
Receiver Input Current	IIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+10 \mathrm{~V}$	-0.66		+0.66	mA
Receiver Input Resistance	RIN	$-10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{A}} \leq+10 \mathrm{~V}$	15	30		k Ω
Rise or Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f}}$	Figures 5, 9		3		ns
Receiver Input to Output Delay	tple	Figure 9		55		ns
	tphL	Figure 9		109		
Data Skew	ItPHL - tpLH	Figures 5, 9 (Note 3)		60		ns
V. 28 TRANSMITTER (All CHANNELS)						
Output-Voltage Swing	IVOD ${ }^{\text {l }}$	Open circuit			7.1	V
		$\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$	5	6		
Short-Circuit Current	IOH				90	mA
Output Leakage Current	Iz	$-0.25 \mathrm{~V} \leq$ V OUT $\leq+0.25 \mathrm{~V}$, power-off or no-cable mode		± 0.05	± 5	$\mu \mathrm{A}$

Multiprotocol, Pin-Selectable
 Data Interface Chipset

MAX13173E ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$, Figure $15, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Slew Rate	SRR/F	$R_{L}=3 k \Omega, C_{L}=2500 \mathrm{pF} \text { (swing in } \pm 3 \mathrm{~V} \text {) }$ Figures 4, 10	4		30	V/us
Transmitter Input to Output Delay	tphL, tpLH	$R_{L}=3 \mathrm{k} \Omega, C_{L}=2500 \mathrm{pF}$, Figures 4, 10		1	2	$\mu \mathrm{s}$
V. 28 RECEIVER (AII CHANNELS)						
Input Threshold Low	$\mathrm{V}_{\text {IL }}$		0.8	1.2		V
Input Threshold High	V_{IH}			1.2	2	V
Input Hysteresis	VHYST			0.25		V
Input Resistance	RIN	$-15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+15 \mathrm{~V}$	3	5	7	$\mathrm{k} \Omega$
Rise or Fall Time	$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f}}$	Figures 5, 11		3		ns
Receiver Input to Output Delay	tPHL, tPLH	Figures 5, 11			150	ns
ESD PROTECTION						
T_OUT, T_OUT/R_IN_, R_IN		Human Body Model		± 15		kV
		Air Gap Discharge IEC 61000-4-2		± 15		
		Contact Discharge		± 5		

MAX13175E ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$, Figure $15, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX |
| :--- | :---: | :--- | :---: | :---: | :---: | UNITS

Multiprotocol，Pin－Selectable Data Interface Chipset

MAX13175E ELECTRICAL CHARACTERISTICS（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+3.135 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.62 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1 \mu \mathrm{~F}, \mathrm{C} 3=\mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$ ，Figure $15, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ ，unless otherwise noted．Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）（Note 2）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential－Mode Impedance V． 11 Mode		$-7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V}$ ，all channels，except no－ cable mode，Figure 12	100	104	110	Ω
		$\begin{aligned} & -7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+7 \mathrm{~V} \text {, no cable, } \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AB}}<2 \mathrm{~V} \text {, Figure } 12 \end{aligned}$		115		
Differential Path Enable Time				50		$\mu \mathrm{s}$
Differential Path Disable Time				300		$\mu \mathrm{S}$
Common－Mode Path Enable Time				12		$\mu \mathrm{s}$
Common－Mode Path Disable Time				2		$\mu \mathrm{s}$
High－Impedance Leakage Current	Iz	$-15 \mathrm{~V} \leq \mathrm{V}_{\text {R＿A }} \leq+15 \mathrm{~V}$	－50		＋50	$\mu \mathrm{A}$
LOGIC INPUTS（M0，M1，M2，$\overline{\text { LATCH，DCE／DTE）}}$						
Input High Voltage	V_{IH}		$0.66 \times V_{\text {L }}$			V
Input Low Voltage	VIL				$33 \times \mathrm{V}_{\mathrm{L}}$	V
Logic Input Current	IIN	$\mathrm{V}_{\text {IN }}=$ GND or V_{L}	－1		＋1	$\mu \mathrm{A}$
ESD PROTECTION						
R＿A，R＿B to GND		Human Body Model		± 15		kV
		Air Gap Discharge IEC 61000－4－2		± 10		
		Contact Discharge IEC 61000－4－2		± 6		
All Other Pins		Human Body Model		± 2		kV

Note 2：All devices are 100% production tested at $T_{A}=+85^{\circ} \mathrm{C}$ for the MAX13171E／MAX13173E and $T_{A}=+25^{\circ} \mathrm{C}$ for the MAX13175E．Specifications over temperature are guaranteed by design．
Note 3：Guaranteed by design，not production tested．
Note 4：Output－to－output skews are evaluated as difference of propagation delays between different channels in the same condition and for the same polarity（ LH or HL ）．
Note 5： $\mathrm{M}[\mathrm{x}]$ is the input bus DTE／$\overline{\mathrm{DCE}}, \mathrm{M} 2, \mathrm{M} 1, \mathrm{M} 0$ ．

Multiprotocol, Pin-Selectable Data Interface Chipset

MAX13171E Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

V. 11 DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE

V. 35 LOADED DIFFERENTIAL OUTPUT VOLTAGE vS. COMMON-MODE VOLTAGE

V. 28 OUTPUT VOLTAGE vs. TEMPERATURE

V.11/V. 35 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE

V. 35 OUTPUT VOLTAGE
vs. TEMPERATURE

V. 28 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE

Multiprotocol，Pin－Selectable Data Interface Chipset

MAX13171E Typical Operating Characteristics（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．$)$

Multiprotocol, Pin-Selectable Data Interface Chipset

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Multiprotocol，Pin－Selectable Data Interface Chipset

MAX13173E Typical Operating Characteristics（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．$)$

Multiprotocol, Pin-Selectable
 Data Interface Chipset

MAX13175E Typical Operating Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)
V. 11 OR V. 35 DIFFERENTIAL IMPEDANCE vs. TEMPERATURE

V. 11 OR V. 35 DIFFERENTIAL IMPEDANCE vs. SUPPLY VOLTAGE (Vee)

V. 11 OR V. 35 DIFFERENTIAL IMPEDANCE vs. COMMON-MODE VOLTAGE (Vcm)

V. 35 COMMON-MODE IMPEDANCE vs. TEMPERATURE

V. 11 OR V. 35 DIFFERENTIAL IMPEDANCE vs. SUPPLY VOLTAGE (Vcc)

V. 35 COMMON-MODE IMPEDANCE vs. COMMON-MODE VOLTAGE (Vcm)

Multiprotocol，Pin－Selectable Data Interface Chipset

MAX13175E Typical Operating Characteristics（continued）

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ ，unless otherwise noted．）

Multiprotocol, Pin-Selectable
 Data Interface Chipset

MAX13171E Pin Description

PIN	NAME	FUNCTION
1, 2, 6, 30, 31	N.C.	No Connection. Not internally connected.
3, 16	VCC	Device Supply Voltage. Bypass V_{CC} with a $4.7 \mu \mathrm{~F}$ capacitor to ground as close as possible to pin 3.
4	T1IN	Transmitter 1 Logic Input
5	T2IN	Transmitter 2 Logic Input
7	T3IN	Transmitter 3 Logic Input
8	R10UT	Receiver 1 Logic Output with Internal Pullup to VL
9	R2OUT	Receiver 2 Logic Output with Internal Pullup to VL
10	R3OUT	Receiver 3 Logic Output with Internal Pullup to V_{L}
11	M0	Mode-Select 0 Input with Internal Pullup to V_{L}
12	VL	Logic-Supply Reference Input. V_{L} determines the voltage level of the logic interface. Bypass V_{L} with a $0.1 \mu \mathrm{~F}$ capacitor to ground as close as possible to the device.
13	M1	Mode-Select 1 Input with Internal Pullup to V_{L}
14	M2	Mode-Select 2 Input with Internal Pullup to V_{L}
15	DCE/DTE	DCE/DTE Mode-Select Input with Internal Pullup to V ${ }_{\text {L }}$
17	R3INB	Receiver 3 Noninverting Input
18	R3INA	Receiver 3 Inverting Input
19, 24, 29, 35	GND	Ground
20	R2INB	Receiver 2 Noninverting Input
21	R2INA	Receiver 2 Inverting Input
22	T3OUTB/R1INB	Transmitter 3 Noninverting Output/Receiver 1 Noninverting Input
23	T3OUTA/R1INA	Transmitter 3 Inverting Output/Receiver 1 Inverting Input
25	T2OUTB	Transmitter 2 Noninverting Output
26	T2OUTA	Transmitter 2 Inverting Output
27	T1OUTB	Transmitter 1 Noninverting Output
28	T1OUTA	Transmitter 1 Inverting Output
32	VEE	Charge-Pump Negative Supply Output. Connect a $4.7 \mu \mathrm{~F}$ ceramic capacitor from V_{EE} to ground as close as possible to the device.
33	C2-	VEE Charge-Pump Flying-Capacitor Negative Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C2+ and C2-.
34	C2+	$V_{E E}$ Charge-Pump Flying-Capacitor Positive Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C2+ and C2-.
36	C1-	VDD Charge-Pump Flying-Capacitor Negative Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C1+ and C1-.
37	C1+	VDD Charge-Pump Flying-Capacitor Positive Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C1+ and C1-.
38	VDD	Charge-Pump Positive-Supply Output. Connect a $4.7 \mu \mathrm{~F}$ ceramic capacitor from VDD to ground as close as possible to the device.
-	EP	Exposed Pad. Internally connected to V_{EE}. Connect to a large V_{EE} plane to maximize thermal performance. Not intended as an electrical connection point. Do not share the same plane as the MAX13173E.

Multiprotocol, Pin-Selectable Data Interface Chipset

MAX13173E Pin Description

PIN	NAME	FUNCTION
1	T1IN	Transmitter 1 Logic Input
2	VCC	Device Supply Voltage. Bypass $V_{C C}$ with a $4.7 \mu \mathrm{~F}$ capacitor to ground as close as possible to the device.
3	T2IN	Transmitter 2 Logic Input
4	T3IN	Transmitter 3 Logic Input
5	VL	Logic-Supply Reference Input. V_{L} determines the voltage level of the logic interface. Bypass V_{L} with a $0.1 \mu \mathrm{~F}$ capacitor to ground, as close as possible to the device.
6	R10UT	Receiver 1 Logic Output with Internal Pullup to VL
7	R2OUT	Receiver 2 Logic Output with Internal Pullup to VL
8	R3OUT	Receiver 3 Logic Output with Internal Pullup to VL
9	R5OUT/T5IN	Receiver 5 Logic Output/Transmitter 5 Logic Input
10	T4IN	Transmitter 4 Logic Input
11	R4OUT	Receiver 4 Logic Output
12	M0	Mode-Select 0 Input with Internal Pullup to V_{L}
13	M1	Mode-Select 1 Input with Internal Pullup to V_{L}
14	M2	Mode-Select 2 Input with Internal Pullup to V_{L}
15	DCE/DTE	DCE/DTE Mode-Select Input with Internal Pullup to V_{L}
16	INVERT	T4/R4 and T5/R5 Select Input with Internal Pullup to VL. INVERT reverses the action of DCE/DTE for channels 4 and 5 .
17	T4OUTA/R4INA	Transmitter 4 Inverting Output/Receiver 4 Inverting Input
18, 25, 31, 35	GND	Ground
19	R3INB	Receiver 3 Noninverting Input
20	R3INA	Receiver 3 Inverting Input
21	R2INB	Receiver 2 Noninverting Input
22	R2INA	Receiver 2 Inverting Input
23	T3OUTB/R1INB	Transmitter 3 Noninverting Output/Receiver 1 Noninverting Input
24	T3OUTA/R1INA	Transmitter 3 Inverting Output/Receiver 1 Inverting Input
26	T2OUTB	Transmitter 2 Noninverting Output
27	T2OUTA	Transmitter 2 Inverting Output
28	T10UTB	Transmitter 1 Noninverting Output
29	T1OUTA	Transmitter 1 Inverting Output
30	T5OUTA/R5INA	Transmitter 5 Inverting Output/Receiver 5 Inverting Input
32	VEE	Charge-Pump Negative-Supply Output. Connect a $4.7 \mu \mathrm{~F}$ ceramic capacitor from V_{EE} to ground as close as possible to the device.
33	C2-	$V_{E E}$ Charge-Pump Flying-Capacitor Negative Terminal. Connect a 1μ F ceramic capacitor between C2+ and C2-.
34	C2+	$V_{E E}$ Charge-Pump Flying-Capacitor Positive Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C2+ and C2-.
36	C1-	$V_{D D}$ Charge-Pump Flying-Capacitor Negative Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C1+ and C1-.

Multiprotocol, Pin-Selectable
 Data Interface Chipset

PIN	NAME	FUNCTION
37	C1+	VDD Charge-Pump Flying-Capacitor Positive Terminal. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor between C1+ and C1-.
38	VDD	Charge-Pump Positive-Supply Output. Connect a 4.7 as close ceramic capacitor from Vossible to the device.
-	EP	Exposed Pad. Internally connected to Vé performance, not intended as an electrical connect to a large VEE plane to maximize thermal the MAX13171E.

MAX13175E Pin Description

PIN	NAME	FUNCTION
1,38	R1B	Load 1, Node B
2, 3	R1A	Load 1, Node A
4, 5	R2A	Load 2, Node A
6, 7	R2B	Load 2, Node B
8	R2C	Load 2, Center Tap. Leave unconnected.
9, 10	R3A	Load 3, Node A
11, 12	R3B	Load 3, Node B
13, 18	GND	Ground
14	R3C	Load 3, Center Tap. Leave unconnected.
15	VL	Logic-Supply Reference Input. V_{L} determines the voltage level of the logic interface.
16	VEE	Negative Supply Voltage. Bypass $\mathrm{V}_{E E}$ to $G N D$ with a $0.1 \mu \mathrm{~F}$ capacitor. Connect to V_{EE} from the MAX13173E.
17	VDD	Positive Supply Voltage. Bypass VDD to GND with a $0.1 \mu \mathrm{~F}$ capacitor. Connect to V_{DD} from the MAX13173E.
19	VCC	Supply Voltage. Bypass VCC to GND with a $0.1 \mu \mathrm{~F}$ capacitor as close as possible to the device.
20, 21	R4B	Load 4, Node B
22, 23	R4A	Load 4, Node A
24, 25	R5B	Load 5, Node B
26, 27	R5A	Load 5, Node A
28, 29	R6A	Load 6, Node A
30,31	R6B	Load 6, Node B
32	DCE/ $/ \overline{\text { TE }}$	DCE// $\overline{\text { TE }}$ Mode-Select Input
33	$\overline{\text { LATCH }}$	Latch Signal Input. When $\overline{\text { LATCH }}$ is low, the input latches are transparent. When $\overline{\text { LATCH }}$ is high, the data at the mode-select inputs are latched.
34	M2	Mode-Select Input 2
35	M1	Mode-Select Input 1
36	M0	Mode-Select Input 0
37	R1C	Load 1, Center Tap. Leave unconnected.
-	EP	Exposed Pad. Internally connected to $\mathrm{V}_{\text {EE }}$. Connect to a large $\mathrm{V}_{\text {EE }}$ plane to maximize thermal performance, not intended as an electrical connection point. If $V_{E E}$ is powered from the MAX13173E's VEE, planes can be shared.

Multiprotocol，Pin－Selectable Data Interface Chipset

Figure 1．V． 11 DC Test Circuit

Figure 2．V． 11 AC Test Circuit

Figure 3．V． 35 Transmitter／Receiver Test Circuit

Figure 4．V．10／V． 28 Transmitter Test Circuit

Figure 5．V．10／V． 28 Receiver Test Circuit

Multiprotocol, Pin-Selectable Data Interface Chipset

Figure 6. V. 11 Transmitter Propagation Delays

Figure 7. V. 11 Receiver Propagation Delays

Figure 8. V. 10 Transmitter Propagation Delay

Figure 9. V. 10 Receiver Propagation Delay

Multiprotocol, Pin-Selectable Data Interface Chipset

Timing Diagrams (continued)

Figure 10. V. 28 Transmitter Propagation Delay

Figure 11. V. 28 Receiver Propagation Delay

Figure 12. V. 11 or V. 35 Differential Impedance Measurement

Figure 13. V. 35 Common-Mode Impedance Measurement

Multiprotocol, Pin-Selectable Data Interface Chipset

Figure 14. MAX13175E Block Diagram

Detailed Description

The MAX13171E/MAX13173E/MAX13175E form a complete pin-selectable DTE or DCE interface port that supports the V. 28 (RS-232), V.10/V. 11 (RS-449/V.36, RS-530, RS-530A, X.21), and V. 35 protocols. The MAX13171E transceivers carry the high-speed clock and data signals, while the MAX13173E transceivers carry serial-interface control signaling. The MAX13171E can be terminated by the MAX13175E pin-selectable resistor termination network, or by a discrete termination network. The MAX13171E/MAX13173E feature a low supply current, no-cable mode, true fail-safe operation, and thermal-shutdown circuitry. Thermal shutdown protects the drivers against excessive power dissipation. When activated, the thermal-shutdown circuitry places the driver and receiver outputs into a highimpedance state.
The MAX13171E is a three-driver/three-receiver, multiprotocol transceiver that operates from a single +3.135 V to +5.5 V supply. The MAX13173E is a five-dri-ver/five-receiver multiprotocol transceiver that operates from a single +3.135 V to +5.5 V supply. The MAX13175E contains six pin-selectable multiprotocol cable termination networks (Figure 14). Each network is capable of terminating V. 11 (RS-422, RS-530, RS-530A, RS-449, V. 36 and X.21) with a 100Ω differential load, V. 35 with a T-network load, or V. 28 (RS-232) and V. 10 (RS-423) with an open-circuit load for use with transceivers having on-chip termination. The terminations and protocols are pin selectable. The MAX13175E replaces discrete resistor termination networks and
expensive relays required for multiprotocol termination, saving space and cost.

Dual Charge-Pump Voltage Converter

The MAX13171E/MAX13173E have internal-regulated dual charge pumps that provide positive and negative output voltages from a single supply. The charge pump operates in discontinuous mode. If the output voltage is less than the regulated voltage, the charge pump is enabled. If the output voltage exceeds the regulated voltage, the charge pump is disabled. Each charge pump requires flying capacitors (C1, C2), and reservoir capacitors (C3, C5), to generate the VDD and VEE supplies. Figure 15 shows the charge-pump connections.

Figure 15. Charge Pump

Multiprotocol, Pin-Selectable Data Interface Chipset

Fail-Safe
The MAX13171E/MAX13173E guarantee a logic-high receiver output when the receiver inputs are open or shorted, or when they are connected to a terminated transmission line with all drivers disabled by setting the receiver threshold between -50 mV and -200 mV in the V .11 and V .35 modes. If the differential receiver input voltage ($\mathrm{B}-\mathrm{A}$) is $\geq-50 \mathrm{mV}$, R_OUT is logic-high. If $(B-A)$ is $\leq-200 \mathrm{mV}$, R_OUT is logic-low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage is pulled to zero by the termination. This results in a logic-high with a 50 mV minimum noise margin.
The V .10 receiver threshold is set between 50 mV and 250 mV . If the V .10 receiver input voltage is less than or equal to 50 mV , R_OUT is logic-high. The V. 28 receiver threshold is set between 0.8 V and 2.0 V . If the receiver input voltage is less than or equal to 0.8 V , R_OUT is logic-high. In the case of a terminated bus with transmitters disabled, the receiver's input voltage is pulled to GND by the termination.

Mode Selection
The mode-select inputs M0, M1, and M2 determine which interface protocol is selected (Table 1 for the MAX13171E, Table 2 for the MAX13173E). The state of the DCE/DTE input determines whether the transceivers are configured as a DTE serial port or a DCE serial port. The INVERT input on the MAX13173E changes the DCE/DTE functionality regarding T4/T5 and R4/R5 only. M0, M1, M2, INVERT, and DCE/DTE are internally pulled up to V_{L} to ensure logic-high if left unconnected. If the M0, M1, and M2 mode inputs are all unconnected, the MAX13171E/MAX13173E enter no-cable mode.
The MAX13175E mode select inputs and DCE/DTE input do not have an internal pullup to V_{L}. They are pulled logic-high if their mode-select inputs are tied to the MAX13171E/MAX13173E's mode select inputs.

Termination Modes

The termination networks in the MAX13175E can be set to one of three modes, V.11, V.35, or high impedance.

Table 1. MAX13171E Mode Selection

MAX13171E MODE NAME	M2	M1	M0	DCE/ DTE	T1	T2	T3	R1	R2	R3
Not Used (Default V.11)	0	0	0	0	V .11	V .11	Z	V .11	V .11	V .11
RS-530A	0	0	1	0	V .11	V .11	Z	V .11	V .11	V .11
RS-530	0	1	0	0	V .11	V .11	Z	V .11	V .11	V .11
X .21	0	1	1	0	V .11	V .11	Z	V .11	V .11	V .11
V .35	1	0	0	0	V .35	V .35	Z	V .35	V .35	V .35
RS-449/V.36	1	0	1	0	V .11	V .11	Z	V .11	V .11	V .11
V.28/RS-232	1	1	0	0	V .28	V .28	Z	V .28	V .28	V .28
No Cable	1	1	1	0	Z	Z	Z	Z	Z	Z
Not Used (Default V.11)	0	0	0	1	V .11	V .11	V .11	Z	V .11	V .11
RS-530A	0	0	1	1	V .11	V .11	V .11	Z	V .11	V .11
RS-530	0	1	0	1	V .11	V .11	V .11	Z	V .11	V .11
X.21	0	1	1	1	V .11	V .11	V .11	Z	V .11	V .11
V.35	1	0	0	1	V .35	V .35	V .35	Z	V .35	V .35
RS-449/V.36	1	0	1	1	V .11	V .11	V .11	Z	V .11	V .11
V.28/RS-232	1	1	0	1	V .28	V .28	V .28	Z	V .28	V .28
No Cable	1	1	1	1	Z	Z	Z	Z	Z	Z

Multiprotocol, Pin-Selectable
 Data Interface Chipset

Table 2. MAX13173E Mode Selection

PROTOCOL	M2	M1	M0	$\frac{\mathrm{DCE} /}{\mathrm{DTE}}$	INVERT	T1	T2	T3	R1	R2	R3	T4	R4	T5	R5
Not Used (Default V.11)	0	0	0	0	0	V. 11	V. 11	Z	V. 11	V. 11	V. 11	Z	V. 10	Z	V. 10
RS-530A	0	0	1	0	0	V. 11	V. 10	Z	V. 11	V. 10	V. 11	Z	V. 10	Z	V. 10
RS-530	0	1	0	0	0	V. 11	V. 11	Z	V. 11	V. 11	V. 11	Z	V. 10	Z	V. 10
X. 21	0	1	1	0	0	V. 11	V. 11	Z	V. 11	V. 11	V. 11	Z	V. 10	Z	V. 10
V. 35	1	0	0	0	0	V. 28	V. 28	Z	V. 28	V. 28	V. 28	Z	V. 28	Z	V. 28
RS-449/V. 36	1	0	1	0	0	V. 11	V. 11	Z	V. 11	V. 11	V. 11	Z	V. 10	Z	V. 10
V.28/RS-232	1	1	0	0	0	V. 28	V. 28	Z	V. 28	V. 28	V. 28	Z	V. 28	Z	V. 28
No Cable	1	1	1	0	0	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
Not Used (Default V.11)	0	0	0	0	1	V. 11	V. 11	Z	V. 11	V. 11	V. 11	V. 10	Z	V. 10	Z
RS-530A	0	0	1	0	1	V. 11	V. 10	Z	V. 11	V. 10	V. 11	V. 10	Z	V. 10	Z
RS-530	0	1	0	0	1	V. 11	V. 11	Z	V. 11	V. 11	V. 11	V. 10	Z	V. 10	Z
X. 21	0	1	1	0	1	V. 11	V. 11	Z	V. 11	V. 11	V. 11	V. 10	Z	V. 10	Z
V. 35	1	0	0	0	1	V. 28	V. 28	Z	V. 28	V. 28	V. 28	V. 28	Z	V. 28	Z
RS-449/V. 36	1	0	1	0	1	V. 11	V. 11	Z	V. 11	V. 11	V. 11	V. 10	Z	V. 10	Z
V.28/RS-232	1	1	0	0	1	V. 28	V. 28	Z	V. 28	V. 28	V. 28	V. 28	Z	V. 28	Z
No Cable	1	1	1	0	1	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
Not Used (Default V.11)	0	0	0	1	0	V. 11	V. 11	V. 11	Z	V. 11	V. 11	V. 10	Z	V. 10	Z
RS-530A	0	0	1	1	0	V. 11	V. 10	V. 11	Z	V. 10	V. 11	V. 10	Z	V. 10	Z
RS-530	0	1	0	1	0	V. 11	V. 11	V. 11	Z	V. 11	V. 11	V. 10	Z	V. 10	Z
X. 21	0	1	1	1	0	V. 11	V. 11	V. 11	Z	V. 11	V. 11	V. 10	Z	V. 10	Z
V. 35	1	0	0	1	0	V. 28	V. 28	V. 28	Z	V. 28	V. 28	V. 28	Z	V. 28	Z
RS-449/V. 36	1	0	1	1	0	V. 11	V. 11	V. 11	Z	V. 11	V. 11	V. 10	Z	V. 10	Z
V.28/RS-232	1	1	0	1	0	V. 28	V. 28	V. 28	Z	V. 28	V. 28	V. 28	Z	V. 28	Z
No Cable	1	1	1	1	0	Z	Z	Z	Z	Z	Z	Z	Z	Z	V. 10
Not Used (Default V.11)	0	0	0	1	1	V. 11	V. 11	V. 11	Z	V. 11	V. 11	Z	V. 10	Z	V. 10
RS-530A	0	0	1	1	1	V. 11	V. 10	V. 11	Z	V. 10	V. 11	Z	V. 10	Z	V. 10
RS-530	0	1	0	1	1	V. 11	V. 11	V. 11	Z	V. 11	V. 11	Z	V. 10	Z	V. 10
X. 21	0	1	1	1	1	V. 11	V. 11	V. 11	Z	V. 11	V. 11	Z	V. 10	Z	V. 10
V. 35	1	0	0	1	1	V. 28	V. 28	V. 28	Z	V. 28	V. 28	Z	V. 28	Z	V. 28
RS-449/V. 36	1	0	1	1	1	V. 11	V. 11	V. 11	Z	V. 11	V. 11	Z	V. 10	Z	V. 10
V.28/RS-232	1	1	0	1	1	V. 28	V. 28	V. 28	Z	V. 28	V. 28	Z	V. 28	Z	V. 28
No Cable	1	1	1	1	1	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z

Multiprotocol, Pin-Selectable Data Interface Chipset

As shown in Figure 16, in V. 11 mode, switch S1 is closed and switch S2 is open, presenting 104Ω across terminals A and B. In V. 35 mode, switches S1 and S2 are both closed, presenting a T-network with 104Ω differential impedance and 153Ω common-mode impedance. In high-impedance mode, switches S1 and S2 are both open, presenting a high impedance across terminals A and B suitable for V. 28 and V .10 modes.

The state of the MAX13175E's mode-select inputs, M0, M1, M2, and DCE/DTE determines the mode of each of the six termination networks. Table 3 shows a cross-reference of termination mode and select input state for each of the six termination networks within the MAX13175E.

Figure 16. Termination Modes
Table 3. MAX13175E Termination Mode Selection

PROTOCOL	DCE/DTE	M2	M1	M0	R1	R2	R3	R4	R5	R6
V.10/RS-423	0	0	0	0	Z	Z	Z	Z	Z	Z
RS-530A	0	0	0	1	Z	Z	Z	Z .11	V .11	V .11
RS-530	0	0	1	0	Z	Z	Z	V .11	V .11	V .11
X .21	0	0	1	1	Z	Z	Z	V .11	V .11	V .11
V.35	0	1	0	0	V .35	V .35	Z	V .35	V .35	V .35
RS-449/V.36	0	1	0	1	Z	Z	Z	V .11	V .11	V .11
V.28/RS-232	0	1	1	0	Z	Z	Z	Z	Z	Z
No Cable	0	1	1	1	V .11					
V.10/RS-423	1	0	0	0	Z	Z	Z	Z	Z	Z
RS-530A	1	0	0	1	Z	Z	Z	Z	V .11	V .11
RS-530	1	0	1	0	Z	Z	Z	Z	V .11	V .11
X.21	1	0	1	1	Z	Z	Z	Z	V .11	V .11
V.35	1	1	0	0	V .35	V .35	V .35	Z	V .35	V .35
RS-449/V.36	1	1	0	1	Z	Z	Z	Z	V .11	V .11
V.28/RS-232	1	1	1	0	Z	Z	Z	Z	Z	Z
No Cable	1	1	1	1	V .11					

Multiprotocol, Pin-Selectable Data Interface Chipset

The MAX13171E/MAX13173E when the mode-select inputs are left unconnected or connected high ($M 0=M 1=M 2=1$). The receiver outputs enter a high-impedance state in no-cable mode, allowing these output lines to be shared with other receiver outputs (the receiver outputs have an internal pullup resistor to pull the outputs high if not driven). Also, in no-cable mode, the transmitter outputs enter a high-impedance state, so these output lines can be shared with other devices.
The MAX13175E enters no-cable mode when the mode select inputs, M0, M1, and M2 are connected high. In no-cable mode, all six termination networks are placed in V. 11 mode, with S1 closed and S2 open.
V_{L} Logic Supply
The MAX13171E/MAX13173E/MAX13175E include a VL logic supply that allows user-defined interface logicvoltage levels referenced to V_{L}. V_{L} can go down to +1.62 V and up to VCC. All logic inputs and outputs are referred to V_{L}.

Data Rate

The MAX13171E/MAX13173E/MAX13175E support a maximum data rate of 40Mbps in RS-449/V.36, RS-530, RS-530A, X.21, V. 35 if only one of the MAX13171E high-speed transceivers is operated at the maximum data rate. If two high-speed transceivers operate simultaneously, the maximum data rate is 20 Mbps .

Applications Information

Capacitor Selection

The capacitors used for the charge pumps, as well as for supply bypassing, must have a low equivalent series resistance (ESR), low inductance (ESL), and low temperature coefficient. Multilayer ceramic capacitors with an X7R dielectric offer the best combination of performance, size, and cost. The flying capacitors (C1, C2) should have a value of $1 \mu \mathrm{~F}$, while the bypass capacitor (C4) and reservoir capacitors (C3, C5) should have a
minimum value of $4.7 \mu \mathrm{~F}$ (Figure 15). To reduce the ripple present on the transmitter outputs, capacitors C3, C4, and C5 can be increased. The values of C1 and C2 should not be increased.

Cable Mode-Select Application

A cable-selectable multiprotocol interface is shown in Figure 17. The mode control lines M0, M1, and DCE/DTE are wired to the DB-25 connector. To select the serial interface mode, the appropriate combination of $\mathrm{M} 0, \mathrm{M} 1$, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MAX13171E/MAX13173E. The serial interface protocol of the MAX13171E/ MAX13173E/MAX13175E is selected based on the cable that is connected to the DB-25 interface.

V. 10 (RS-423) Interface
 (MAX13173E Only)

The V. 10 interface (Figure 18) is an unbalanced singleended interface capable of driving a 450Ω load. The V .10 driver generates a minimum VO voltage of $\pm 4 \mathrm{~V}$ across A' and C' when unloaded, and a minimum voltage of $0.9 \times$ Vo when loaded with 450Ω. The V. 10 receiver has a single-ended input and does not reject common-mode differences between C and C'. The V. 10 receiver-input trip threshold is defined between +50 mV and +250 mV with input impedance characteristic shown in Figure 19.
The MAX13173E V. 10 mode receiver has a threshold between +50 mV and +250 mV . To ensure that the receiver has proper fail-safe operation, see the FailSafe section. To aid in rejecting system noise, the MAX13173E V. 10 receiver has a typical hysteresis of 25 mV . Switch S3 in Figures 20a and 20b is open in V. 10 mode to disable the $\mathrm{V} .285 \mathrm{k} \Omega$ termination at the receiver input. Switch S4 is closed and switch S5 is open to internally ground the receiver B input.

Multiprotocol, Pin-Selectable Data Interface Chipset

Figure 17. Cable-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector

Multiprotocol, Pin-Selectable Data Interface Chipset

Figure 18. Typical V.10/V. 28 Interface

Figure 19. Receiver Input Impedance Curve

Figure 20a. V. 10 Internal Resistance Network for Receivers 1, 2, and 3

Figure 20b. V. 10 Internal Resistance Network for Receivers 4 and 5

Multiprotocol, Pin-Selectable Data Interface Chipset

V. 11 (RS-422) Interface

As shown in Figure 21, the V. 11 protocol is a fully balanced differential interface. The V .11 driver generates a minimum of $\pm 2 \mathrm{~V}$ between nodes A and B when a 100Ω (min) resistance is present at the load. The V .11 receiver is sensitive to differential signals of $\pm 200 \mathrm{mV}$ at receiver inputs A' and B'. The V. 11 receiver input must comply with the impedance curve of Figure 22 and reject com-mon-mode signals developed across the cable (referenced from C to C' in Figure 21) of up to $\pm 7 \mathrm{~V}$.
The MAX13171E/MAX13173E V. 11 mode receivers have a differential threshold between -50 mV and -200 mV to ensure that the receiver has fail-safe operation (see the Fail-Safe section.) To aid in rejecting sys-

Figure 21. Typical V. 11 Interface
tem noise, the MAX13171E/MAX13173E V. 11 receivers have a typical hysteresis of 15 mV . Switch S3 in Figure 23 is open in V. 11 mode to disable the $\mathrm{V} .285 \mathrm{k} \Omega$ termination at the inverting receiver input. Because the control signals are slow (60 kbps), 100Ω termination resistance is generally not required for the MAX13173E.
For high-speed data transmission, the V. 11 specification recommends terminating the cable at the receiver with a 100Ω resistor. This resistor, although not required, prevents reflections from corrupting transmitted data. In Figure 23, the MAX13175E is used to terminate the V .11 receiver. Internal to the MAX13175E, S1 is closed and S2 is open to present a 100Ω minimum differential resistance. The MAX13171E's internal V. 28 termination is disabled by opening S3.

Figure 22. Receiver Input Impedance

Figure 23. V. 11 Termination and Internal Resistance Networks

Multiprotocol, Pin-Selectable Data Interface Chipset

V. 28 (RS-232) Interface

The V. 28 interface is an unbalanced single-ended interface (Figure 18). The V. 28 driver generates a minimum of $\pm 5 \mathrm{~V}$ across the $3 \mathrm{k} \Omega$ load impedance between A^{\prime} and C'. The V. 28 receiver has a single-ended input.
The MAX13171E/MAX13173E V. 28 mode receivers have a threshold between +0.8 V and +2.0 V . To aid in rejecting system noise, the MAX13171E/MAX13173E V. 28 receivers have a typical hysteresis of 250 mV . Switch S3 in Figures 24a and 24b is closed in V. 28 mode to enable the $5 \mathrm{k} \Omega \mathrm{V} .28$ termination at the receiver inputs.

V. 35 Interface

Figure 25 shows a fully-balanced, differential standard V. 35 interface. The generator and the load must both present a $100 \Omega \pm 10 \Omega$ differential impedance and a $150 \Omega \pm 15 \Omega$ common-mode impedance as shown by the resistive T-networks in Figure 26. The V. 35 driver generates a current output ($\pm 11 \mathrm{~mA}$, typ) that develops an output voltage of $\pm 550 \mathrm{mV}$ across the generator and

Figure 24a. V. 28 Termination and Internal Resistance Network for Receiver 1, 2, and 3
load termination networks. The V. 35 receiver is sensitive to $\pm 200 \mathrm{mV}$ differential signals at receiver inputs A^{\prime} and B'. The V. 35 receiver rejects common-mode signals developed across the cable (referenced from C to C^{\prime}) of up to $\pm 4 \mathrm{~V}$, allowing for error-free reception in noisy environments.
In Figure 26, the MAX13175E is used to implement the resistive T-network that is needed to properly terminate the V. 35 driver and receiver. Internal to the MAX13175E, S1 and S2 are closed to connect the Tnetwork resistors to the circuit. The V. 28 termination resistor (internal to the MAX13171E) is disabled by opening S3 to avoid interference with the T-network impedance.
The V .35 specification allows for $\pm 4 \mathrm{~V}$ of ground difference between the V. 35 generator and V. 35 load. The MAX13174E maintains correct termination impedance over this condition.

Figure 24b. V. 28 Internal Resistance Network for Receiver 4 and 5

Multiprotocol，Pin－Selectable Data Interface Chipset

Figure 25．Typical V． 35 Interface

Figure 26．V． 35 Termination and Internal Resistance Networks

DTE／DCE Mode Applications

The MAX13171E／MAX13173E can be hardwired for either DTE or DCE mode in one of two ways：a dedicat－ ed DTE or DCE port with an appropriate gender con－ nector，or a port with a connector that can be configured for DTE or DCE operation by rerouting the signals to the MAX13171E and MAX13173E，using a dedicated DTE cable or dedicated DCE cable．The interface mode is selected by logic outputs from the controller or from jumpers to either V_{L} or GND on the mode select inputs．

A dedicated DCE port using a DB－25 female connector is shown in Figure 28．Figure 29 illustrates a dedicated DTE port using a DB－25 male connector．
Figure 27 shows an application circuit with one com－ mon DB－25 connector that can be configured for either DTE or DCE mode．The configuration requires separate cables for proper signal routing in DTE or DCE opera－ tion．Figure 27 illustrates a DCE or DTE controller－selec－ table interface．The DCE／DTE and INVERT inputs switch the port＇s mode of operation（Tables 1，2）．

Multiprotocol, Pin-Selectable
 Data Interface Chipset

Figure 27. Controller-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector

Multiprotocol，Pin－Selectable Data Interface Chipset

Multiprotocol, Pin-Selectable
 Data Interface Chipset

Figure 29. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector

Multiprotocol, Pin-Selectable Data Interface Chipset

Complete Multiprotocol X. 21 Interface

A complete DTE-to-DCE interface operating in X. 21 mode is shown in Figure 30. The MAX13171E is used to generate the clock and data signals, and the MAX13173E generates the control signals and local loopback (LL). The MAX13175E is used to terminate the clock and data signals to support the V. 11 protocol for cable termination. The control signals do not need external termination.

ESD Protection
ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX13171E/MAX13173E have
extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of $\pm 15 \mathrm{kV}$ without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, the MAX13171E/MAX13173E/MAX13175E keep working without latchup or damage. ESD protection can be tested in various ways. The Electrical Characteristics table shows the various limits for each device and they are characterized for protection to the following methods:

- Human Body Model
- Contact Method specified in IEC 61000-4-2
- Air-Gap Discharge Method specified in IEC 61000-4-2

Figure 30. DCE-to-DTE X. 21 Interface

Multiprotocol, Pin-Selectable
 Data Interface Chipset

ESD Test Conditions
ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 31a shows the Human Body Model, and Figure 31b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100 pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

Figure 31a. Human Body ESD Test Model

Figure 31b. Human Body Current Waveform

IEC 61000-4-2
The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13171E/MAX13173E/MAX13175E help equipment designs to meet IEC 61000-4-2, without the need for additional ESD-protection components.
The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Figure 31c shows the IEC 61000-4-2 model, and Figure 31d shows the current waveform for the IEC 61000-4-2 ESD Contact Discharge test.

Figure 31c. ICE 61000-4-2 ESD Test Model

Figure 31d. IEC 61000-4-2 ESD Generator Current Waveform

Multiprotocol, Pin-Selectable Data Interface Chipset

Pin Configurations

TOP VIEW

Multiprotocol, Pin-Selectable
 Data Interface Chipset

```
TOP VIEW
```


TQFN
*CONNECT EXPOSED PAD TO VEE

PROCESS: BiCMOS

Package Information
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
38 TQFN-EP	T3857+1	$\underline{\underline{\mathbf{2 1 - 0 1 7 2}}}$	$\underline{\underline{90-0076}}$

Multiprotocol，Pin－Selectable Data Interface Chipset

| REVISION
 NUMBER | REVISION
 DATE | Revision History | |
| :---: | :---: | :--- | :---: | :---: |
| 2 | $4 / 10$ | Removed three external capacitors from Figure 17 and Figures $27-29$ | PAGES
 CHANGED |
| 3 | $8 / 11$ | Updated Fail－Safe and Package Information sections | $27,32-34$ |

